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Hand-eye Calibration: 4D Procrustes Analysis
Approach

Jin Wu , Member, IEEE, Yuxiang Sun , Miaomiao Wang , Student Member, IEEE and Ming Liu

, Senior Member, IEEE

Abstract—We give an universal analytical solution to the hand-
eye calibration problem AX =XB with known matrices A,B
and unknown variable X , all in the set of special Euclidean
group SE(3). The developed method relies on the 4-dimensional
Procrustes analysis. An unit-octonion representation is proposed
for the first time to solve such Procrustes problem through which
an optimal closed-form eigen-decomposition solution is derived.
By virtue of such solution, the uncertainty description ofX , being
a sophisticated problem previously, can be solved in a simpler
manner. The proposed approach is then verified using simula-
tions and real-world experimentations on an industrial robotic
arm. The results indicate that it owns better accuracy, better
description of uncertainty and consumes much less computation
time.

Index Terms—Hand-eye Calibration, Homogenous Transfor-
mation, Least Squares, Quaternions, Octonions

I. INTRODUCTION

THE main hand-eye calibration problem studied in this
paper is aimed to compute the unknown relative homoge-

neous transformation X between robotic gripper and attached
camera, whose poses are denoted as A and B respectively
such that AX = XB. Hand-eye calibration can be solved
via general solutions to the AX =XB problems or through
minimizing direct models established using reprojection errors
[1]. However, the hand-eye problem AX = XB is not
restricted only to the manipulator-camera calibration. Rather,
it has been applied to multiple sensor calibration problems
including magnetic/inertial ones [2], camera/magnetic ones [3]
and other general models [4]. That is to say, the solution of
AX =XB is more generalized and has broader applications
than methods based on reprojection-error minimization. The
early study of the hand-eye calibration problem can be dated
back to 1980s when some researchers try to determine the
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gripper-camera transformation for accurate robotic perception
and reconstruction. During the past over 30 years, there
have been a large variety of algorithms solving the hand-
eye problem AX = XB. Generally speaking, they can be
categorized into two groups. The first group consists of those
algorithms that calculate the rotation in the first step and then
compute the translation part in the second step while in the
second group, algorithms compute the rotation and translation
simultaneously. There are quite a lot of methods belonging
to the very first group that we call them as separated ones
including representatives of rotation-logarithm based ones like
Tsai et al. [5], Shiu et al. [6], Park et al. [7], Horaud et
al. [8] and quaternion based one from Chou et al. [9]. The
simultaneous ones appear in the second group with related
representatives of

1) Analytical solutions: Quaternion-based method by Lu
et al. [10], Dual-quaternion based one by Daniilidis [11],
Sylvester-equation based one by Andreff et al. [12], Dual-
tensor based one by Condurache et al. [13].

2) Numerical solutions: Gradient/Newton methods by
Gwak et al. [14], Linear-matrix-inequality (LMI) based
one by Heller et al. [15], Alternative-linear-programming
based one by Zhao [16], pseudo-inverse based one by
Zhang et al. [3], [17].

Each kind of algorithms have their own pros and cons. The
separated ones can not produce good enough results with those
cases when translation measurements are more accurate than
rotation. The simultaneous ones can achieve better optimiza-
tion performances but may consume large quantity of time
when using numerical iterations. Some algorithms will also
suffer from their own ill-posed conditions in the presence
some extreme datasets [18]. What’s more, the uncertainty
description of the X in hand-eye problem AX = XB,
being an important but difficult problem, has always troubled
researchers until the first public general iterative solution by
Nguyen et al. in 2018 [19]. An intuitive overview of these
algorithms in the order of publication time can be found out
in Table I.

Till now, hand-eye calibration has accelerated the develop-
ment of robotics communities according to it various usages
in sensor calibration and motion sensing [20], [21]. Although
it has been quite a long time since the first proposal of
hand-eye calibration, the researches around it are still very
popular. There is still a remaining problem that no algorithm
can simultaneously estimate the X in AX = XB while

https://orcid.org/0000-0001-5930-4170
https://orcid.org/0000-0002-7704-0559
https://orcid.org/0000-0001-7498-5162
https://orcid.org/0000-0002-4500-238X
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TABLE I
COMPARISONS BETWEEN RELATED METHODS

Methods Type Parameterization or Basic Tools Computation Speed Accuracy Has Uncertainty Description?

Tsai et al. 1989 [5] Separated, Analytical Rotation Logarithms High Medium No
Shiu et al. 1989 [6] Separated, Analytical Rotation Logarithms Low Low No
Park et al. 1994 [7] Separated, Analytical Rotation Logarithms, SVD Medium Medium No

Horaud 1995 [8] Separated, Analytical Rotation Logarithms, Eigen-decomposition High Medium No
Chou et al. 1991 [9] Separated, Analytical Quaternion, SVD High Medium No
Daniilidis 1999 [11] Simultaneous, Analytical Dual Quaternion, SVD Medium Medium No

Andreff et al. 2001 [12] Simultaneous, Analytical Sylverster Equation, Kronecker Product High Medium No
Lu et al. 2002 [10] Simultaneous, Analytical Quaternion, SVD Low Medium No

Gwak et al. 2003 [14] Simultaneous, Optimization Gradient/Newton Method Very Low High No
Heller et al. 2014 [15] Simultaneous, Optimization Quaternion, Dual Quaternion, LMI Very Low High No

Condurache et al. 2016 [13] Simultaneous, Analytical Dual Tensor, SVD or QR Decomposition Medium Medium No
Zhang et al. 2017 [17] Simultaneous, Optimization Dual Quaternion, Pseudo Inverse Medium Medium No

Zhao 2018 [16] Simultaneous, Optimization Dual Quaternion, Alternative Linear Programming Very Low High No
Nguyen et al. 2018 [19] Separated, Optimization Rotation Iteration Very Low High Yes

preserving highly accurate uncertainty descriptions and con-
suming extremely low computation time. These difficulties are
rather practical since in the hand-eye problem AX = XB,
the rotation and translation parts are tightly coupled with high
nonlinearity, which motivates Nguyen et al. to derive the first-
order approximation of the error covariance propagation. It
is also the presented nonlinearity that makes the numerical
iterations much slower.

To overcome the current algorithmic shortcomings, in this
paper, we study a new 4-dimensional (4D) Procrustes anal-
ysis tool for representation of homogeneous transformations.
Understanding the manifolds has become a popular way for
modern interior analysis of various data flows [22]. The
geometric descriptions of these manifolds have always been
vital, which, are usually addressed with the Procrustes analysis
that extracts the rigid, affine or non-rigid geometric mappings
between datasets [23], [24]. Early researches on Procrustes
analysis have been conducted since 1930s [25], [26], [27] and
later generalized solutions are applied to spacecraft attitude
determination [28], [29], image registration [30], [31], laser
scan matching using iterative closest points (ICP) [32], [33]
and etc. Motivated by these technological advances, this paper
has the following contributions:

1) We show some analytical results to the 4D Procrustes
analysis in Section III and apply them to the solution of
hand-eye calibration problem detailed in Section II.

2) Since all variables are directly propagated into final
results, the solving process is quite simple and computa-
tionally efficient.

3) Also, as the proposed solution is in the form of the
spectrum decomposition of a 4×4 matrix, the closed-form
probabilistic information is given precisely and flexibly
for the first time using some recent results in automatic
control.

Finally, via simulations and real-world robotic experiments
in Section IV, the proposed method is evaluated to own
better potential accuracy, computational loads and uncertainty
descriptions. Detailed comparisons are also shown to reveal
the sensitivity of the proposed method subject to input noise
and different parameter values.

