
THE TimeStruct TOOLKIT: IMPOSING TEMPORAL STRUCTURE IN Max

Aron Glennon

New York University
Music and Audio Research Lab (MARL)

apg250@nyu.edu

Nick Didkovsky

Algomusic

nick@didkovky.com

ABSTRACT

Standard tools for making high-level decisions about
temporal structure in music do not exist for computer
music composers using Max. We describe a toolkit for
temporal structure creation and manipulation in Max that
we developed to address this. We discuss the toolkit’s
objects in the context of a proposed general ‘time
structure’ representation scheme. A composer makes high-
level compositional decisions with these objects by
specifying certain general properties about the form of a
desired time structure while leaving details about its
contents to chance. The user may influence how the
computer randomly chooses values for these details by
specifying a desired probability mass/density function. A
time structure’s contents may be unfolded over a specified
length of time (using objects provided in the toolkit) in
order to appropriately interface with other Max objects.

1. INTRODUCTION

Music is an art form composed of sonic ‘events’. A major
focus for any music composer is the organization of these
events in time. While many contemporary music
composers prefer to notate the exact timing of every event
in a piece, others prefer to work with the event timing and
general temporal structure of their material from a higher
level [4].

For computer music composers, this is typically not
possible using sequencer software because individual
events must be manually placed on a timeline. Therefore,
those interested in making high-level decisions about event
timing must turn either to less restricted software packages
like Max [5], Chuck, or SuperCollider or to full-scale
programming languages like Java or C++. Historically,
Max has been the most popular choice for several reasons:
(1) Its learning curve is not as steep as that of Java or C++;
(2) it has a larger user community than any other dedicated
music programming environment; and (3) its graphical
interface is less daunting for non-programmers than a
terminal window.

If composers are more apt to turn to Max when typical
sequencer software is limiting, then it is important that
they are afforded the appropriate tools within Max to
realize their vision. While Max has a number of useful
objects to creatively generate and manipulate audio and

MIDI data, its object set for temporal structure generation
and manipulation is quite limited. Max’s seq and timeline
objects have many of the limitations that typical sequencer
software does and are, therefore, not ideal for this task.
The limitations exhibited by these objects were the
impetus for creating the TimeStruct toolkit. It should be
noted that externals do exist that could allow the same
functionality that this toolkit brings to Max (e.g. maxlisp,
csound~, cmix~, chuck~, js, live.object), but these
externals all require proficiency in another language or
software environment and therefore are not sufficient for a
composer familiar and comfortable only in the Max
environment.

2. THE TimeStruct TOOLKIT

We designed the objects inside the TimeStruct toolkit
[1] - in C for Max running on Mac OSX - to provide users
with the facility to use only high-level decisions when
determining how to order their sonic material in time.

A few of the many possible applications of this toolkit
follow:

• Automatically segment a piece into different
movements

• Further segment movements into sections,
sentences, phrases, etc.

• Specify note densities as opposed to specific note
onset locations

• Produce time stamps for tempo variations within a
performance

• Provide microstructure for granular synthesis
attributes [3] or parameter trajectories for time-
evolving audio effects

The TimeStruct toolkit is also applicable to many tasks
beyond those related to audio. Additional applications
range from those in video art (analogous to those listed
above for audio, using Max’s Jitter Library) to general list
creation and manipulation.

2.1. Representation of Events

In the context of this paper, an ‘event’ corresponds to any
musical change (e.g. note onset, timbral shift). A piece of
music can therefore be segmented into a number of events,
each corresponding to change or evolution at some point in
time along some musical dimension. This segmentation

131

can exist on only one level (e.g. an event can be associated
with any instance of change) or on multiple levels (e.g. a
piece could be segmented into ‘section’ events, which
could then be segmented into ‘note events’, which could
then be further segmented into events marking how each
note evolves timbrally or dynamically). Therefore,
different kinds of events may exist on different time
scales. However, no matter the representation, each event
will have a beginning (‘event marker’) and, with every
beginning, an associated time stamp.

Being time-scale neutral, the TimeStruct toolkit
represents a series of events as a list of float values
increasing from 0.0 to 1.0, where each float-valued time
stamp represents its corresponding event’s placement on a
timeline relative to the entire length of that timeline (i.e.
duration of the entire series of events). Thus, the toolkit
works with lists of unit-less timestamps that we refer to as
‘(generalized) time structures.’ This representation was
designed to provide all objects in the TimeStruct toolkit
with a common fundamental unit with which to work and
also to allow for easy scalability to any duration. When the
user has finished manipulating a time structure with the
toolkit and is ready to use it to control events in Max, they
can utilize the time_scaler object (see section 2.5) to
translate its unit-less representation into millisecond or
second values spanning any desired length of time.

2.2. Time Structure Creation

The lookup object in the TimeStruct toolkit creates a list of
event markers (and therefore, implicitly, a series of
events). The user specifies the number of unique events to
produce and the lookup object outputs a list of values from
0.0 to 1.0 of this size (see Figure 1).

