
Tutorial: Multivariate Differentiation
ECE421 – Introduction To Machine Learning (Fall 2022)

Stephan Rabanser University of Toronto & Vector Institute for AI stephan@cs.toronto.edu

1 The Basics: Univariate Differentiation

In machine learning we are often concerned with assessing the rate of change of a function’s output(s)
with respect to its input(s). In the simple case where said function maps a scalar value to another scalar
value, i.e. f : R → R, this concept is captured by univariate differentiation.

Formally, we define the derivative of a function f at point x as the limit of a difference quotient:

f ′(x) =
df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
(1)

Note that for some functions this limit might not exist for specific choices of x. In that case, the function
is called non-differentiable (at x). Conversely, we call a function differentiable if the limit exists for all
choices of x in the domain of f .

Informally, the derivative of a function df(x)
dx at a particular input value x measures the slope of the tangent

line to the function f at x. Close to x, the derivative df(x)
dx can also be thought of as a linear approximation

of f .

1.1 Frequently Used Derivative Rules

The derivative of a function can be computed from the definition by evaluating the difference quotient
and computing its limit. In practice, however, it is usually easier to consider a function as a composition
of simpler function for which differentiation rules are already readily available. We briefly revise some of
the most useful differentiation rules below.

Derivative of Powers If f(x) = xa, then

(xa)′ = axa−1. (2)

Derivatives of Popular Functions For the exponential function, the power function, and the logarithmic
function, the following differentiation rules apply:

(ex)′ = ex (ax)′ = ax ln(x) for a > 0 (ln(x))′ =
1

x
for x > 0 (3)

Constant Rule If f(x) is constant (i.e., if the there is no functional dependence on x in f), then

f ′(x) = 0. (4)

Sum Rule For all differentiable functions f : R → R, g : R → R and scalars a, b ∈ R:

(af(x) + bg(x))′ = af ′(x) + bg′(x). (5)

1

Product Rule For all differentiable functions f : R → R, g : R → R:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x). (6)

For f(x) = a we have:
(ag(x))′ = ag′(x). (7)

Quotient Rule For all differentiable functions f : R → R, g : R → R as long as g(x) ∕= 0 for any x:
!
f(x)

g(x)

"′
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
(8)

Chain Rule For a differentiable composite function f(x) = h(g(x)):

(h(g(x)))′ = h′(g(x))g′(x) (9)

1.2 Identifying Critical Points (Minima, Maxima, Inflection Points)

Critical Points Differentiation techniques are often discussed in the context of curve sketching. In
particular, differentiation allows for the identification of critical points such as minima, maxima, and
inflection points. Critical points are defined as points where the derivative is 0 (or non-existent).

f ′(x)
?
= 0 =⇒ critical point (10)

Minima, Maxima, and Saddle Points While the first derivative allows us to identify the existence of
a critical point, the second derivative allows us to identify whether a critical point is a maximum, a
minimum, or a saddle point. At a maximum all curvature directions point downwards (concave down); at
a minimum all curvature directions point upwards (concave up); and at a inflection point the curvature
points in different directions.

f ′′(x)
?
> 0 =⇒ minimum f ′′(x)

?
< 0 =⇒ maximum f ′′(x)

?
= 0 =⇒ inflection point (11)

Example Usage in Machine Learning

Machine learning often seeks to determine the minimum of a cost/loss function. As such, iterative
techniques pioneered in numerical computing find widespread usage in various ML algorithms. At
its core, most such methods aim at finding critical points where the derivative is 0. Differentiation
tools are also used in probabilistic parameter estimation, most notably in maximum likelihood esti-
mation, to identify the set of most likely parameters for a data-generating probability distribution.

2 Moving to Higher Dimensions: Multivariate Calculus

We can generalize the concepts from univariate differentiation to higher dimensions by studying multi-
variate (or multivariable) differentiation.

2

2.1 Partial derivatives

Assume that we are now dealing with a function f : Rn → R, i.e. a function that takes as input a vector
x =

#
x1 · · · xn

$⊤ and produces a scalar output. We define the partial derivative of f with respect to
one of its dimensions xi as:

∂

∂xi
f(x) =

∂

∂xi
f(x1, . . . , xn) = lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
(12)

Note that partial derivatives are denoted using the ∂ ("partial", "del") symbol. This notation conveniently
allows us to identify whether f acts on vector-valued inputs. Further note that this definition implies that
we only consider the direction xi as variable and treat all other directions as constant. Hence, partial
differentiation can be thought of as univariate differentiation in a particularly chosen dimension.

Gradient Vector We can compute the partial derivative for all dimensions xi ∈ x and collect all partial
derivatives in a gradient vector:

∇f(x1, . . . , xn) =
%

∂
∂x1

f(x1, . . . , xn) · · · ∂
∂xn

f(x1, . . . , xn)
&

(13)

Example

Consider the function f(x, y) = x2y + 3 ln(xy). Then the partial derivatives and the gradient are
computed as follows:

∂

∂x
f(x, y) = 2xy + 3

1

xy
y

= 2xy +
3

x

(14)

∂

∂y
f(x, y) = x2 + 3

1

xy
x

= x2 +
3

y

(15)

∇f(x, y) =
%

∂
∂xf(x, y)

∂
∂yf(x, y)

&
=

%
2xy + 3

x x2 + 3
y

&
(16)

Jacobian Matrix For a differentiable vector valued function f : Rn → Rm

J =
∂f

∂x
=

%
∂f
∂x1

· · · ∂f
∂xn

&
=

'

()
∇f⊤

1
...

