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Motivation & Setup

• Recent advancements in global forecasting:
model architectures and probabilistic outputs.

• We investigate effects of (discrete) I/O
representations.
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• φ: input transformation.

• ψ: output transformation,
influences output distribution.
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Scaling Problem: A Motivating Example (m4 hourly)

Original time series
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Time series after scaling
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Time series after q-transform
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Continuous Transforms

Addressing the scaling problem in global forecasting is of utmost importance!

Scaling

Apply an affine transformation to each
time series:

• General form: z ′i ,t = (zi ,t − bi )/ai .

• Classic mean scaling (ms):

• ai = 1
Ti

∑Ti

t=1 |zi,t |
• bi = 0

• Lots of possible variations ...

Probability Integral Transform (pit)

Maps a RV Z through its CDF:

• Y = FZ (Z ) with Y being uniform.

• Data preprocessing: make the
empirical marginal of each time series
approximately uniform [3].

• z ′i ,t = F̂i (zi ,t) with F̂i being the ECDF
for time series zi ,1:Ti

.
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Discretizing Transforms

• Binning function b : R→ {1, 2, . . . ,B} mapping a real input to a discrete output.

• Each b ∈ {1, . . . ,B} is tied to a bucket Sb = [lb−1, lb): b(z) = b iff z ∈ Sb.

Equally-Spaced Binning

Construct buckets to be equal in width:

• Only optimal for uniform data.

A A A A A A A A A A

Quantile Binning (discrete pit)

Construct buckets to be equal in mass:

• Adapts bins to fit the data distr.

A A WWW A A W I AAA
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Our Binning Strategies: Local Absolute & Global Relative Binning

Local Absolute Binning (lab) Global Relative Binning (grb)

msmsms

Hybrid Binning (hyb)
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Models & Output Distributions

Models
We consider three different models which
we combine with the aforementioned I/O
transformations:

• Simple Feed Forward: SFF

• Autoregressive CNN: WaveNet [2]

• Autoregressive RNN: DeepAR [4]

zi,1:Ti φ xi,1:Ti+τ

Model

Distribution

Output Distributions

We compare three different approaches for
modeling the output distribution p(zt |ht):

• Student-t distribution (st);

• Piecewise-linear spline quantile
function approach of [1] (plqs);

• Categorical distribution (cat);
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Experimental Results

• Varying I/O representations with models on m4, electricity, traffic, wiki.

Output Scaling vs Binning

• Output representation has large perf.
impact. Loss differences (max/min/avg):

• WaveNet: 3.6x / 1.2x / 1.7x
• DeepAR: 7.6x / 1.4x / 2.9x
• SFF: 1.8x / 1.0x / 1.2x

• WaveNet profits a lot from binning (8/9),
WaveNet with grb performs best (7/9).

• DeepAR shows degradation in perf. with
binning over ms (avg 2.6x higher loss).

• Mixed results for SFF (no clear winner).

Input Scaling vs Binning

• Input representation has a smaller perf.
impact. Loss differences (max/min/avg):

• WaveNet: 3.0x / 1.4x / 1.9x
• DeepAR: 5.7x / 1.0x / 1.9x
• SFF: 1.8x / 1.0x / 1.2x

• There is no one clear dominant
representation outperforming others.

• Multi-scale hybrid binning often does well
(6/9), lab performs badly (9/9).

• grb and pit mostly on par (avg 1.4x).
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Binning Resolution Effects (m4 hourly)
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Performance effects of varying input
binning resolutions w.r.t a fixed
1024-bin q-grb output binning.
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The Effectiveness of Discretization in Forecasting 9
Europe



Summary

Picking a good I/O representation is equally important as selecting a good model!

Extended Paper: https://arxiv.org/abs/2005.10111

GluonTS: Probabilistic Time Series Modeling Library (Python):
https://github.com/awslabs/gluon-ts
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