II. PROBLEM FORMULATION

We start this section by first defining some important
notations in this paper that are mostly inherited from [34].
The n-dimensional real Euclidean space is represented by Rn
which further generates the matrix space Rm×n containing all
real matrices with m rows and n columns. All n-dimensional
rotation matrices belong to the special orthogonal group
SO(n) := {R ∈ Rn×n|RTR = I,det(R) = 1} where
I denotes the identity matrix with proper size. The special
Euclidean space is composed of a rotation matrix R and a
translational vector t such that

SE(n) :=

{
T =

(
R t
0 1

)
|R ∈ SO(n), t ∈ Rn

}
(1)

with 0 denoting the zeros matrix with adequate dimensions.
The Euclidean norm of a given squared matrix X will be
defined with ‖X‖ =

√
tr (XTX) where tr denotes the

matrix trace. The vectorization of an arbitrary matrix X is
defined as vec(X) and ⊗ represents the kronecker product
between two matrices. For a given arbitrary matrix X , X† is
called its Moore-Penrose generalized inverse. Any rotation R
on the SO(3) has its corresponding logarithm given by

log(R) =
φ

2 sinφ
(R−RT ) (2)

in which 1 + 2 cosφ = tr(R). Given a 3D vector x =
(x1, x2, x3)

T , its associated skew-symmetric matrix is

[x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (3)

satisfying x × y = [x]×y = −[y]×x where y is also an
arbitrary 3D vector. The inverse map from the skew-symmetric
matrix to the 3D vector is denoted as [x]∧× = x.

Now let us describe the main problem in this paper. Given
two measurement sets

A = {Ai|Ai ∈ SE(3), i = 1, 2, · · · , N}
B = {Bi|Bi ∈ SE(3), i = 1, 2, · · · , N}

(4)

consider the hand-eye calibration least square:

argmin
X∈SE(3)

J =

N∑
i=1

‖AiX −XBi‖2 (5)
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where Ai and Bi come to the reality using poses in two
successive measurements (also see Fig. 1 in [11])

Ai = TAi+1
T−1Ai

Bi = T
−1
Bi+1

TBi

(6)

with TAi
being the i-th camera pose with respect to the

standard objects in world frame and

TBi
= TBi,3

TBi,2
TBi,1

(7)

are gripper poses with respect to the robotic base, in which
TBi,1

,TBi,2
,TBi,3

are transformations between joints of
robotic arms. The relationship between these homogeneous
transformations can be found out in Fig. 1. The task for us in
the remainder of this paper is to give a closed-form solution
of X considering rotation and translation simultaneously and
moreover, derive the uncertainty description of X .

Let us write A,B into

A =

(
RA tA
0 1

)
,B =

(
RB tB
0 1

)
(8)

Then one easily obtains{
RARX = RXRB

RAtX + tA = RXtB + tX
(9)

The method by Park et al. [7] first computes RX from the
first equation of (9) and then solves tX by inserting RX into
the second sub-equation. The Park’s step for computing RX
is tantamount to the following optimization

argmin
RX∈SO(3)

N∑
i=1

‖RXai − bi‖2 (10)

with
ai = [log (RAi

)]∧

bi = [log (RBi
)]∧

(11)

Note that (10) is in fact a rigid 3D registration problem which
can be solved instantly with singular value decomposition
(SVD) or eigen-decomposition [29], [32]. However, the so-
lution of Park et al. does not take the translation into account
for RX while the accuracy of RX is actually affected by tX .
Therefore, there are some other methods trying to compute
RX and tX simultaneously [11], [12]. While these methods
fix the remaining problem of Park et al., they may not achieve
global minimum as the optimization

argmin
RX∈SO(3),tX∈R3

N∑
i=1

(
‖RXai − bi‖2+
‖RXtB + tX −RAtX − tA‖2

)
(12)

is not always convex. Hence, iterative numerical methods are
proposed to achieve the globally optimal estimates of RX and
tX , including solvers in [3], [14], [16], [17]. In the following
section, we show a new analytical perspective for hand-eye
calibration problem AX = XB using the proposed 4D
Procrustes analysis.

III. 4D PROCRUSTES ANALYSIS

The whole results in this section are proposed for the first
time solving specific 4D Procrustes analysis problems. The
developed approach is therefore named as the 4DPA method
for simplicity in later sections.

A. Some New Analytical Results
Problem 1: Let {U} = {ui ∈ R4}, {V} = {vi ∈ R4}
where i = 1, 2, · · · , N,N ≥ 3 be two point sets in which the
correspondences are well matched such that ui corresponds
exactly to vi. Find the 4D rotation R and translation vector
t such that

argmin
R∈SO(4),t∈R4

N∑
i=1

‖Rui + t− vi‖2 (13)

Fig. 1. The relationship between various homogeneous transformations for gripper-camera hand-eye calibration.
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K =

 H11 +H22 +H33 +H44 H12 −H21 −H34 +H43 H13 +H24 −H31 −H42 H14 −H23 +H32 −H41

H12 −H21 +H34 −H43 H33 −H22 −H11 +H44 H14 −H23 −H32 +H41 −H13 −H24 −H31 −H42

H13 −H24 −H31 +H42 −H14 −H23 −H32 −H41 H22 −H11 −H33 +H44 H12 +H21 −H34 −H43

H14 +H23 −H32 −H41 H13 −H24 +H31 −H42 −H12 −H21 −H34 −H43 H22 −H11 +H33 −H44

 (19)

Solution: Problem 1 is actually a 4D registration problem
that can be easily solved via the SVD:

R = Udiag [1, 1, 1,det(UV )]V T

t = v̄ −Rū
(14)

with
USV T =H

H =

N∑
i=1

(ui − ū) (vi − v̄)T

ū =
1

N

N∑
i=1

ui, v̄ =
1

N

N∑
i=1

vi

(15)

where S = diag(s1, s2, s3, s4) is the diagonal matrix con-
taining all singular values of H . However, SVD can not
reflect the interior geometry of SO(4) and such geometric
information of special orthogonal groups will be very helpful
for further proofs [35], [36]. The 4D rotation can be charac-
terized with two unitary quaternions qL = (a, b, c, d)T and
qR = (p, q, r, s)T by [37]

R = RL (qL)RR (qR) (16)

with

RL (qL) =

 a −b −c −d
b a −d c
c d a −b
d −c b a



RR (qR) =

 p −q −r −s
q p s −r
r −s p q
s r −q p


(17)

being the left and right matrices. Interestingly, such RL (qL)
and RR (qR) are actually matrix expressions for quaternion
products from left and right sides respectively. Rising from 3D
spaces, the 4D rotation is much more sophisticated because
the 4D cross product is not so unique as that in the 3D
case [38]. Therefore, methods previously relying on the 3D
skew symmetric matrices are no longer extendable for 4D
registration. The parameterization of R ∈ SO(4) by (16) can
also be unified with the unit octonion given by

σ =
1√
2
(qTL , q

T
R)
T ∈ R8 (18)

Our task here is to derive the closed-form solution of such
a σ and therefore compute R and t. Using the analytical
form in (16), we can rewrite the rotation matrix R into
R = (c1, c2, c3, c4) with c1, c2, c3, c4 standing for the four
columns of R, respectively. For each column, the algebraic
factorization can be performed via

c1 = P1 (σ)σ

c2 = P2 (σ)σ

c3 = P3 (σ)σ

c4 = P4 (σ)σ

(20)

where P1 (σ) ,P2 (σ) ,P3 (σ) ,P4 (σ) ∈ R4×8 are given in
the Appendix A. These matrices, however, are subjected to the
following equalities

P1 (σ)P
T
1 (σ) = P2 (σ)P

T
2 (σ)

= P3 (σ)P
T
3 (σ) = P4 (σ)P

T
4 (σ)

=
1

2

(
a2 + b2 + c2 + d2 + p2 + q2 + r2 + s2

)
I

= I

(21)

Then following the step of [39], one can obtain that ideally

P T
1 (σ)H1+P

T
2 (σ)H2+P

T
3 (σ)H3+P

T
4 (σ)H4 = σ (22)

where H1,H2,H3,H4 are four rows of the matrix H , such
that

H =
(
HT

1 ,H
T
2 ,H

T
3 ,H

T
4

)T
(23)

Evaluating the left part of (22), an eigenvalue problem is
derived to [39]

Wσ = λW ,maxσ (24)

The optimal eigenvector σ is associated with the maximum
eigenvalue λW ,max of W with W being an 8 × 8 matrix in
the form of

W =

(
0 K
KT 0

)
(25)

where K is shown in (19). This indicates that λW ,max subject
to
det
(
λW ,maxI −W

)
= det

(
λW ,maxI

)
det

(
λW ,maxI −

1

λW ,max

KTK

)
= det

(
λ2W ,maxI −KTK

) (26)

where the details are shown in Appendix A. In other words,
λ2W ,max is the eigenvalue of the 4 × 4 matrix KTK. As
the symbolic solutions to generalized quartic equations have
been detailed in [40], the computation of the eigenvalues of
W will be very simple. When σ is computed, it also gives
the R and thus will produce t according to (14).

