PCA-aided Fully Convolutional Networks for
Semantic Segmentation of Multi-channel fMRI

Lei Tai''3, Haoyang Ye':3, Qiong Ye? and Ming Liu?

Abstract— Semantic segmentation of functional magnetic res-
onance imaging (fMRI) makes great sense for pathology diag-
nosis and decision system of medical robots. The multi-channel
fMRI provides more information of the pathological features.
But the increased amount of data causes complexity in feature
detections. This paper proposes a principal component analysis
(PCA)-aided fully convolutional network to particularly deal
with multi-channel fMRI. We transfer the learned weights of
contemporary classification networks to the segmentation task
by fine-tuning. The results of the convolutional network are
compared with various methods e.g. k-NN. A new labeling strat-
egy is proposed to solve the semantic segmentation problem with
unclear boundaries. Even with a small-sized training dataset,
the test results demonstrate that our model outperforms other
pathological feature detection methods. Besides, its forward
inference only takes 90 milliseconds for a single set of fMRI
data. To our knowledge, this is the first time to realize pixel-
wise labeling of multi-channel magnetic resonance image using
FCN.

I. INTRODUCTION

Medical-image analysis is indispensable in modern
computer-aided diagnosis, therapy planning, and execution.
Management of the related pathology relies on several dif-
ferent kinds of imaging processing technologies including
positron emission tomography (PET), X-ray computer to-
mography (CT), ultrasound and magnetic resonance imaging
(fMRD) [1]. MRI is amongst the most useful technique for
visualization. MRI shows high contrast and high resolution
for different body tissues in a non-invasive way. Semantic
segmentation of magnetic resonance image is an essential
step for diagnosis with the abstraction of relevant features.
Through segmentation in the feature space, semantic seg-
mentation minimizes the computational complexity in fMRI
applications [2]. For both diagnosis and treatment strategies,
accurate classification and segmentation of the tissues are
necessary and primordial, such as the quantitative volume
measurement of different brain structures in brain fMRI
segmentation [3].

Convolutional networks have been applied to a variety of
recognition and perception tasks recently, e.g. image classi-
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Fig. 1.  Representation of number: 0-back ground, 1-cerebrospinal, 2-
vertebral bodyfluid, 3-lumbar disc, 4-spinal fluid, 5-bones, 6-ignore area.
Different test result after 500, 1000, 15000, 30000 training iterations and
the label instruction of two labeling strategies.

fication [4], object detection [5] and semantic segmentation
[6]. The great success of Convolutional Neural Network
(CNN) is attributed to the outstanding performance of trained
hierarchical structure in data representations. The weights
of CNN are typically calculated by back-propagation and
gradient descent. This self-driven method has been keeping
showing its unlimited potential in other conventional robotic
fields [7] [8] as well.

Pixel labeling, which is also called semantic segmentation,
is much more challenging compared with image recognition
and object detection. The scale of perception changes from a
whole image to pixel-wise elements. For image classification,
the coarse distribution is taken as the output. But for semantic
segmentation, the output is a dense prediction at every pixel
location. Not like the traditional recognition and segmenta-
tion methods [9], [10], [11], where mutual information is
used manually, fully convolutional networks (FCN) [6] is a
CNN variant. It achieves the state-of-art effect in semantic
segmentation task for most of the benchmarks.

However, not like computer vision tasks with various
datasets such as ImageNet [12], it is hard to collect an
fMRI dataset for specific tissues of the human body and
specific pathology features. Regular semantic segmentation
dataset is comprised of 3-channel RGB images, while the
parameters of fMRI are not constant based on the application
and usage. Realizing such a segmentation in a small dataset
with multi-channel fMRI means massive work load for
both supervised expertise and medical diagnosis. The multi-



channel infrastructure brings more co-related information,
but also increases the data complexity. Training from small
datasets like particular pathology and disease features can
help build an expert system to recognize the same feature in
the scene, which will bring great convenience for doctors.
Another obstacle for pixel-wise segmentation in fMRI is
the unclear boundary. Not like the typical RGB images by
digital cameras, junction area between different tissues in
fMRI are hardly recognizable even for experienced doctors.
It also adds the complexity of the labeling process.
Motivated by the facts mentioned above, we stress the
following contributions and features of this work:

e« We propose a PCA-aided FCN structure to process
31-channel fMRI and to achieve pixel-wise semantic
segmentation for primary tissues. Through PCA, the
dimension of the origin data will be reduced to three and
be further taken as the input of the fully convolutional
network.