Figure 1. The lookup object.

Since the output list ranges from 0.0 to 1.0, it can be used
as a time structure by itself, but its intended use is as a
lookup table from which to choose events when building a
separate time structure. The latter application allows for
the creation of a time structure containing multiple copies
of the same event.

There are two objects in the toolkit used for indexing
into the lookup object’s output to create time structures:
index_structure and create_structure.

The index_structure object creates a time structure by
indexing into the lookup object’s output using a specified
list of indices (integers). For example, if the list of indices
sent to the index_structure object is (0 4 3), the
index_structure object will output a time structure
containing the events at the 0th, 4th, and 3rd positions in the
lookup table. The output list is normalized to range from
0.0 to 1.0 so that it has the appropriate form of a time
structure and will therefore be recognized as such by the
other objects in the toolkit. This normalization changes the
absolute length of each event, but retains the relative
length of each with respect to every other. Thus, the
character of the structure (i.e. its shape) is maintained (see
Figure 2a). Recall that the absolute length of each event is
unit-less and only an indication of its size with respect to
the entire time structure, so no important information is
lost during normalization.

The create_structure object randomly selects a
specified number of events (with reselection possible)
from the lookup object’s output and, like the
index_structure object, normalizes the resultant list to
range from 0.0 to 1.0 (see Figure 2b).

 (a) (b)

Figure 2. (a) The index_structure object. (b) The
create_structure object.

2.3. Themes and Patterns

As discussed above, the index_structure and
create_structure objects use the output of a lookup object
as a lookup table for creating time structures. When the
lookup object is used in this way, the location (i.e. index)
of each event in the lookup table can be viewed as its
corresponding ‘theme’. In this context, a theme is simply a
unique identifier for an event, so that if multiple copies of
an event are used in a time structure, it is easy to determine
where each exists. Therefore, whenever an object from the
toolkit outputs a time structure, it also outputs a list of
theme values associated with the different events in the
time structure.

If a time structure is created to specify section
boundaries within a piece, then the theme values provide a
useful representation for keeping track of which sections
repeat and where. In such a situation it may be desirable to
strip the original themes away from their associated
sections (i.e. events) and replace them with different theme
assignments (e.g. when the repetition of a verse in a pop

Number of Unique
Event Lengths

Time Structure

0th
event

4th
event

8th
event

... ...

0.0 1.0

0 3 4

0.0 1.0 randomly selected events

1 2 6 8

0.0 1.0

0 4 3 8 2 1 6

manually selected events

132

song is longer than its first occurrence or when two
different sections in a piece are of the same length, but
contain different content).

We developed two objects in the TimeStruct toolbox to
provide the user with high-level control over theme
assignments: random_themes and pattern.

random_themes simply generates a random list (of
specified length) of theme numbers (i.e. integers) from
zero to some specified maximum theme value.

pattern takes a list of themes and either inserts a
specified number of theme patterns into the list or replaces
portions of the list with these patterns. For example, if the
theme pattern is (1 1 2) and a list of (3 0 2 5 1 2 1) is input
to the pattern object, then inserting two repetitions of the
pattern might return the following: (3 0 (1 1 2) 2 5 (1 1 2)
1 2 1). Alternatively, if ‘replacement’ is selected, then the
output will look something like: ((1 1 2) 5 (1 1 2)) (see
Figure 3). This allows the user to place repetitive segments
into a time structure.

Figure 3. Adding event patterns to a time structure using
the pattern object on the output of the random_themes
object.

2.4. Incorporating Probability

The amount of high-level control given to a user would be
severely limited if uniform random selection were the only
mechanism used by lookup to choose event lengths,
create_structure to select indices, and random_themes to
generate theme numbers. A more useful set of tools would
allow the user to provide a probability mass/density
function [2] that specifies how to randomly choose values
in each case mentioned above.

With the above consideration in mind, we designed the
lookup, create_structure, and random_theme objects to
allow the user to specify a list of probabilities used for
selection. This list of probabilities is appropriately linearly
interpolated for each situation, as will be discussed below.

The lookup object requires a continuous probability
density function when selecting float-valued event lengths.

To approximate the behavior of this density function, any
list of probabilities sent to the lookup object is linearly
interpolated to 1000 points, each representing a probability
that a float value will be selected by lookup in a 1/1000th
sized-interval between 0.0 and 1.0. When choosing event
lengths, the corresponding distribution is sampled and an
interval is returned. In order to generate a specific value
inside that interval, it is uniformly sampled and the value
chosen is returned as the event length.

For create_structure, the list of input probability values
is interpolated to the length of the incoming lookup table,
so that each event has an assigned probability of selection.

The random_themes probability mass function must
have as many values as there are possible theme numbers,
which is specified by the user as the maximum possible
theme number to include in the list.