Sub-Problem 1: Given an improper rotation matrix R̃ which
is not strictly on SO(4), find the optimal rotation R ∈ SO(4)
to orthonormalize R̃.
Solution: This is the orthonormalization problem and can be
solved by replacing H as R in (15), indicated in [41], [42]
and [43].

Problem 2: Let {E} = {Ei ∈ SO(4)}, {Z} = {Zi ∈ SO(4)}
where i = 1, 2, · · · , N be two matrix sets in which Ei
corresponds exactly to Zi. Find the 4D rotation R such that

argmin
R∈SO(4)

N∑
i=1

‖EiR−RZi‖2 (27)
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Solution: First we provide some properties on this problem.
Problem 2 is very different with (10) because for rotation on
SO(4), the exponential map indicates a 6×6 skew-symmetric
matrix. Therefore the previous 3D registration method can not
be extended to the 4D case. In the solution to Problem 1, we
reveal some identities of unit octonion for representation of
rotation on SO(4). Note that this is very similar to the previous
quaternion decomposition from rotation (QDR) that been used
for solving AR = RB where A,B,R ∈ SO(3) [44]. Then
we are going to extend the QDR to the octonion decomposition
from rotation (ODR) for the solution of Problem 2.

Like (20), R ∈ SO(4) can also be decomposed from rows
such that

R =
(
rT1 , r

T
2 , r

T
3 , r

T
4

)T
r1 = σTQ1(σ)

r2 = σTQ2(σ)

r3 = σTQ3(σ)

r4 = σTQ4(σ)

(28)

where Q1(σ), Q2(σ), Q3(σ), Q4(σ) ∈ R4×8 are shown in
the Appendix A.

Invoking this ODR, we are able to transform EiR −RZi
into

EiR−RZi = (Mi,1σ,Mi,2σ,Mi,3σ,Mi,4σ) (29)

where i = 1, 2, · · · , N and

Mi,1 =


σTG11,i

σTG12,i

σTG13,i

σTG14,i

 ,Mi,2 =


σTG21,i

σTG22,i

σTG23,i

σTG24,i

 ,

Mi,3 =


σTG31,i

σTG32,i

σTG33,i

σTG34,i

 ,Mi,4 =


σTG41,i

σTG42,i

σTG43,i

σTG44,i


(30)

in which each Gjk,i, j, k = 1, 2, 3, 4 takes the form

Gjk,i =

(
0 Jjk,i
JTjk,i 0

)
(31)

with parameter matrices Jjk,i ∈ R4×8 given in Appendix A.
Afterwards, the optimal octonion can be sought by

argmin
R∈SO(4)

N∑
i=1

‖EiR−RZi‖2

= argmin
σTσ=1

N∑
i=1

σT

 4∑
j=1

4∑
k=1

G2
jk,i

σ
= argmin

σTσ=1

σTFσ

(32)

where

F =

N∑
i=1

4∑
j=1

4∑
k=1

G2
jk,i

=

N∑
i=1

4∑
j=1

4∑
k=1

(
Jjk,iJ

T
jk,i 0

0 JTjk,iJjk,i

) (33)

(32) indicates that σ is the eigenvector belonging to the
minimum eigenvalue of F such that

Fσ = λF ,minσ (34)

Since Jjk,iJTjk,i and JTjk,iJjk,i have quite the same spectrum
distribution, (33) also implies that there are two different
minimum eigenvalues for F with their associated eigenvectors
representing qL and qR respectively. That is to say, the qL and
qR are eigenvectors of F11 and F22 such that

F11 =

N∑
i=1

4∑
j=1

4∑
k=1

Jjk,iJ
T
jk,i

F22 =

N∑
i=1

4∑
j=1

4∑
k=1

JTjk,iJjk,i

F =

(
F11 0
0 F22

)
(35)

associated with their minimum eigenvalues, respectively.
Then inserting the computed qL and qR into (16) gives the
optimal R ∈ SO(4) for Problem 2.

Sub-Problem 2: Let {E} = {Ei ∈ SO(4)}, {Z} = {Zi ∈
SO(4)} where i = 1, 2, · · · , N , be two sequential matrix sets
in which Ei does not exactly correspond to Zi. Find the 4D
rotation R

argmin
R∈SO(4)

N∑
i=1

‖EiR−RZi‖2 (36)

provided that {E} and {Z} are sampled asynchronously.

Solution: In this problem, {E} and {Z} are asynchronously
sampled measurements with different timestamps. First we
need to interpolate the rotations for smooth consensus. Sup-
pose that we have two successive homogeneous transforma-
tions Ei,Ei+1 with timestamps of τE,i, τE,i+1 respectively.
There exists a measurement of Zi with timestamp of τZ,i ∈
[τE,i, τE,i+1]. Then the linear interpolation Ei,i+1 on SO(4)
can be found out by

argmin
Ei,i+1∈SO(4)

tr

w
(
EiE

T
i,i+1 − I

)T (
EiE

T
i,i+1 − I

)
+

(1− w)
(
Ei,i+1E

T
i+1 − I

)T (
Ei,i+1E

T
i+1 − I

)


⇒ argmin
Ei,i+1∈SO(4)

tr
{
Ei,i+1[wEi + (1− w)Ei+1]

T
}

(37)
where w is the timestamp weight between Ei and Ei,i+1 such
that

w =
τE,i+1 − τZ,i
τE,i+1 − τE,i

(38)

Then the interpolation can be solved using solution to the
Problem 1 by letting H = [wEi + (1− w)Ei+1]

T . After the
interpolation, a new interpolated set {Ẽ} can be established
that well corresponds to {Z} and R can be solved via the
solution to Problem 2.
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B. Uncertainty Descriptions

In this sub-section, we use x̂ for representing the true value
of the noise-disturbed vector x. The expectation is denoted
using 〈· · · 〉 [29], [45]. All the errors in this sub-section are
assumed to be zero-mean which can be found out in [29].
As all the solutions provided in the last sub-section are all
in the spectrum-decomposition form, the errors of the derived
quaternions can be given by the perturbation theory [46]. In a
recent error analysis for the attitude determination from vector
observations by Chang et al. [47], the first-order error of the
estimated deterministic quaternion q is

δq =
[
qT ⊗ (λmaxI −M)†

]
δm (39)

provided that m = vec(M), λmax being the maximum
eigenvalue of the real symmetric matrix M

Mq = λmaxq (40)

The above quaternion error is presented given the assumption
that δq is multiplicative such that

q̂ = δq � q (41)

where � denotes the quaternion product. The following con-
tents will discuss the covariance expressions for this type of
quaternion error.

Using (39), we have the following quaternion error covari-
ance

Σδq =
〈
δqδqT

〉
=

〈[
qT ⊗ (λmaxI −M)†

]
δmδmT

[
qT ⊗ (λmaxI −M)†

]T〉
=
[
qT ⊗ (λmaxI −M)†

]
Σδm

[
qT ⊗ (λmaxI −M)†

]T
(42)

in which

Σδm =
∂m

∂b
Σb

(
∂m

∂b

)T
(43)

where b denotes all input variables contributed to the final
form ofM . Let us take the solution to Problem 2 for example.
For qL, we have

F11qL = λF ,minqL = λF11,minqL (44)

which yields that

M = −F11, λmax = −λF11,min

m = −vec(F11)

∂m

∂b
=

1

N

N∑
i=1

4∑
j=1

4∑
k=1

∂vec
(
Jjk,iJ

T
jk,i

)
∂b

b =
[
vec(Ei)

T , vec(Zi)
T
]T

(45)

where we assume that b for every pair of {Ei,Zi} have
the same probabilistic distribution. The computation of
∂(Jjk,iJ

T
jk,i)

∂b can be intuitively conducted using analytical
forms of matrices in the Appendix A and this part of work
is left for the audience of this paper. The covariance of qR
can therefore be computed by replacing F11 with F22 in (45).