o The fine-tuning is implemented on a small-sized dataset
as transfer learning. The experiment results show
outperforming efficiency compared with conventional
methods for fMRI feature learning.

o A revised labeling strategy is proposed, which ignores
the junction areas between tissues, which significantly
decreases the complexity of semantic labeling for seg-
mentation.

The rest of paper is organized as follows. We present
related works in fMRI and pixel labeling in Section II. In
Section III, we describe our pre-processing configurations of
the dataset with PCA and normalization. The configuration
of the whole FCN structure is also introduced in this section.
The detail of the training and evaluation on specific datasets
are then presented in Section IV. At the end, Section V
concludes the paper.

II. RELATED WORK
A. fMRI Segmentation

Most of conventional brain fMRI segmentation tasks are
probabilistic, based on clustering methods like k-means.
Usually, the MR images are represented as a collection
X = {x1,X2, -+ ,Xn} with every element representing a
pixel of the image. The clustering algorithm returns C' =
{Cl,c27"‘ ,Cm} as the cluster centers. C are commonly
initialized in random.

Barrah et al. [1] used a revised fuzzy clustering algorithm
to segment fMRI. Standard fuzzy c-means considers the
clustering an optimization problem. The objective function
is defined as:
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where w;; is the degree to which element x; belongs to
cluster ¢; and h is the fuzzifier to determine the level of
cluster fuzziness. Euclidean distance is used to evaluate the
element and cluster center directly. After that, w;; and c;

can be estimated iteratively, as
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In [1], the nearby area of the element in an image was
considered as well. Gaussian mixture model was also used
to address brain MR images clustering [3]. Compared with
fuzzy clusterng mentioned above, the Gaussian kernel takes
the place of norm functions between elements and cluster
centers.

There are some challenges about ventricle fMRI seg-
mentation, such as Statistical Atlases and Computational
Modeling of the Heart (STACOM) [13] and Medical Image
Computing and Computer Assisted Intervention (MICCAI)
[14]. Petitjean supplied a review of conventional methods
for left ventricle segmentation[15], which consisted of graph
cuts and deformable models, etc.

All of these methods provided a reasonable segmentation
result for fMRI datasets. However, these statistical-based or
feature-based method were limited, because they tend to
overfit on specific dataset like ventricle. Their utility in a
generic dataset was extremely limited as well.

B. ConvNet in Semantic Segmentation

The convolutional neural network is leading the artificial
intelligence right now. Related research [16] just beat the
best human player in Go game which was once regarded
as the most difficult task for artificial intelligence. In image
classification, deep residual network [17] with hundreds of
convolutional layers drove the network to learn identity
feature and improve the accuracy of classification tasks in
ImageNet [12]. Faster-rcnn [5] addressed all of the tasks
in object detection including region proposal, bounding
box regression, instance location, and classification. CNN
related methods take the state-of-the-art place in almost
every computer vision tasks. Not only in vision fields, the
successes of RNN and LSTM in natural language processing
[18] and speech recognition [19] are all based on revised
convolutional neural network. In terms of robot control,
motivated by the game controller developed by Google [20],
deep reinforcement learning is implemented to teach the
robot be adapted to the unfamiliar environment and achieve
obstacle avoidance ability [7] [8]. We adopt most of these
concepts in this work.

