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Motivation

Machine Learning systems are becoming ubiquitous.

We need a thorough understanding of the robustness properties of ML algorithms to
ensure safe deployment, especially in high-stakes decision-making systems.
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Warmup: Robust Optimization Example
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Risk in Supervised Learning

Setup
e Dataset D, = {(x;,yi)}!"; where (x,y) ~pover D =X x )Y withx € X, y € ).
® Prediction function hy(x) : X — ) producing labels § = hy(x) with hy(-) € H.
® Loss function £(y,y) measuring prediction quality of hg(x).
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Goal: By employing a learning algorithm L : D — H we want to produce a prediction

function hy(-) performing well on unseen test data D, = {(xj,yj)}J’\i1 (x,y) ~ p,
D, N D, = & as measured by our loss function £(:, ).
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function hy(-) performing well on unseen test data D, = {(xj,yj)}J’\i1 (x,y) ~ p,
D, N D, = & as measured by our loss function £(:, ).

(True) Risk

R(by) = Byl 0] = | [ ol y)tthuto). iy
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Empirical Risk Minimization (ERM)

p(x,y) is typically not known or intractable to compute and as a result R(hg) cannot
be computed. But we can empirically approximate R(hy) as R(hg) using samples from

p(x,y) (i.e. using Dp):

R(hQ) = Ep(xfy)[g(hQ(X)ay)] 7/?\'(/79) = N Z‘g(he(xi)ayi)

Distributionally Robust Optimization (DRO) 5/18 éTUof{LE)N?o \7‘ VECTOR



Empirical Risk Minimization (ERM)

p(x, y) is typically not known or intractable to compute and as a result R(hg) cannot
be computed. But we can empirically approximate R(hy) as R(hg) using samples from

p(x,y) (i.e. using Dp):
. 1 &

R(hg) = Ep [l ho(x), y)] R(hg) = N > U(ho(xi), i)
i—1

Due to the law of large numbers we expect an increasingly better approximation of
R(hg) by R(hg) as more samples are provided to the learning algorithm L:

R(he) ~ R(hs)  R(hg) "=3°R(hg)  argminR(hy) ~ arg minR(hy)
hgeH ho€EH
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The Problem of Distributional Shift

Revisiting our goal

Goal: By employing a learning algorithm L : D — H we want to produce a prediction
M

function hy(-) performing well on unseen test data D, = {(x;, ;) };Z;, (x.¥) ~ p,
D, N D, = & as measured by our loss function £(:, -).
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The Problem of Distributional Shift

Revisiting our goal

Goal: By employing a learning algorithm L : D — H we want to produce a prediction

function hy(-) performing well on unseen test data D], = {(xj,yj)}J’\i1 (x,y) ~ p,

D, N D, = & as measured by our loss function £(:, -).
A more realistic scenario

D, ={(x,y)}1 (xy)~q 0<d(p.q)<é DyND,=2

d(p, q) is a divergence measure between training distribution p and testing distribution
q and is bounded by §.
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Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min IE:p(x,y) [f(hg(X), y)]
hgeH

Distributionally Robust Optimization

ar mlnmaxE ) [€(hg(x
5 min ma B [[(h0(2), )]

Qp={q<p|d(p,q)<d}
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Risk Minimization vs Distributionally Robust Optimization

Risk Minimization
argminEp(x,y) [f(hg(X),y)] /) N
hgeH I' ‘\
! G ‘;
.. . Ce ! >
Distributionally Robust Optimization ' p !
\\ q /I
arg min max E () [(he(x), ¥)] '\ S/
hoEH q€Q \\\ ,
Qp:{q<<p\d(p,q)§<5} a

Important: The distribution g that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!
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Divergences Between Probability Distributions

Integral Probability Metrics: p — q

d7(p, q) = supze 5 [Ex~plg(X)] — Ex'qle(X)]]
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Divergences Between Probability Distributions

Integral Probability Metrics: p — g ¢-divergences (f-divergences): 5
d7(p, q) = supse  [Ex~plg(X)] — Exinqlg (X))l ds(p, @) = [ a()$(5 )

VECTOR

Distributionally Robust Optimization (DRO) 8/18 éTUof{LE)N?o P VECTOR



Divergences Between Probability Distributions

Integral Probability Metrics: p — g ¢-divergences (f-divergences): g
d7(p, q) = supse  [Ex~plg(X)] — Exinqlg (X))l ds(p, @) = [ a()$(5 )