The cross-covariance between qL and qR can also be given
as follows

ΣδqLδqR =
〈
δqLδq

T
R

〉
=

〈[
qTL ⊗ (F11 − λF11,minI)

†] δmL

δmT
R

[
qTR ⊗ (F22, λF22,minI)

†]T
〉

=
[
qTL ⊗ (F11 − λF11,minI)

†]ΣδmLδmR[
qTR ⊗ (F22, λF22,minI)

†]T
(46)

in which mL = vec(F11),mR = vec(F22) and ΣδmLδmR
is

given by

ΣδmLδmR
=
∂mL

∂b
Σb

(
∂mR

∂b

)T
(47)

Eventually, the covariance of the octonion σ will be

Σσ =

(
ΣδqL ΣδqLδqR

ΣδqRδqL ΣδqR

)
(48)

C. Solving AX =XB from SO(4) Perspective
The SO(4) parameterization of SE(3) is presented by

Thomas in [37] that

T =

(
R t
0 1

)
F1←→
F−1

1

RT ,SO(4) =

(
R εt

εtTR 1

)
(49)

in which ε denotes the dual unit that enables ε2 = 0. The
right part of (49) is on SO(4) and a practical method for
approaching the corresponding homogeneous transformation
is that we can choose very tiny numbers for ε = 1/d where
d � 1 is a positive scaling factor, to generate real-number
approximation of RT ,SO(4):

RT ,SO(4) ≈
(

R 1
dt

1
dt
TR 1

)
(50)

It is also noted that the mapping in (49) is not
unique. For instance, the following mapping also holds for
RT
T ,SO(4)RT ,SO(4) = RT ,SO(4)R

T
T ,SO(4) = I when d� 1:

T =

(
R t
0 1

)
F2←→
F−1

2

RT ,SO(4) =

(
R εt

−εtTR 1

)
(51)

The convenience of such mapping from SE(3) to SO(4) is
that some nonlinear equations on SE(3) can be turned to linear
ones on SO(4). Choosing a scaling factor d makes an approx-
imation of homogeneous transformation on SO(4). Then the
conventional hand-eye calibration problem AX = XB can
be shifted to

argmin
X∈SE(3)

J =

N∑
i=1

‖AiX −XBi‖2

⇒ argmin
RX,SO(4)∈SO(4)

J =

N∑
i=1

∥∥RAi,SO(4)RX,SO(4) −RX,SO(4)RBi,SO(4)

∥∥2
(52)

which can be instantly solved via the solution to Problem
2. With asynchronously sampled measurements, the problem
can be refined with solution to the Sub-Problem 2. While the
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uncertainty descriptions of σ related to RX,SO(4) are shown
in last sub-section, we would reveal what the covariances of
the rotation and translation look like. Suppose that now we
have obtained the covariance of σ in (48) for RX,SO(4). The
covariances between columns of the rotation matrix and the
cross-covariances between columns of rotation and translation
are considered. Recalling (20), one finds out that the covari-
ance between i-th column and j-th column of RX,SO(4) is
calculated by

Σδciδcj

=
〈
[Pi (δσ)σ + Pi (σ) δσ] [Pj (δσ)σ + Pj (σ) δσ]

T
〉

=

〈
Pi (δσ)σσ

TP T
j (δσ) + Pi (σ) δσδσ

TP T
j (σ)+

Pi (δσ)σδσ
TP T

j (σ) + Pi (σ) δσσ
TP T

j (δσ)

〉

=

〈
Yi (σ) δσδσ

TY T
j (σ) + Pi (σ) δσδσ

TP T
j (σ)+

Yi (σ) δσδσ
TP T

j (σ) + Pi (σ) δσδσ
TY T

j (σ)

〉
= Yi (σ)ΣσY

T
j (σ) + Pi (σ)ΣσP

T
j (σ)+

Yi (σ)ΣσP
T
j (σ) + Pi (σ)ΣσY

T
j (σ)

(53)
where Pi (δσ)σ = Yi (σ) δσ and Yi(σ) is a linear mapping
of σ which can be evaluated by symbolic computations. For
the current 4D Procrustes analysis, interestingly, we have

Yi(σ) = Pi(σ) (54)

Therefore (53) can be interpreted as

Σδciδcj = 4Pi (σ)ΣσP
T
j (σ) (55)

In particular, the rotation-translation cross-covariances will be
described by taking the first 3 rows and 3 columns of covari-
ance matrices of d·Σδc1δc4 , d·Σδc2δc4 , d·Σδc3δc4 respectively.
More specifically, if we need to obtain the covariance of
RX,SO(4), one arrives at

ΣRX,SO(4)
=
〈
δRX,SO(4)δR

T
X,SO(4)

〉
=

4∑
i=1

[Yi (σ) + Pi (σ)]Σσ[Yi (σ) + Pi (σ)]
T

= 4

4∑
i=1

Pi(σ)ΣσP
T
i (σ)

(56)

where

δRX,SO(4) =

[
δP1 (σ)σ + P1 (σ) δσ, δP2 (σ)σ + P2 (σ) δσ,

δP3 (σ)σ + P3 (σ) δσ, δP4 (σ)σ + P4 (σ) δσ

]
=

{
[Y1 (σ) + P1 (σ)] δσ, [Y2 (σ) + P2 (σ)] δσ,

[Y3 (σ) + P3 (σ)] δσ, [Y4 (σ) + P4 (σ)] δσ

}
(57)

The covariance of RX then equals to

ΣRX
= ΣRX,SO(4)

(1 : 3, 1 : 3) (58)

where (1 : 3, 1 : 3) denotes the block containing first 3 rows
and columns. Finally, the covariance of tX is given by

ΣtX = d2Σδc4δc4(1 : 3, 1 : 3) (59)

D. Discussion
The presented SO(4) algorithm for hand-eye calibration has

the following advantages:
1) It can simultaneously solve rotation and translation in X

for hand-eye calibration problem AX = XB and thus
own comparable accuracy and robustness with previous
representatives.

2) All the items from A and B are directly propagated
to the final forms of eigen-decomposition without any
preprocessing techniques e.g. quaternion conversion from
rotation, rotation logarithm remaining in previous litera-
tures.

3) According to the direct propagation of variables to the
final result, the computation speed is extremely fast.

4) The uncertainty descriptions can be obtained easily with
the given analytical results.

However, the proposed method also owns its drawback, that
is, the accuracy of the final computed X is actually affected
by the scaling factor d. Here one can find out that d is actually
a factor that scales the translation part to a small vector.
However, this does not mean that larger d will lead to better
performance, since very large d may reduce the significant
digits of a fixed word-length floating point number. Therefore,
d can be empirically determined according to the scale of
translation vector and required accuracy of floating-number
processing. For instance, for a 32-bit computer, one single-
precision floating point number requires 4 bytes for storage,
then a d = 1× 105 ∼ 1× 106 ≈ 216 ∼ 220 will be redundant
enough guaranteeing the accuracy of at least 220−32 m =
2−12 m = 2.44× 10−04 m, which is enough for most optical
systems with measurement ranges of 10 m. How to choose
the most appropriate d dynamically and optimally will be a
difficult but significant task in later works. The algorithmic
procedures of the proposed method are described in Algorithm
1 for intuitive implementation. Engineers can also turn to
https://github.com/zarathustr/hand_eye_SO4
for some MATLAB codes.

Algorithm 1 The Proposed 4DPA Method for Hand-eye
Calibration
Parameter: Empirical value of d.
Require:

1) Get N measurements of Ai,Bi in {A} and {B} respec-
tively. If they are not synchronously measured, get the
most appropriate interpolated sets using solution to Sub-
Problem 2.