Among various vision tasks, a high-level prediction like
semantic segmentation is much more complicated compared
with simply predicting image context as single output. While
for pixel-wise classification, the computation source is thou-
sands times more than the image classification.

Long et al. [6] re-architected and fine-tuned classification
nets to achieve dense prediction of semantic segmentation
directly. They improve the efficiency of convets in se-
mantic segmentation dramatically because FCN extended a



convolutional network to arbitrary-sized inputs [21]. Deep
Convolutional Neural Networks (DCNN) were not sufficient
to achieve semantic segmentation separately because of the
poor localization property. Chen [22] combined the feature
map at the final layer of DCNNs with a fully connected
Conditional Random Field (CRF). The main breakthrough
in [22] was the intersection of convolutional network and
probabilistic graphical models. Notice that, CRF and FCN
are the state-of-the-art semantic segmentation methods nowa-
days. [23] applied FCN processing cardiac segmentation in
the ventricle dataset mentioned in Section II-A, which also
focused on a unique dataset but not generic multi-channel
fMRI.

III. PCA-AIDED FULLY CONVOLUTIONAL NETWORKS

Our approach benefits a lot from the recent popular deep
net-related works including image classification [4], semantic
segmentation [6] and transfer learning [24]. After PCA, the
processed fMRI data are taken as the input of FCN.

A. Data Gathering and Preparation

This study was approved by the local institutional ethic
review board. Written informed consent was obtained from
all volunteers. Six young and healthy volunteers (age range,
40 years; median age, 38 years; three males and three
females) were recruited in this study. In addition to standard
criteria for exclusion from fMRI, further exclusion criteria
were applied using the absence of cervical spine related pain
and disorders.

The dataset focuses on the vertebral area of human being.
Except the background, there are five primary tissues in-
cluding bones, spinal fluid, lumbar disc, vertebral body and
cerebrospinal fluid shown in Fig. 1.

fMRI examinations were carried out on 3T clinical MR
scanner (Achieva, Philips Healthcare, Best, The Netherlands)
with standard abdomen coil. Mid-sagittal multi-echo T2-
weighted images were acquired using a multi-shot spin-echo
sequence with echo-planar readout and following parameters
shown in Table I. Here TE means echo time. The intensity
of image under different echo time reflects the attenuation
of tissues. With 32 different echo times, 32 channels rep-
resenting the different intensity of various tissues. The first
echo of the sequence was excluded from further analysis to
avoid the effect of the stimulated echo [25]. After cutting
the black background edge, the dimension of every sample
in the dataset turns to be 31 x 256 x 154.

B. PCA Processing

It is evident that the 31-channel fMRI provide more
information in detail about the pathology features. But be-
cause 31-channel images increase the calculation complexity
dramatically, a dimension reduction method is necessary.
Besides, state-of-the-art CNN structures were usually imple-
mented on vision tasks which take raw RGB images with
three channels as input. Preliminaries experiments also tell
that if we attach the images with 31 channels as input layer

TABLE I
FMRI GATHERING PARAMETERS

Parameter Value unit
FOV 240 x 155 x 5(FH x AP x RL) mm3
matrix 120 x 72 -
reconstruction 32 -
slice thickness 5.0 mm
No. of slice 1 -
No. of TEs 32 -
TE/TR 8.0 x 32/1202 ms
NA 8 -
fat suppression SPIR -
scan time 235.5 s

Origin

Fig. 2. Data transformation from 31 channels to 3 channels after PCA
processing. Origin data is collected from 6 volunteers. The dataset shows
vertebral area of human beings.

to the network, the weights of the network is very difficult
to converge. These difficulties are to be moderated.

