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Motivation

Machine Learning systems are becoming ubiquitous.

We need a thorough understanding of the robustness properties of ML algorithms to
ensure safe deployment, especially in high-stakes decision-making systems.
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Warmup: Robust Optimization Example
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Risk in Supervised Learning

Setup

• Dataset Dp = {(xi , yi )}Ni=1 where (x , y) ∼ p over D = X × Y with x ∈ X , y ∈ Y.

• Prediction function hθ(x) : X → Y producing labels ŷ = hθ(x) with hθ(·) ∈ H.

• Loss function `(ŷ , y) measuring prediction quality of hθ(x).

Goal: By employing a learning algorithm L : D → H we want to produce a prediction
function hθ(·) performing well on unseen test data D ′p = {(xj , yj)}Mj=1, (x , y) ∼ p,
D ′p ∩ Dp = ∅ as measured by our loss function `(·, ·).

(True) Risk

R(hθ) := Ep(x ,y)[`(hθ(x), y)] =

∫
Y

∫
X
p(x , y)`(hθ(x), y)dxdy
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Empirical Risk Minimization (ERM)

p(x , y) is typically not known or intractable to compute and as a result R(hθ) cannot
be computed. But we can empirically approximate R(hθ) as R̂(hθ) using samples from
p(x , y) (i.e. using Dp):

R(hθ) := Ep(x ,y)[`(hθ(x), y)] R̂(hθ) :=
1

N

N∑
i=1

`(hθ(xi ), yi )

Due to the law of large numbers we expect an increasingly better approximation of
R(hθ) by R̂(hθ) as more samples are provided to the learning algorithm L:

R̂(hθ) ≈ R(hθ) R̂(hθ)
N→∞−→ R(hθ) arg min

hθ∈H
R̂(hθ) ≈ arg min

hθ∈H
R(hθ)
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The Problem of Distributional Shift

Revisiting our goal

Goal: By employing a learning algorithm L : D → H we want to produce a prediction
function hθ(·) performing well on unseen test data D ′p = {(xj , yj)}Mj=1, (x , y) ∼ p,
D ′p ∩ Dp = ∅ as measured by our loss function `(·, ·).

A more realistic scenario

D ′q = {(xj , yj)}Mj=1 (x , y) ∼ q, 0 ≤ d(p, q) ≤ δ D ′q ∩ Dp = ∅

d(p, q) is a divergence measure between training distribution p and testing distribution
q and is bounded by δ.
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Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min
hθ∈H

Ep(x ,y)[`(hθ(x), y)]

Distributionally Robust Optimization

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)]

Qp = {q � p | d(p, q) ≤ δ}

Important: The distribution q that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!

Distributionally Robust Optimization (DRO) 7/18



Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min
hθ∈H

Ep(x ,y)[`(hθ(x), y)]

Distributionally Robust Optimization

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)]

Qp = {q � p | d(p, q) ≤ δ}

p

Important: The distribution q that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!

Distributionally Robust Optimization (DRO) 7/18



Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min
hθ∈H

Ep(x ,y)[`(hθ(x), y)]

Distributionally Robust Optimization

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)]

Qp = {q � p | d(p, q) ≤ δ}

p

d(p, q) ≤ δ

Important: The distribution q that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!

Distributionally Robust Optimization (DRO) 7/18



Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min
hθ∈H

Ep(x ,y)[`(hθ(x), y)]

Distributionally Robust Optimization

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)]

Qp = {q � p | d(p, q) ≤ δ}

p

d(p, q) ≤ δ

q

Important: The distribution q that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!

Distributionally Robust Optimization (DRO) 7/18



Risk Minimization vs Distributionally Robust Optimization

Risk Minimization

arg min
hθ∈H

Ep(x ,y)[`(hθ(x), y)]

Distributionally Robust Optimization

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)]

Qp = {q � p | d(p, q) ≤ δ}

p

d(p, q) ≤ δ

q

Important: The distribution q that leads to the worst-case DRO loss does not
necessarily correspond to be the distribution that maximizes d(p, q)!