2) Select a scaling factor d empirically for SE(3)− SO(4)
mapping.

Step 1: Convert measurements in {A} and {B} to rotations
on SO(4) via (51).
Step 2: Solve the hand-eye calibration problem AX = XB
via the solution to Problem 2. Remap the calculated SO(4)
solution to SE(3) using (51).
Step 3: Obtain the covariance of the octonion σ related to X .
Compute the rotation-rotation and rotation-translation cross-
covariances via (55).
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IV. EXPERIMENTAL RESULTS

A. Experiments on A Robotic Arm

The first category of experiments are conducted for an
gripper-camera hand-eye calibration depicted in Fig. 1. The
dataset is generated using an UR10 robotic arm and an Intel
Realsense D435i camera attached firmly to the end-effector
(gripper) of the robotic arm (see Fig. 2).

Fig. 2. The gripper-camera hand-eye calibration experiment.

The UR10 robotic arm can give accurate outputs of homoge-
neous transformations of various joints relative to its base. The
D435i camera contains color, depth and fisheye sub-cameras
along with and inertial measurement unit. In this sub-section
the transformation of the end-effector TBi of the robotic arm
is computed using those transformations from all joints via
(7). We only pick up the color images from D435i to obtain
the transformation of the camera with respect to the 12 × 9
chessboard. Note that in Fig. 1, the standard objects can be
arbitrary ones with certain pre-known models e.g. point cloud
model and computer-aided-design (CAD) model. The D435i is
factory-calibrated for its intrinsic parameters and we construct

the following projection model for the utilized camera

lcam,j =

(
lcam,1,j
lcam,2,j

)
, lcam,1,j

lcam,2,j
1

 = O

(
Lcam,1,j
Lcam,3,j

,
Lcam,2,j
Lcam,3,j

, 1

)T (60)

where lcam,j denotes the j-th measured feature points (corner)
of the chessboard in the camera imaging frame; O is the
matrix accounting for the intrinsic parameters of the camera;
Lcam,j = (Lcam,1,j , Lcam,2,j , Lcam,3,j)

T is the projected j-th
feature point in the camera ego-motion frame. To obtain the
i-th pose between the camera and chessboard, we can relate
the standard point coordinates of the chessboard Lchess,j for
j = 1, 2, · · · in the world frame from a certain model with
that in the camera frame by

Lchess,j = TAiLcam,j (61)

By minimizing the projection errors from (61), TAi
will

be obtained with nonlinear optimization techniques e.g. the
Perspective-n-Point algorithm [48], [49]. In our experiment,
the scale-invariant feature transform (SIFT) is invoked for ex-
traction of corner points of the chessboard [50]. We use several
datasets captured from our platform to produce comparisons
with representatives including classical ones of Tsai et al. [5],
Chou et al. [9], Park et al. [7], Daniilidis [11], Andreff et al.
[12] and recent ones of Heller et al. [15], Zhang et al. [17],
Zhao [16]. The error of the hand-eye calibration is defined as
follows

Error =
1

N

√√√√ N∑
i=1

‖AiX −XBi‖2 (62)

where Ai and Bi are detailed in (6). All the timing statistics,
computation and visualization are carried out on a MacBook
Pro 2017 with i7-3.5Ghz CPU along with the MATLAB
r2018a software. All the algorithms are implemented using
the least coding resources. We employ YALMIP to solve the

TABLE II
COMPARISONS WITH CLASSICAL METHODS FOR GRIPPER-CAMERA HAND-EYE CALIBRATION.

Cases Tsai 1989 [5] Chou 1991 [9] Park 1994 [7] Daniilidis 1999 [11] Andreff 2001 [12] Proposed 4DPA 2019
Error Time (s) Error Time (s) Error Time (s) Error Time (s) Error Time (s) Error Time (s)

1 (224) 1.2046× 10−02 4.0506× 10−02 6.8255× 10−03 1.0190× 10−02 6.8254× 10−03 3.5959× 10−02 6.7082× 10−03 3.8308× 10−02 7.2650× 10−03 5.7292× 10−03 6.7857× 10−03 4.4819× 10−03

2 (253) 1.0243× 10−02 4.2952× 10−02 5.8650× 10−03 1.1760× 10−02 5.8650× 10−03 3.9486× 10−02 5.7704× 10−03 4.1492× 10−02 5.8754× 10−03 6.8972× 10−03 5.8290× 10−03 4.8991× 10−03

3 (298) 8.0653× 10−03 4.9823× 10−02 5.0514× 10−03 1.3105× 10−02 5.0517× 10−03 4.6559× 10−02 4.9084× 10−03 4.8626× 10−02 5.4648× 10−03 7.2326× 10−03 4.9803× 10−03 5.5470× 10−03

4 (342) 6.8136× 10−03 5.3854× 10−02 4.7192× 10−03 1.4585× 10−02 4.7254× 10−03 5.6970× 10−02 4.0379× 10−03 5.3721× 10−02 4.8374× 10−03 6.7880× 10−03 4.0207× 10−03 5.5404× 10−03

5 (392) 5.5242× 10−03 6.3039× 10−02 3.4047× 10−03 1.7253× 10−02 3.4012× 10−03 6.0697× 10−02 3.3850× 10−03 6.4505× 10−02 4.0410× 10−03 8.9159× 10−03 3.1678× 10−03 7.3957× 10−03

6 (433) 4.8072× 10−03 6.7117× 10−02 2.9723× 10−03 1.8354× 10−02 2.9694× 10−03 6.9967× 10−02 2.8957× 10−03 6.5703× 10−02 3.6410× 10−03 9.8837× 10−03 2.7890× 10−03 7.8954× 10−03

7 (470) 4.3853× 10−03 7.6869× 10−02 2.7302× 10−03 1.9827× 10−02 2.7270× 10−03 1.9827× 10−02 2.6640× 10−03 7.5553× 10−02 3.3262× 10−03 1.0373× 10−02 2.5397× 10−03 8.1632× 10−03

8 (500) 4.0938× 10−03 8.5545× 10−02 2.5855× 10−03 2.1506× 10−02 2.5807× 10−03 7.5722× 10−02 2.4610× 10−03 7.7225× 10−02 3.0083× 10−03 1.2008× 10−02 2.3137× 10−03 8.5382× 10−03

TABLE III
COMPARISONS WITH RECENT METHODS FOR GRIPPER-CAMERA HAND-EYE CALIBRATION.

Cases Heller 2014 [15] Zhang 2017 [17] Zhao 2018 [16] Proposed 4DPA 2019
Error Time (s) Error Time (s) Error Time (s) Error Time (s)

1 (224) 7.9803× 10−03 1.4586× 10−02 7.6125× 10−03 8.8201× 10−03 7.1485× 10−03 8.0861× 10−02 6.7857× 10−03 4.4819× 10−03

2 (253) 6.7894× 10−03 1.5661× 10−02 6.7908× 10−03 9.7096× 10−03 6.1710× 10−03 1.0787× 10−01 5.8290× 10−03 4.8991× 10−03

3 (298) 5.6508× 10−03 1.8173× 10−02 6.0203× 10−03 1.2561× 10−02 5.3021× 10−03 1.4893× 10−01 4.9803× 10−03 5.5470× 10−03

4 (342) 4.7192× 10−03 2.2755× 10−02 5.2743× 10−03 1.5332× 10−02 4.4003× 10−03 2.2291× 10−01 4.0207× 10−03 5.5404× 10−03

5 (392) 3.8706× 10−03 2.5399× 10−02 4.3269× 10−03 1.8800× 10−02 3.6041× 10−03 3.0347× 10−01 3.1678× 10−03 7.3957× 10−03

6 (433) 3.3504× 10−03 2.6373× 10−02 3.9732× 10−03 2.1613× 10−02 3.1658× 10−03 3.8768× 10−01 2.7890× 10−03 7.8954× 10−03

7 (470) 3.0547× 10−03 2.7973× 10−02 3.3633× 10−03 2.5498× 10−02 2.8912× 10−03 5.0153× 10−01 2.5397× 10−03 8.1632× 10−03

8 (500) 2.8862× 10−03 2.9879× 10−02 3.0215× 10−03 3.2041× 10−02 2.6871× 10−03 5.8727× 10−01 2.3137× 10−03 8.5382× 10−03
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LMI dqhec optimization in the method of Heller et al. [15].
For Zhao’s method [16], we invoke the fmincon function in
MATLAB for numerical solution.