In PCA analysis, we vectorize every channel of the sample
to a vector. The sample is transformed to a matrix X as
31 x 39424. PCA is a variant matrix transformation as

k—1
Xk = X — ZXU)(&)’LU(TG)
s=1

Here w(s) means the related eigenvector of X X g sorted
eigenvalues. And w(s) is also a united vector. It can be
calculated like
wf XT Xw )

W(1) = argmax ( wTw

The left part of Fig. 2 shows a sample of the origin 31-
channel images and the transformation result after PCA and
normalization processing. Fig. 3 shows all of the 31 singular
values of X which is also the square root of eigenvalues
of XX7T from all of the six samples of the datasets. The
first three singular values take the weights of all the singular
values in more than 99.9%. That means the transformation
is more efficient and meaningful. The largest three singular
values of X can almost represent all of the origin information
in the raw sample equivilently.

The fMRI datasets have a broad range of pixel intensities.
The different ranges significantly influence the accuracy of
segmentation. Even after PCA processing, the ranges of
the three channels are still quite irregular. To locate the
maximal and minimal elements among the three channels,
we normalize the three channels to a range of (0,255),
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Fig. 4. The structure of our proposed fully convolutional neural network. Feature learning part use the structure of VGG-16 net[4]. After feature learning,
the pooling output of different stages are tackled with upsampling and merged. The final layer uses a Softmax layer to output dense classification result
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Fig. 3. Percentage of singular values of all the samples in datasets. Singular
values are sorted and the percentage is shown in log scale.

which is the range of 8-bit images. The right part of Fig. 2
illustrate the sample condition after PCA and normalization.
The supervising learning procedure will be introduced later
in Section III-C. The labeling process is tackled on the origin
sample before PCA pre-processing. We propose two different
labeling strategies as shown in Fig. 1, dealing with five
categories of primary tissues in the vertebral fMRI datasets,
as follows:

e Fully-BP: The origin image is aggressively segmented
to six parts including all of the five primary classes
as introduced in Section III-A and the background
area. The predictions in every pixel location are to be
added in the loss function and used to execute back

propagation for weights.

e Ignore-Bound: Among the primary tissues, the bound-
ary (separation plane) is vague even for human inspec-
tors. We ignore these boundary parts and label no targets
for pixels located here. The forward predictions of these
parts will not be considered when calculating the loss.
Naturally, there is no back propagation through these
locations.

C. FCN Implementation

Fig. 4 illustrates our proposed FCN architecture. In the
convolutional networks, each layer is a three-dimensional
array of size h X w x d, where d is the channel dimension and
h,w are the spatial sizes. Here the dimension of the input
data is following the pre-processed fMRI data. The size of
input array is thus 256 x 154 x 31.

1) Dense Prediction: The feature learning of FCN uses
the structure of VGG-16 net [4] which won ILSVRC14. As
introduced in [6], all of the fully connected layers of VGG-16
are converted to convolutions. Finally, there are 15 convo-
Iutional (Conv) layers for feature learning. To increase non-
linearity, every Conv layer is followed by a Rectified Linear
Unit (ReLU) activation function layer. They are represented
as red cubes in Fig. 4. The number under the Conv+ReLU
cubs in Fig. 4 is the number of channels of the output data
related to this cube. A 1 x 1 convolution layer with channel
dimension six is appended to predict scores for each of the
tissue classes including the background. As shown in Fig.
4, actually the Prediction cube is also a convolution layer.
All of the output channel numbers of prediction convolution
layers is six as well. The Deconv layer will upsample the
coarse output to the similar size as input (256 x 154).



TABLE I
TRAINING PARAMETERS

Parameter Value
batch size 1
learning rate 10—14
momentum 0.99
weight decay  0.0005

2) Hierarchy Combination: Max pooling layers, rep-
resented by blue cubes, are implemented after several
Conv+ReLU cubes to spatially reduce the data size. We
use the same strategy to combine layers of the feature
hierarchy as introduced in [6]. The output of Pool3, Pool4,
Pool5 are to be unsampled to with different strides. As the
sequence illustrated in Fig. 4, Deconvl and Predict2 will
be firstly added conjugatedly and unsampled to Deconv2.
Then Deconv2 and Predict3 will be added in sequence
and unsampled to Deconv3. The dimension of Deconv3 is
6 x 256 x 154. At last, a Softmax layer is appended to output
the final prediction.