In each case, we designed the objects so that the list of
values input into each, representing selection probabilities,
do not have to sum to 1.0. Each object internally
normalizes the probability mass function obtained after
interpolation so that the user only has to decide upon the
general shape of the mass function when inputting desired
‘probabilities’. The probability distribution used for
sampling is also normalized appropriately.

Realizing the applicability of this concept to a number
of different paradigms in Max, we created the distribution
object as a general-purpose mass function and distribution
creation tool. The distribution object takes a list of values
and a desired mass function list length and outputs a
properly normalized probability mass function and
distribution (each as a list of floats) of this length (using
the same methods incorporated into the lookup,
create_structure, and random_themes objects for
interpolation and normalization) (see Figure 4).

Figure 4. The distribution object.

2.5. Time Structure Manipulation

A user may want to manipulate the locations of event
markers in a time structure after it has been created. For
example, if the time structure is used to specify when
percussive hits occur in a pop song then the user may want
to only allow hits on specific integer divisions of the beat

lookup table
0 1 2 43 85 6 7 9

0.0 1.0 0.0 1.0

3 0 2 5 1 2 1 1 1 2 1 1 25

themes

themes generated
pattern

number of
patterns to use

length of
the pattern

replacement
on

without patterns added with patterns added

general shape of desired probability mass function
number of points

representing
distribution

probability mass function probability distribution

133

(i.e. quantization). To accommodate such a need, we
created two objects to manipulate event marker locations
within a time structure: quantizer and compressor.

The quantizer object has two modes: relative and
absolute. The relative mode quantizes the lengths of the
events (see Figure 5) so that only a specified number of
integer multiples of a fundamental event length can exist.
The absolute mode quantizes the locations of the event
markers to fit on a grid created by dividing the entire time
structure up into a specified number of evenly spaced time
values.

Figure 5. The quantizer object in relative mode using four
possible event lengths.

The compressor object imposes a specified maximum
ratio between event lengths in the time structure. For
example, if a compression ratio of two is specified, the
longest event is made twice as long as the shortest event.
All other events are compressed/expanded proportional to
their original lengths relative to the lengths of the longest
and shortest events. This allows the user to either make
long events longer and short ones shorter (in the case
where the specified compression ratio is larger than the
inherent ratio of the input list) or long events shorter and
shorter ones longer (in the case where the specified
compression ratio is smaller than the inherent ratio of the
input list) (see Figure 6).

Figure 6. The compressor object using a compression
ratio of two when the inherent input ratio is much larger
than that.

2.6. Event Output over Time

Once a time structure is created, its event marker locations
must be translated from relative time values into absolute

time values so that it may be used within Max. This simply
requires a scaling of the interval (0.0, 1.0) to a time scale
that is understood by the object using the time structure’s
event information. We created the time_scaler object for
this purpose.

The time_scaler object takes a list of numbers ranging
from (0.0, 1.0) and scales them to range from (0.0 to x)
where x is specified by the user. The result is a translation
of the time structure from a unit-less quantity into the units
of x.

We developed the ramper object to provide an intuitive
and useful output of a list of event markers (in seconds)
and their corresponding themes. The ramper object has
one inlet and three outlets. The user first sends ramper a
list of event markers concatenated with their associated
themes. A bang, sent subsequently to the object, initiates
output. When a bang is received at the ramper’s inlet, it
outputs a linear ramp from (0.0, 1.0) over x seconds out of
its first (leftmost) outlet to indicate the percentage of time
elapsed in relation to x (the entire time structure length).
Simultaneously, the second outlet sends out a ramp from
(0.0, 1.0) for each event in the time structure over each
event’s duration. The third outlet outputs the theme
associated with the event that the second outlet is ramping
through. Therefore, sending a bang to the ramper object
will ‘play’ its time structure, giving the user knowledge of
the location of the play head through the entire time
structure, the location of a play head set to run through the
current event, and the theme associated with that event.

3. FURTHER WORK

The next logical step for further development of the
TimeStruct toolkit is to start building structures using its
objects in order to determine (1) if any useful functionality
should be added to the existing objects or (2) whether
supplemental objects should be developed. We also plan to
develop Max for Live devices using these objects so that
Ableton Live users are afforded similar mechanisms.

To download a beta version of the toolkit, visit:

http://homepages.nyu.edu/~apg250/MaxMSP_Externals.html

4. REFERENCES

[1] Fujinaga, I. Max/MSP Externals Tutorial: Version
3.1. Montreal, Canada: McGill University. 2004.

[2] Grimmett, G. R. and Stirzaker, D. R. Probability and
Random Processes. Oxford, England: Oxford
University Press. 1992.

[3] Roads, C. Microsound. Cambridge, Massachusetts,
USA: MIT Press. 2001.

[4] Tenney, J. Meta-Hodos and META Meta-Hodos.
Oakland, California, USA: Frog Peak Music. 1986,

[5] Zicarelli, D. and Taylor, G. MAX Fundamentals. San
Francisco, California, USA: Cycling ‘74, 2006.

134

