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ABSTRACT

A musical score provides a great deal of information about a
piece of music. In this paper we consider the incorporation
of a music score to guide source separation on a single chan-
nel recording. We propose a method based on synthesizing
lines of music in the score. Dynamic time warping (DTW)
is used to to fit the synthesized data to the recording. These
are then used as prior distributions in a statistical model of
the recorded sound mixture. Probabilistic Latent Compo-
nent Analysis (PLCA) is then used for the source separation.
Preliminary results on a Bach work for string orchestra saw
good separation with few artifacts.

1. INTRODUCTION

Music scores in many file formats are becoming abundantly
available, as are software synthesizers. A music score con-
tains a lot of very detailed information about a piece of mu-
sic: it tells us which note is played when, how loud, etc., for
each instrument present. This makes the task of source sepa-
ration much easier: from the score we know what to look for
in an audio file. When trying to decompose a mixed sound
into its components, we can use this knowledge to our ad-
vantage.

Source separation using data used from symbolic repre-
sentations of audio (mostly MIDI) is not a new idea. A sys-
tem for the separation of voice and piano using sinusoidal
modeling was presented in [5]. A more general approach
using spectral filtering was proposed in [2]. In this paper,
we extend the separation-by-humming method described in
[8], which is based on PLCA. The scores that we used in
our experiments were gathered from the Mutopia database
[6], which stores scores in the lilypond format. For score
synthesis, we used the Timidity sound synthesizer [4] with
the Fluid R3 GM soundfont, after conversion of the score to
MIDI.

Using synthesized music as a guide to separate sources
of a real recording has several advantages over using the
symbolic data or even trying to do blind separation. The
synthesized sound contains many of the characteristics of

the sound that we are actually trying to extract: it is tim-
brally very similar, and features like onset and time-frequency
envelope correspond pretty well to those of a recording. PLCA
allows us to insert this knowledge as prior distributions into
the decomposition algorithm, therefore immediately start-
ing with a good guess of the result from which we can op-
timize further. One difficulty that arises is that a recorded
piece of music will differ from the score in subtle ways.
Dynamic time warping provides a straightforward and easy-
to-use method to align a synthesized recording with a real
recording. The result is a practically usable system for source
separation of everyday music recordings, needing only a
digital score of the same piece as additional input.

In [8], voice input was used as guidance for PLCA. This
approach works well on small fragments of audio where
only the extraction of a few seconds of a single component
is necessary. On the downside, the extracted audio takes on
some of the timbral characteristics of the voice input. Also,
it is not very scalable: it would be really tedious to hum all
parts of all instruments of a recording separately, in order
to extract them. Our system is exactly meant to be used in
those large-scale cases. We need the score to synthesize the
sound that will guide the separation process. This process is
scalable to complete databases of audio recordings and their
corresponding scores.

2. PROBABILISTIC LATENT COMPONENT
ANALYSIS

The main component of the complete system, which per-
forms the source separation, is the PLCA algorithm [8]. It
is an iterative method which factors a magnitude or power
spectrogram into a sum of outer products of spectral and
temporal components - they can be interpreted as spectral
bases and their corresponding weights. PLCA interprets the
spectrogram as a histogram and the spectral and temporal
components as distributions along time and frequency (see
fig. 1), and uses the EM-algorithm to perform the decompo-
sition.

Groups of components which together capture the char-
acteristics of a single instrument, can be formed according
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Figure 1. PLCA

to prior distributions, and can be used to separate that par-
ticular instrument from the mix. As a side note, it has been
proven that PLCA in this 2-dimensional case is numerically
equivalent to Nonnegative Matrix Factorization [7]. The ad-
vantage of PLCA lies in the fact that it assumes a probabilis-
tic model, having parameters that can be adjusted intuitively
and easily.

A very detailed description of PLCA, its applications,
and some extensions and generalizations that we don’t use
here, can be found in [7]. We assume the magnitude spec-
trogram F of a recording to consist of M components. Each
of these has in this particular case a frequency distribution
and a time distribution, which we’ll represent as P( f |z) and
P(t|z) respectively. This makes for a 2-dimensional model.
The distribution of the components P(z) can be interpreted
as their weight in the total mix. The model represents the
spectrogram as

F =
M

∑
z=1

P(z)P( f |z)P(t|z) (1)

The vectors P( f |z) and P(t|z) are multinomial distribu-
tions, their conjugate prior distribution is a Dirichlet dis-
tribution. The prior distribution can be interpreted as an
”example” that we use to bias the results towards. It is de-
fined by a set of so-called hyperparameters, denoted here by
α( f |z) and α(t|z). An EM-algorithm can be used to learn
optimal P(z), P( f |z) and P(t|z) in such a way that the priors
are used as bias [8]. In the expectation step we update P(z)

as follows:

P(z| f , t) =
P(z)P( f |z)P(t|z)