The robotic arm is rigidly installed on the testing table
and is operated smoothly and periodically to capture the
images of the chessboard from various directions. Using the
mechanisms described above we form the series of {A}, {B}.
We select d = 104 as scaling factor for evaluation in this
sub-section as the translational components are all within
[−2, 2] m and in such range the camera has the empirical
positioning accuracy of about 0.05 ∼ 0.2 m. We choose the
F2 mapping in (51) for conversion from SE(3) to SO(4) since
in real applications it obtains much more accurate hand-eye
calibration results than the F1 mapping (49) presented in [37].
The scalar thresholds for the other numerical methods are all
set to 1 × 10−15 to guarantee the accuracy. We conduct 8
groups of the experiments using the experimental platform.
The errors and computation timespans are processed 100 times
for averaged performance evaluation, which are provided in
Table II and III. The least errors are marked using the green
color and the best ones for computation time are tagged in
blue. The statistics of the proposed method are marked bold in
the tables for emphasis. The digits after the case serial numbers
indicate the sample counts for the studied case.

One can see that with growing sample counts, all the meth-
ods obtain more accurate estimates of X . While with larger
quantities of measurements, the processing speeds for the algo-
rithms become slower. However, among all methods, despite
they are analytical or iterative, the proposed SO(4) method
almost always gives the most accurate results within the least
computation time. The reason is that the proposed 4DPA
computes the rotation and translation in X simultaneously and
well optimizes the loss function J of the hand-eye calibration
problem. The proposed algorithm can obtain better results than
almost all other analytical and numerical ones, except for the
cases 1 ∼ 3 using the method of Daniilidis. This indicates
that with few samples, the accuracy of the proposed 4DPA is
lower than the method of Daniilidis but is still close. However,
few samples indicate relative low confidence in calibration
accuracy and for cases with higher quantities of measurements
the proposed 4DPA method is always the best. This shows that
the designed 4D Procrustes analysis for mapping from SE(3)
to SO(4) is more efficient than other tools e.g. the mappings
based on dual quaternion [11] and Kronecker product [12].
Furthermore, our method uses the eigen-decomposition as the
solution that is regarded as a robust tool for engineering
problems. Our method can reduce the estimation error to
about 3.06% ∼ 94.01% of original stats compared with
classical algorithms and 0.39% ∼ 86.11% compared with
recent numerical ones. The proposed method is also free of
pre-processing techniques like quaternion conversion in other
algorithms. All the matrix operations are simple and intuitive
which makes the computation very fast. Our method can
lower the computation time to about 9.98% ∼ 70.68% of
original stats compared with classical analytical algorithms
and 1.45% ∼ 28.58% compared with recent numerical ones. A
synchronized sequence of camera-chessboard poses and end-
effector poses is made open-source by us and is available on

https://github.com/zarathustr/hand_eye_data. Ev-
ery researcher can freely download this dataset and evaluate
the accuracy and computational efficiency. The advantages
of the developed method on both precision and computation
time will lead to very effective implementations of hand-eye
calibration for industrial applications in the future.

B. The Error Sensitivity to the Noises and Different Parame-
ters of d

In this sub-section, we study the sensitivity of the proposed
method subject to input measurement noises. We define the
noise corrupted models of rotations as

RA,i = R̂A,i + ErrorRX
R1

RB,i = R̂B,i + ErrorRX
R2

(63)

where R1,R2 are random matrices whose columns subject to
Gaussian distribution with covariances of I and ErrorRX

is
a scalar accounting for the rotation error. Likewise, the noise
models of translations can be given by

tA,i = t̂A,i + ErrortXT1
tB,i = t̂B,i + ErrortXT2

(64)

with noise scale of ErrortX and T1, T2 noise vectors subject to
normal distribution also with covariance of I . The perturbed
rotations are orthonormalized after the addition of the noises.
Here, the Gaussian distribution is selected by following the
tradition in [19] since this assumption of distribution covers
most cases that we may encounter in the real-world applica-
tions.

We take all the compared representatives from last sub-
section to this part by adding three more ones of the proposed
method with different d of d = 103, d = 105 and d = 106. The
we can both see the comparisons with the representatives and
observe the influence of the positive scaling factor d. Several
simulations are conducted where we generate datasets of A,B
with N = 1000 and the obtained results are averaged for
10 times. We independently evaluate the effect of ErrorRX

and ErrortX imposed on Error. The relationship between
ErrorRX

and Error is depicted in Fig. 3 while that between
ErrortX and Error is presented in Fig. 4. These relationships
are demonstrated in the form of the log plot. We can see
that with increasing errors in rotation and translation, the errors
in the computed X all arise to a large extent. One can see in
the magnified plot of the Fig. 3 that the optimization methods
achieves the best accuracy but the proposed method can also
obtain comparable estimates. It is shown that with various
values of d, the performances of the proposed method differ
quite a lot. Fig. 4 indicates that with d = 103, the evaluated
errors on translation are the worst among all compared ones.
However, with larger d, this situation has been significantly
improved, generating the magnified image in Fig. 4 that when
d = 105 and d = 106, the errors of the proposed method
are quite close to the least ones. As in last sub-section we
have tested that the proposed method has the fastest execution
speed, it is shown that for the studied cases the developed
method can be regarded as a balancing one between the
accuracy and computation speed.
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δRX,SO(4)δR
T
X,SO(4)

=

(
δRX δtX/d

−δtTXRX/d− tTXδRX/d 0

)(
δRT

X −RT
XδtX/d− δRT

XtX/d
δtTX/d 0

)
=

[
δRXδR

T
X + 1

d2
δtXδt

T
X − 1

d

(
δRXR

T
XδtX + δRXδR

T
XtX

)
− 1
d

(
δtTXRXδR

T
X + tTXδRXδR

T
X

)
1
d2

(
tTXRXR

T
XδtX + tTXRXδR

T
XtX + tTXδRXR

T
XδtX + tTXδRXδR

T
XtX

) ]
(65)

ΣRX,SO(4)
=
〈
δRX,SO(4)δR

T
X,SO(4)

〉
=

[
ΣRX + 1

d2
ΣtX − 1

d
(〈δtX × δθX〉+ ΣRX tX)

− 1
d
(〈δtX × δθX〉+ ΣRX tX)T 1

d2

(
tTX 〈δtX × δθX〉+ tTXΣRX tX

) ]
≈
[

ΣRX + 1
d2

ΣtX − 1
d
ΣRX tX

− 1
d
tTXΣRX

1
d2
tTXΣRX tX

] (66)

Fig. 3. The sensitivity of errors subject to input rotation noises.

Fig. 4. The sensitivity of errors subject to input translation noises.

C. Simulations on Uncertainty Descriptions

The uncertainty description of the hand-eye calibration
problem AX =XB is studied by Nguyen et al. for the first

time iteratively in [19]. It works very well with both synthetic
and real-world data. However, it still has its drawbacks:

1) The covariance of the rotation RX is independently
estimated from RARX = RXRB but in fact the
accuracy of RX is also affected by tA and tB .

2) The covariances of RX and tX are required to be
computed iteratively while how many iterations would
be sufficient to provide accurate enough results is still an
unsolved problem.