VECTOR

Distributionally Robust Optimization (DRO) 8/18 éTUof{LE)N?o P VECTOR



Divergences Between Probability Distributions

Integral Probability Metrics: p — g ¢-divergences (f-divergences): g
d7(p, q) = supse  [Ex~plg(X)] — Exinqlg (X))l ds(p, @) = [ a()$(5 )

Total Variation (TV) Distance
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¢-divergences: Choices for ¢(-)
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Application: ERM Generalization and Regularization

Recall the ERM definition:

——

regularizer

N
Ra(hg) = %Zf(he(xi),y/') + AQ(0)
i—1

By regularizing, we reduce overfitting on the sample
distribution pp and enable generalization to p.
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Recall the ERM definition:

——

regularizer

N
Ra(hg) = %Zf(he(xi)d/i) + AQ(0)
i—1

By regularizing, we reduce overfitting on the sample
distribution pp and enable generalization to p.
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Application: ERM Generalization and Regularization

Recall the ERM definition:

——

regularizer

N
Ra(hg) = %Zf(he(xi),y/') + AQ(0)
i—1

By regularizing, we reduce overfitting on the sample
distribution pp and enable generalization to p.

Different divergences lead to different regularization:

® 2 penalizes V, [((ho(x), y)]
® Wasserstein penalizes ||V, £(hy(x), y)||
® MMD penalizes ||¢(hg(x), y)|| =
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Application: Distribution Shifts in General

Example setting: You are building a predictive model
for house prices based on square meters.

® p: square meters distribution in the inner city
® gs: square meters distribution in the city's suburbs
® gw: square meters distribution in the whole city

® go: square meters distribution of another city

Goal: Generalize to the worst-case distribution within
the city, i.e., gs and gy, but not to qo.
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Discussion: Practical Estimation of the DRO Objective

argmin max Eq(, ) [€(hg(x), ¥)] with Qp={g<p|d(pq)<é}
heeH 9E€E2p
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Discussion: Practical Estimation of the DRO Objective

argmin max Eq ) [((ho(x),y)]  with  Qp={q < p|d(p,q)<d}
hgEH qGQ

Estimation from empirical data

1. Collect worst case test data Dg.

2. Minimize empirical loss on worst case
test data

argmin — Y L(hg(xi), i)
hgeH Z

with (x, y) € Dy

e
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Discussion: Practical Estimation of the DRO Objective

arg min max E (.. ,y[¢(hg(x),
h%e?—t 920, q( ,y)[ (ha(x), y)]

Estimation from empirical data

1. Collect worst case test data Dg.

2. Minimize empirical loss on worst case
test data

argmin — Y L(hg(xi), i)
hgeH Z

with (x, y) € Dy

with 9, ={q < p|d(p,q) <4}

Estimation from theoretical framework
1. Estimate the distribution p from D.
2. Approximate p with a simpler

distribution p using VI.
3. Choose d(p, q) and 0.

4. Either

® directly minimize DRO objective; or
® sample from worst g and empirically
minimize DRO objective.
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Thanks! )
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The Connection Between Optimization and Uncertainty

Optimization Technique Uncertainty Model
Deterministic Point-forecast (no uncertainty)
Stochastic optimization Expectation
Chance-constrained optimization Probability distribution
Robust optimization Worst-case deviation under unbounded divergence

Distributionally robust optimization Worst-case deviation under bounded divergence
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¢-divergences: Choices for ¢(-)

ds(p,q) = /X q(X)¢(lc;Ej<<;)dX ¢ convex and ¢(1) =0

TV distance: ¢(x) = lx—;”

p(x) 4 D ol
drv(p,q) = /Xq(x)|q(x)2|dx = /X de
x? divergence: ¢(x) = (x —1)?

dopa) = [ ab(GS -1l = ..~ [
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¢-divergences: Choices for ¢(-)

dg(p,q) = /X q(x)qb(gg(;)dx ¢ convex and ¢(1) =0

KL divergence: ¢(x) = x log x

dhapa) = [ a() P 1og (P gy — [ o 0g(2)

a(x) Ta(x) a(x

~—

)dx

~—

Jensen-Shannon divergence: ¢(x) = [(x + 1) log ( o) + x log x]

1(erq))

1 1
- ~d
(p+4q)+ 5 k(9 5

1
dis(p,q)=...= EdKL(P, 5

VECTOR

Distributionally Robust Optimization (DRO) 18/18 %TUSESIG"FO V7 (Ecror