IV. EXPERIMENTS AND RESULTS
A. Training and Test

The whole structure is trained end-to-end and the initial
weights of network are transferred from the training result
of VOC dataset [26] in voc-fcn8s ! structure which was pre-
trained with the parameters in [6]. In the fine-tuning pro-
cedure, we use Stochastic Gradient Descent (SGD) method
with momentum. The latest research [27] showed that setting
the batch size to one is beneficial for semantic segmentation.
We tried different learning rate from 1075 to 10~ ™, and
smallest learning rate results in the best performance. One
possible explanation is that the initialization from ImageNet-
trained weights is important, so the tuning that makes it
adaptive to the new datasets should be tiny and slow. Training
parameters is described in detail in II.

We use Caffe [28] python interface as the deep learning
framework to train and test all of the data and models. A unit
NVIDIA Tesla K40c is used to support the computation.

There are six MR images in the vertebral datasets as
illustrated in Fig. 3. We separate one of them as the test
sample. Fig. 5 shows the training and test loss decreasing
with the iteration number increasing. The two strategies
introduced in Section III-B are all implemented and tested.
All of the losses experience substantial reduction at first 5000
steps. After that, because of the existence of ignored area, the
loss of Ignore-Bound strategy is obviously less than the one
with the Fully-BP strategy. The test losses of both strategies
are converged stably after 15000 iterations.

B. Results

A naive K-Nearest-Neighbor (KNN) method, which is
commonly used nowadays, is implemented as comparison
as well.

Thttp://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
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Fig. 5. The decrease process of training and test loss of two different label
strategies. The multi-nominal logistic loss of all of the pixels in the sample
image are added.

In this experiment, there are five samples in the training
dataset as mentioned in Section III-A. From the training
dataset, we got 5 x 256 x 154 pixels for each scan. After PCA
and normalization process, there is a 3-dimensions vector for
every pixel location. We calculate the median 3-dimensional
vectors for pixels belong to same class and denote it by y;
for class j. For all of the six classes introduced in Section
I-A, let Y = {y1, 92, ... ys} be the medians set for all of
six classes. For a pixel in the test sample after PCA and
normalization process, let the 3-dimensional pixel vector be
z. We can locate the least normalized inner product between
x and the element in the median sets Y as:

T
arg min LY
i sl
Then j is the prediction result of pixel z. By scanning the
whole image, we can get the prediction for every pixel in
the test data.

TABLE III
PARAMETER REPRESENTATIONS FOR CRITERIA

Parameters Definitions
i, ] specific class number
Ngj pixels of class 4 predicted to belong to class j
Ne number of classes (6)
S; pixels labeled with class 7 (3 J nij)

We use several common semantic segmentation and scene
parsing methods to compare the experiment results, using
criteria like pixel accuracy and region intersection over union
(IU). Based on the parameters introduced in Table III, we
compute:

o mean IU:
(1/n¢) Z nii/(si + Z Nji — M)

o frequncy weighted IU (fw IU):
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Fig. 6. The confusion matrix of test results with two strategies after 15000 iterations of training. Representation of number: 0-back ground, 1-cerebrospinal,
2-vertebral bodyfluid, 3-lumbar disc, 4-spinal fluid, 5-bones. The number in the grid located at row ¢ and column j means pixels in the test sample labeled
with class ¢ and predicted to belong to class j, which is n;; introduced in Table III. The color of this grid represents the precision (n;/s;). The number

of n;i on the diagonal is also called true positive count.

TABLE IV
TEST RESULTS FOR FCN BASED ON TWO STRATEGIES AT THE RELATED TRAINING SECTION AND THE NAIVE METHOD.