Hence the covariance should also be decided by tA and tB
and, if possible, do not require iterations. The proposed SO(4)
method in this paper, however, simultaneously estimates the
RX and tX together and can also generate the analytical
probabilistic information within several deterministic steps
considering the tightly coupled relationship inside AX =
XB. Let us define the ξRX ,x, ξRX ,y and ξRX ,z as errors
in rotation RX around X,Y, Z axes while ξtX ,x, ξtX ,y and
ξtX ,z being errors in translation tX about the X,Y, Z axes,
respectively. Given the covariances ΣRX

, ΣtX , the covariance
of the equivalent SO(4) transformation can be computed by
(66) where we have

δRX,SO(4) =

(
δRX δtX/d

−δtTXRX/d− tTXδRX/d 0

)
(67)

and δRX,SO(4)δR
T
X,SO(4) is simplified from (65) to (66)

according to [51]

ṘX = −[ω]×RX

δRX = −[δθX ]×RX

δRXR
T
X = −[δθX ]×

(68)

in which ω is the angular velocity vector and θX denotes the
small angle rotation of RX . Therefore, with ΣRAi

, ΣtAi
,

ΣRBi
, ΣtBi

, we can compute ΣRAi,SO(4)
and ΣRBi,SO(4)

.
In this paper, we consider that the system errors in each
measurement step are identical so we have

ΣRAi
= ΣRA ,ΣtAi

= ΣtA

ΣRBi
= ΣRB ,ΣtBi

= ΣtB

(69)

Now we conduct the same simulation as that pro-
vided in the Python open-source codes of Nguyen et al.
[19] (https://github.com/dinhhuy2109/python-cope,
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Fig. 5. The 2D covariance projections of the solutions to hand-eye calibration using the proposed method and that of Nguyen et al. The dashed grey lines
indicate the mean bounds of the simulated statistics. The green dashed lines are from the solution of Nguyen et al. while the solid black ones are from our
proposed algorithm. The discrete points in blue reflect the simulated samples.

./examples/test_axxb_covariance.py). The input co-
variances are

ΣRA = 10−10I,ΣtA = 10−10I

ΣRB =

 4.15625 −2.88693 −0.60653
−2.88693 32.0952 −0.14482
−0.60653 −0.14482 1.43937

× 10−5

ΣtB =

 19.52937 2.12627 −1.06675
2.12627 4.44314426 0.38679
−1.06675 0.38679 2.13070

× 10−5

(70)

The simulation is carried out for 10000 times, generating
the randomly perturbed {A}, {B} and in each set there are
60 measurements. Σb is computed according to the simulated
statistics for {A}, {B}. The statistical covariance bounds
of the estimated RX and tX are then logged. Using the
method by Nguyen et al. and our proposed method, the 2D
covariance projections are plotted in Fig. 5. One can see
that the both methods can estimate the covariance correctly
while our method achieves very slightly smaller covariances
bounds. This reflects that our proposed method has reached the
accuracy of Nguyen et al. for uncertainty descriptions. What
needs to be pointed out is that the proposed method is fully
analytical rather than the iterative solution in the method of
Nguyen et al. While analytical methods are always much faster
than iterative ones, this simulation has indirectly reflected that
the proposed method can both correctly estimate the trans-
formation and determine the precision covariance information
within short computational period, which is beneficial to those
applications with high demands on real-time system with
rigorous scheduling logics and timing.

D. Extension to The Extrinsic Calibration between 3D Laser
Scanner and A Fisheye Camera

In this sub-section, the developed 4DPA method in this
paper is employed to solve the extrinsic calibration problem
between a 3D laser scanner and a fisheye camera, mounted
rigidly on an experimental platform shown in Fig. 7. This

platform contains a high-end 2D laser scanner of Hokuyo
UST 10-lx spinned by a powerful Dynamixel MX-28T servo
controlled through the serial ports by the onboard Nvidia TX1
computer with graphics processing unit (GPU). It also consists
of an Intel Realsense T265 fisheye camera with resolution
of 848x800 and frame rate of 30fps, along with an onboard
factory-calibrated inertial measurement unit (IMU). The spin
mechanism and the feedback of internal encoder of the servo
guarantee the seamless stitching of successive laser scans that
produce highly accurate 3D scene reconstructions.

Fig. 7. The experimental platform equipped with a 3D laser scanner and a
fisheye camera, along with other processing devices.
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Fig. 6. The reconstructed scenes using the presented 3D laser scanner. They are later used for pose estimation of the laser scanner frame with ICP.

The single sensor or combination of laser scanner and
camera will be of great importance for scene measurement
and reconstruction [52], [53], [54]. However, due to inevitable
installation misalignments, the extrinsic calibration between
the laser scanner and camera should be performed for reliable
measurement accuracy. Several algorithms have been proposed
to deal with the calibration issues inside these sensors recently
[55], [56], [57]. These methods in fact require some standard
objects like large chessboards to obtain satisfactory results. We
here extend our method to solving this extrinsic calibration,
without needs of any other standard reference systems. The
sensor signal flowchart can be seen from Fig. 8.

Fig. 8. The signal flowchart in the extrinsic calibration between the 3D laser
scanner and fisheye camera using the proposed algorithm.

For the developed system, we can gather three sources of
data i.e. images from the fisheye camera, inertial readings
of angular rate and acceleration, and 3D laser scans. At the
first stage, the fisheye camera and IMU measurements are
processed via feature extraction [50] and navigation integral
mechanisms [58], respectively. Then they are integrated to-
gether for the camera pose, denoted as TAi

with index of i,
using the method in [59]. The pose of the 3D laser scanner,
denoted as TBi

with index i, is computed via the 3D ICP [33],

as indicated in Fig. 6. As the camera and laser-scanner poses
have the output frequencies of 200Hz and 1Hz respectively,
the synchronization between them is conducted by continuous
linear quaternion interpolation that we developed recently [43].
Then using the properly synced TAi and TBi , we are able to
form the proposed hand-eye calibration principle with entry
point equation in (6). With procedures shown in Algorithm 1
where d is set to d = 105 empirically, the extrinsic parameters
i.e. the rotation and translation between the laser scanner and
fisheye camera, are calculated.

Fig. 9. The projected XY trajectories before and after the extrinsic calibration
between 3D laser scanner and fisheye camera.

Then these parameters are applied to the developed platform
for 3D trajectory verification using the V-LOAM method [60].
We put the system into measurement mode and then start
moving it from origin to origin. Then, when computing the

TABLE IV
TRAJECTORY ERRORS BEFORE AND AFTER THE EXTRINSIC CALIBRATION USING THE PROPOSED METHOD

Experiment Before: X(m) After: X(m) Before: Y(m) After: Y(m) Before: Z(m) After: Z(m)

1 1.997 0.725 1.803 0.476 0.828 0.379
2 2.278 1.080 1.722 0.997 1.322 0.763
3 1.463 0.605 1.825 0.583 1.199 0.691
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trajectories with uncalibrated and calibrated data, we can find
out that the trajectory after the calibration has much less
odometric errors (see Fig. 9). In later periods, the similar
experiment is repeated twice. The detailed statistics of the
trajectory errors are presented in Table IV containing results
on each of the X,Y, Z axes. One can see that the errors have
been significantly reduced after calibration, which indicates the
effectiveness of the proposed calibration scheme in real scene
measurement application. Also, the results of the proposed
4DPA method for hand-eye calibration will be affected by the
value d, as described in previous sections. Therefore, a study
on such influence is conducted using the data for experiment
3 (see Table V).

TABLE V
THE VERIFIED 3D TRAJECTORY ERRORS AFTER HAND-EYE CALIBRATION

WITH DIFFERENT VALUES OF d (EXPERIMENT 3)

d X(m) Y(m) Z(m)

1× 103 2.068 1.275 2.342
1× 104 1.472 0.637 1.944
1× 105 1.463 0.605 1.825
1× 106 1.462 0.600 1.799
1× 107 1.462 0.599 1.798

We tune the d from 1× 103 to 1× 107. The errors indicate
that the chosen value d = 1 × 105 in this sub-section results
in sufficiently accurate estimates. And with larger values of
d, the error bounds almost reach their limits. While for those
small values of d, we can see that they can not deal with the
calibration accurately. The reason is that the approximation in
(51) requires large d for more precise computation (but not
too large, see Section III.D). The optimal dynamic selection
of the parameter d will be the next task for us in the near
future.