Distributionally Robust Optimization (DRO) 7/18



Divergences Between Probability Distributions

Integral Probability Metrics: p − q

dF (p, q) = supg∈F |EX∼p[g(X )]− EX ′∼q[g(X
′)]|

Total Variation (TV) Distance
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φ-divergences: Choices for φ(·)
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Application: ERM Generalization and Regularization

Recall the ERM definition:

R̂λ(hθ) :=
1

N

N∑
i=1

`(hθ(xi ), yi ) + λΩ(θ)︸ ︷︷ ︸
regularizer

By regularizing, we reduce overfitting on the sample
distribution p̂N and enable generalization to p.

Different divergences lead to different regularization:

• χ2 penalizes Vp̂N [`(hθ(x), y)]

• Wasserstein penalizes ||∇x`(hθ(x), y)||
• MMD penalizes ||`(hθ(x), y)||F

p̂N

d(p̂N , p) ≤ δ

p
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Application: Distribution Shifts in General

Example setting: You are building a predictive model
for house prices based on square meters.

• p: square meters distribution in the inner city

• qS : square meters distribution in the city’s suburbs

• qW : square meters distribution in the whole city

• qO : square meters distribution of another city

Goal: Generalize to the worst-case distribution within
the city, i.e., qS and qW , but not to qO .

p

d(p, q) ≤ δqS

qW

qO
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Discussion: Practical Estimation of the DRO Objective

arg min
hθ∈H

max
q∈Qp

Eq(x ,y)[`(hθ(x), y)] with Qp = {q � p | d(p, q) ≤ δ}

Estimation from empirical data

1. Collect worst case test data D ′q.

2. Minimize empirical loss on worst case
test data

arg min
hθ∈H

1

N

N∑
i=1

`(hθ(xi ), yi )

with (x , y) ∈ D ′q.

Estimation from theoretical framework

1. Estimate the distribution p from D.

2. Approximate p with a simpler
distribution p̃ using VI.

3. Choose d(p̃, q) and δ.

4. Either
• directly minimize DRO objective; or
• sample from worst q and empirically

minimize DRO objective.
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Thanks! :)
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The Connection Between Optimization and Uncertainty

Optimization Technique Uncertainty Model

Deterministic Point-forecast (no uncertainty)
Stochastic optimization Expectation

Chance-constrained optimization Probability distribution
Robust optimization Worst-case deviation under unbounded divergence

Distributionally robust optimization Worst-case deviation under bounded divergence
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φ-divergences: Choices for φ(·)

dφ(p, q) =

∫
X
q(x)φ(

p(x)

q(x)
)dx φ convex and φ(1) = 0

TV distance: φ(x) = |x−1|
2

dTV (p, q) =

∫
X
q(x)
|p(x)q(x) − 1|

2
dx =

∫
X

|p(x)− q(x)|
2

dx

χ2 divergence: φ(x) = (x − 1)2

dχ2(p, q) =

∫
X
q(x)(

p(x)

q(x)
− 1)2dx = . . . =

∫
X

(p(x)− q(x))2

q(x)
dx
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φ-divergences: Choices for φ(·)

dφ(p, q) =

∫
X
q(x)φ(

p(x)

q(x)
)dx φ convex and φ(1) = 0

KL divergence: φ(x) = x log x

dKL(p, q) =

∫
X
q(x)

p(x)

q(x)
log(

p(x)

q(x)
)dx =

∫
X
p(x) log(

p(x)

q(x)
)dx

Jensen-Shannon divergence: φ(x) = 1
2
[(x + 1) log

(
2

x+1

)
+ x log x ]

dJS(p, q) = . . . =
1

2
dKL(p,

1

2
(p + q)) +

1

2
dKL(q,

1

2
(p + q))
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