Methods all classes main tissues
) mean IU fw IU  pixel acc mean acc | mean IU fw IU  pixel acc  mean acc

Naive KNN 13.1 13.0 23.0 44.6 135 16.4 44.5 38.3
Fully-BP 10000 58.8 73.3 83.9 75.8 54.4 57.3 74.1 80.1
Fully-BP 15000 59.6 73.8 84.4 76.2 55.2 58.0 73.9 80.5
Fully-BP 30000 60.7 74.4 84.7 78.3 56.5 59.3 75.1 81.7
Ignore-Bound 10000 54.8 66.5 78.4 84.2 54.4 54.5 87.1 83.8
Ignore-Bound 15000 55.0 66.9 78.7 84.0 515 54.9 87.1 83.5
Ignore-Bound 30000 54.1 66.3 78.2 83.8 50.6 54.6 87.6 82.8

(Z Sk)_l Z singi/(ss + ani D)
k i j

(2

« pixel accuracy:

« mean accuracy:
(1/nc) Z Nii/Si

For the particular target of segmentation for medical
images, the background class is not as essential as the other
meaningful tissues. When we calculate the loss in the back
propagation procedure of training, the same metrics for all
of the five primary tissues except the background are also
introduced as shown in II.

The evolution of test results and label maps are described
in Fig. 1. As the result of loss reduction, the shapes of
the segmentation results progressively tended to the same
as the ground-truth at the first several thousands steps. After
15000 iterations, there is hardly any revision anymore. By

comparison, we find that the Fully-BP strategy prefers to
predict the junction area as background. On the other hand,
the Ignore-Bound strategy is prone to regard the junction area
as tissues especially for bone area. The confusion matrices of
the test result after 15000 iterations for both strategies which
reflect the difficulties of prediction for bones are illustrated
in Fig. 6. An probable explanation is that the bone area is the
most difficult one to label with unclear boundary mostly as
shown in Fig. 2. There may be too many labeling mistakes
in this area with the Fully-BP strategy. For the precision
of different classes, the Ignore-Bound strategy substantially
improves the precision of all classes except the background
part. However, it takes the cost to increase the false positive
counts for primary tissues as well.

Comparison among various methods and FCN methods
against different training periods are listed in Table II. FCN
methods show great improvement compared with other meth-
ods. Another fact is that FCN only needs 90 milliseconds
to calculate the forward prediction, and the conventional
method takes 1.4 seconds to finish the traversal analyzing for
every pixel in the whole image. From Table II, the Fully-BP
strategy shows high performance in mean-IU and frequency-



weighted-IU. The Ignore-Bound strategy has increased ac-
curacy especially for primary tissues. For the five primary
classes of tissues except the background, the differences in
mean IU and fw IU are also reduced compared with the
Fully-BP strategy. And the best performance of the Ignore-
Bound strategy appeared after around 10000 iterations. It
takes less time to achieve the satisfied result compared
with the Fully-BP strategy which need 30000 iterations.
Generally speaking, the Ignore-BP strategy shows benefits
in converging speed and accuracy.

V. CONCLUSION

This papers demonstrated the effectiveness to apply FCN
deep-learning methods on semantic segmentation of multi-
channel fMRI. The utility of a PCA-aided fully convolutional
network model is proved under efficient end-to-end training
using a small-sized dataset. It indicates that the transfer
learning and Ignore-Bound label strategy are evidentially
sufficient when collecting small datasets, labeling them and
realizing the pixel-wise classification in near real-time. The
proposed framework outperforms other state-of-the-art meth-
ods in precision.

A few limitations to our approach remain. Most notably,
as with most CNN approaches, the training parameters is
decided after a lot of attempts. Fine-tuning from other pre-
trained models is also time consuming. The labeling process
of Ignore-Bound strategy need an appropriate threshold to
distinguish the junction area.

In the future, the labeling strategy can be further improved
considering the limitations in parts of the experimental
results. The combination with CRF introduced in [22] should
also be implemented and tested. Eventually, we will not
only test on the tissue segmentation but also apply the
segmentation method on pathology related areas directly.
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