V. CONCLUSION

This paper studies the classical hand-eye calibration prob-
lem AX =XB by exploiting a new generalized method on
SO(4). The investigated 4D Procrustes analysis provides us
with very useful closed-form results for hand-eye calibration.
With such framework, the uncertainty descriptions of the
obtained transformations can be easily computed. It is verified
that the proposed method can achieve better accuracy and
much less computation time than representatives in real-world
datasets. The proposed uncertainty descriptions for the 4 × 4
matrices are also universal to other similar problems like
spacecraft attitude determination [29] and 3D registration [32].
We also notice that the Procrustes analysis on SO(n) may be of
benefit to solve the generalized hand-eye problemAX =XB
in which SE(n) and this is going to be discussed in the next
task for us in further works.

APPENDIX A
SOME CLOSED-FORM RESULTS

A. Analytical Forms of Some Fundamental Matrices

Taking c1 = P1(σ)σ as an example, one can explicitly
write out

c1 =


ap− bq − cr − ds
aq + bp+ cs− dr
ar + cp− bs+ dq

as+ br − cq + dp


One would be very easy to verify that c1 = P1(σ)σ. Then
the similar factorization can be established for c2, c3, c4 and
r1, r2, r3, r4 respectively, generating the following results:

P1 (σ) =
1√
2

 p −q −r −s a −b −c −d
q p s −r b a −d c
r −s p q c d a −b
s r −q p d −c b a



P2 (σ) =
1√
2

 −q −p s −r −b −a −d c
p −q r s a −b c d
−s −r −q p d −c −b −a
r −s −p −q −c −d a −b



P3 (σ) =
1√
2

 −r −s −p q −c d −a −b
s −r −q −p −d −c −b a
p q −r s a b −c d
−q p −s −r b −a −d −c



P4 (σ) =
1√
2

 −s r −q −p −d −c b −a
−r −s p −q c −d −a −b
q −p −s −r −b a −d −c
p q r −s a b c −d



Q1 (σ) =
1√
2

 p −q −r −s a −b −c −d
−q −p s −r −b −a −d c
−r −s −p q −c d −a −b
−s r −q −p −d −c b −a



Q2 (σ) =
1√
2

 q p s −r b a −d c
p −q r s a −b c d
s −r −q −p −d −c −b a
−r −s p −q c −d −a −b



Q3 (σ) =
1√
2

 r −s p q c d a −b
−s −r −q p d −c −b −a
p q −r s a b −c d
q −p −s −r −b a −d −c



Q4 (σ) =
1√
2

 s r −q p d −c b a
r −s −p −q −c −d a −b
−q p −s −r b −a −d −c
p q r −s a b c −d


The results of Jjk,i can then be computed using symbolic
computation tools e.g. MATLAB and Mathematica:
J11,i = e11 − z11 e12 + z21 e13 + z31 e14 + z41

e12 + z21 z11 − e11 e14 − z41 z31 − e13
e13 + z31 z41 − e14 z11 − e11 e12 − z21
e14 + z41 e13 − z31 z21 − e12 z11 − e11


J12,i = e21 − z21 e22 − z11 e23 + z41 e24 − z31

e22 − z11 z21 − e21 e24 + z31 z41 − e23
e23 − z41 z31 − e24 −e21 − z21 e22 − z11
e24 + z31 e23 + z41 z11 − e22 −e21 − z21


J13,i = e31 − z31 e32 − z41 e33 − z11 e34 + z21

e32 + z41 −e31 − z31 e34 + z21 z11 − e33
e33 − z11 z21 − e34 z31 − e31 e32 + z41
e34 − z21 e33 − z11 z41 − e32 −e31 − z31


J14,i = e41 − z41 e42 + z31 e43 − z21 e44 − z11

e42 − z31 −e41 − z41 e44 − z11 z21 − e43
e43 + z21 z11 − e44 −e41 − z41 e42 + z31
e44 − z11 e43 + z21 z31 − e42 z41 − e41


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J21,i = e12 − z12 z22 − e11 e14 + z32 z42 − e13
z22 − e11 z12 − e12 −e13 − z42 z32 − e14
z32 − e14 z42 − e13 e12 + z12 e11 − z22
e13 + z42 −e14 − z32 z22 − e11 e12 + z12


J22,i = e22 − z22 −e21 − z12 e24 + z42 −e23 − z32

−e21 − z12 z22 − e22 z32 − e23 z42 − e24
−e24 − z42 z32 − e23 e22 − z22 e21 − z12
e23 + z32 z42 − e24 z12 − e21 e22 − z22


J23,i = e32 − z32 −e31 − z42 e34 − z12 z22 − e33

z42 − e31 −e32 − z32 z22 − e33 z12 − e34
−e34 − z12 z22 − e33 e32 + z32 e31 + z42
e33 − z22 −e34 − z12 z42 − e31 e32 − z32


J24,i = e42 − z42 z32 − e41 e44 − z22 −e43 − z12

−e41 − z32 −e42 − z42 −e43 − z12 z22 − e44
z22 − e44 z12 − e43 e42 − z42 e41 + z32
e43 − z12 z22 − e44 z32 − e41 e42 + z42


J31,i = e13 − z13 z23 − e14 z33 − e11 e12 + z43

e14 + z23 e13 + z13 −e12 − z43 z33 − e11
z33 − e11 z43 − e12 z13 − e13 −e14 − z23
z43 − e12 e11 − z33 z23 − e14 e13 + z13


J32,i = e23 − z23 −e24 − z13 z43 − e21 e22 − z33

e24 − z13 e23 + z23 z33 − e22 z43 − e21
−e21 − z43 z33 − e22 −e23 − z23 −e24 − z13
z33 − e22 e21 + z43 z13 − e24 e23 − z23


J33,i = e33 − z33 −e34 − z43 −e31 − z13 e32 + z23

e34 + z43 e33 − z33 z23 − e32 z13 − e31
−e31 − z13 z23 − e32 z33 − e33 z43 − e34
−e32 − z23 e31 − z13 z43 − e34 e33 − z33


J34,i = e43 − z43 z33 − e44 −e41 − z23 e42 − z13

e44 − z33 e43 − z43 −e42 − z13 z23 − e41
z23 − e41 z13 − e42 −e43 − z43 z33 − e44
−e42 − z13 e41 + z23 z33 − e44 e43 + z43


J41,i = e14 − z14 e13 + z24 z34 − e12 z44 − e11

z24 − e13 e14 + z14 e11 − z44 z34 − e12
e12 + z34 z44 − e11 e14 + z14 −e13 − z24
z44 − e11 −e12 − z34 z24 − e13 z14 − e14


J42,i = e24 − z24 e23 − z14 z44 − e22 −e21 − z34

−e23 − z14 e24 + z24 e21 + z34 z44 − e22
e22 − z44 z34 − e21 e24 − z24 −e23 − z14
z34 − e21 z44 − e22 z14 − e23 −e24 − z24


J43,i = e34 − z34 e33 − z44 −e32 − z14 z24 − e31

z44 − e33 e34 − z34 e31 + z24 z14 − e32
e32 − z14 z24 − e31 e34 + z34 z44 − e33
−e31 − z24 −e32 − z14 z44 − e33 −e34 − z34


J44,i = e44 − z44 e43 + z34 −e42 − z24 −e41 − z14

−e43 − z34 e44 − z44 e41 − z14 z24 − e42
e42 + z24 z14 − e41 e44 − z44 z34 − e43
−e41 − z14 z24 − e42 z34 − e43 z44 − e44



where ejk, zjk, j, k = 1, 2, 3, 4 are matrix entries of Ei and Zi
respectively. Note that these computation procedures can also
be found out at https://github.com/zarathustr/
hand_eye_SO4.

B. Matrix Determinant Property

Given an arbitrary square matrix

M =

(
A B
C D

)
If D is invertible, then the determinant of M is

det (M) = det (D) det
(
A−BD−1C

)
Inserting the above result into

det
(
λW ,maxI −W

)
= det

[(
λW ,maxI −K
−KT λW ,maxI

)]
gives (26).
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