∇f⊤
m

*

+, =

'

(((()

∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn

*

++++,
(17)

Example Usage in Machine Learning

Both the gradient and the Jacobian belong to the bread and butter of both classical and modern
learning / numerical approximation algorithms. In particular, they are the core ingredients of an
algorithm called gradient descent which enables us to iteratively search for a local minimum of
a differentiable function. For instance, neural network learning relies on gradient descent via the
backpropagation algorithm.

3

Example

Consider the multivariate function f

!-
x
y

."
=

-
f1(x, y)
f2(x, y)

.
=

-
x2y

5x+ sin(y)

.
. Then, the partial

derivatives are given by:

∂

∂x
f1(x, y) = 2xy

∂

∂x
f2(x, y) = 5

∂

∂y
f1(x, y) = x2

∂

∂y
f2(x, y) = cos(y)

(18)

We collect all partial derivates in the Jacobian matrix:

J =

'

(()

∂f1(x, y)

∂x

∂f1(x, y)

∂y

∂f2(x, y)

∂x

∂f2(x, y)

∂y

*

++, =

-
2xy x2

5 cos(y)

.
(19)

Hessian Matrix For a twice-differentiable scalar-valued function f : Rn → R the Hessian matrix H is
defined as the matrix containing the combinations of all second-order derivatives:

H =

'

((((()

∂2f(x)
∂x2

1

∂2f(x)
∂x1x2

. . . ∂2f(x)
∂x1xn

∂2f(x)
∂x2x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2xn

...
...

. . .
...

∂2f(x)
∂xnx1

∂2f(x)
∂xnx2

. . . ∂2f(x)
∂x2

n

*

+++++,
(20)

Note that ∂x2i = ∂xi∂xi.

Example Usage in Machine Learning

The Hessian matrix and its approximations are frequently used to assess the curvature of loss
landscapes in neural networks. Similar to the uni-variate second-order derivative of a function,
the Hessian enables us to identify saddle points and directions of higher and lower curvature. In
particular, the ratio between the largest and the lowest eigenvalue of H, i.e. λmax

λmin
, defines the

condition number. A large condition number implies slower convergence while a condition number
of 1 enables gradient descent to quickly converge in all curvature directions.

4

Example

Consider the function f(x, y) = x3 − 2xy − y6. Then the Hessian is computed as follows. The first
partial derivatives are given by:

∂

∂x
f(x, y) = 3x2 − 2y

∂

∂y
f(x, y) = −2x− 6y5

(21)

The second partial derivates are given by:

∂

∂x∂x
f(x, y) = 6x

∂

∂y∂x
f(x, y) =

∂

∂x∂y
f(x, y) = −2

∂

∂y∂y
f(x, y) = −30y4

(22)

We collect all values in the Hessian matrix:

H =

/
∂

∂x∂xf(x, y)
∂

∂x∂yf(x, y)
∂

∂y∂xf(x, y)
∂

∂y∂yf(x, y)

0
=

-
6x −2
−2 −30y4

.
(23)

Optionally, we can also explicitly evaluate the Hessian at a certain point, e.g. (x, y) = (1, 2):

H(1,2) =

-
6 −2
−2 −480

.
(24)

2.2 Matrix Differentiation

It is possible to generalize the differentiation concepts applied while deriving the gradient vector and the
Jacobian matrix to arbitrary scalar-by-vector, vector-by-scalar, vector-by-vector, scalar-by-matrix, and
matrix-by-scalar combinations. Although it is possible to represent higher derivations (such as matrix-
by-vector or matrix-by-matrix) in the form of tensors, this is beyond the scope of this course. Note that
we will be using the numerator layout convention and hence represent vectors as column vectors.

Scalar by Vector
∂y

∂x
=

%
∂y
∂x1

∂y
∂x2

· · · ∂y
∂xn

&
(25)

Vector by Scalar

∂y

∂x
=

'

((()

∂y1
∂x
∂y2
∂x
...

∂yn
∂x

*

+++,
(26)

5

Vector by Vector

∂y

∂x
=

'

(((()

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn

*

++++,
(27)

Scalar by Matrix

∂Y

∂x
=

'

((()

∂y11
∂x

∂y12
∂x . . . ∂y1n

∂x
∂y21
∂x

∂y22
∂x . . . ∂y2n

∂x
...

...
. . .

...
∂ym1

∂x
∂ym2

∂x . . . ∂ymn

∂x

*

+++,
(28)

Matrix by Scalar

∂x

∂Y
=

'

(((()

∂x
∂y11

∂x
∂y12

. . . ∂x
∂y1n

∂x
∂y21

∂x
∂y22

. . . ∂x
∂y2n

...
...

. . .
...

∂x
∂ym1

∂x
∂ym2

. . . ∂x
∂ymn

*

++++,
(29)

Additional Resources

Additional matrix differentiation rules are discussed in Matrix Differentiation [Barnes, 2006]. Useful
matrix differentiation identities can be found in the Matrix Cookbook [Petersen et al., 2008].

References

Randal J Barnes. Matrix differentiation. Springs Journal, pages 1–9, 2006.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

6