∑z‘ P(z′)P( f |z′)P(t|z′)
(2)

In the maximization step, the priors α( f |z) and α(t|z)
are blended in using weight factors µz and κz. We calculate
updated values for P( f |z), P(t|z), and P(z):

P( f |z) =
∑t Ff ,tP(z| f , t)+κzα( f |z)

∑ f ′∑t Ff ′,tP(z| f ′, t)+κzα( f ′|z)
(3)

P(t|z) =
∑ f Ff ,tP(z| f , t)+ µzα(t|z)

∑ f ∑t ′ Ff ,t ′P(z| f , t ′)+ µzα(t ′|z)
(4)

P(z) =
∑ f ∑t Ff ,tP(z| f , t)

∑z′∑ f ∑t Ff ,tP(z′| f , t)
(5)

3. SOURCE SEPARATION

We modify and extend the approach used in [8] and use it
to extract all instruments from a polyphonic recording, by
synthesizing what we wish to extract. This has several ben-
efits compared to vocalization or otherwise mimicking the
sound:

• Using a good synth, a better timbral correspondence
with the target sound can be expected, thus allowing
for fewer iterations of the PLCA algorithm or being
more likely to converge to the optimal maximum.

• Transients in attack, release or temporal envelope are
better modeled.

• Starting from the score, we force the algorithm to do a
meaningful decomposition. From the score, we know
how many tones occur at approximately which time
and what frequency. By forcing the decomposition
process to explain these tones and nothing else, we
implicitly annotate the mix and the extracted sounds.
It can be used for all kinds of analysis of recordings
(error detection etc.)

For a large dataset to work with, we looked at the Mu-
topia database [6]. This database contains a few thousand
music scores in the lilypond format. It is straightforward to
generate MIDI data from a score, which in turn can be eas-
ily synthesized. It provides us with a ground truth for source
separation tasks.

The separation process itself is conducted as follows:

• Compute the spectrogram F of a recorded mix, and
the spectrograms F1 through FM of the synthesized in-
struments
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• Learn from every Fm a number of components Zm and
their corresponding P( f |zm) and P(t|zm), using stan-
dard PLCA.

• Initialize the prior-based PLCA algorithm with the
learned components for all active instruments, use it
to estimate a mixture model of F with ∑Zm compo-
nents.

• Each instrument m from the mix can now be resyn-
thesized by only using the optimized P(zm), P( f |zm)
and P(t|zm).

If necessary, extra components can be added to model
parts of the sound that are not present in the score, resulting
in a residual component. However, if we have all instru-
ments accounted for, not having residual components forces
the algorithm to assign as much spectral energy as possible
to the instrument components - a very useful property if the
recording is known to be relatively clear and correct. Parts
of instruments can be extracted by synthesizing only parts
of the score.

The complete process has been implemented in Matlab.
In the next section we’ll describe the first successful experi-
ment which appears to validate our approach. Audio results
can be reviewed online 1.

4. REAL-WORLD DATA

We work on a recording of J.S. Bach’s Air (BWV1068),
part of a suite for baroque orchestra, and in our recording
performed by 2 violins, viola and continuo, here a cello 2.
This is an inherently difficult piece to analyze, because of
the violins playing notes close together and very harmon-
ically related, and all instruments being string instruments
and thus timbrally related too. Nevertheless, the separation
succeeds and only really encounters troubles on moments
when instruments play unisono.

Figure 2. J.S. Bach, ”Air”, BWV1068

After synthesizing the complete score, it can be matched
and time stretched to the real recording using DTW and a
phase vocoder [1]. This way we obtain a one to one corre-
spondence between spectrogram frames of the score and of

1 https://ccrma.stanford.edu/˜jga/icmc2010/icmc2010.html

the recording. If this approach is used, care must be taken to
use settings for the vocoder that yield good quality results.
The same alignment data can be used to match and time
stretch the separately synthesized instruments that we wish
to extract. On this data, we can let the PLCA algorithm do
its work, first learning the parameters from the synthesized
recording, then using these parameters as priors for a PLCA
analysis of the real recording.

For long recordings, the spectrogram decomposition re-
quires a lot of time and memory. It is beneficial to chop
the recordings into smaller frames (a few seconds or even
less long), and perform the PLCA analysis on each of these
frames separately. This way, as the method tries to find op-
timal P( f |z) and P(t|z) over the portion of the spectrogram
under consideration, we get more accurate and locally valid
results when keeping that spectrogram’s size small in time.
On the downside, it is possible that this introduces hearable
inconsistencies on frame borders.

Each of these frames can be handled independently, and
we used frames of approximately 1 second long for the re-
sults that we present here. Other parameters used were: 25
components per instrument, 50 iterations of the PLCA al-
gorithm, an FFT size of 2048 and 75% overlap. The latter
overlap was necessary for the DTW and subsequent resizing
using a phase vocoder [1] to work correctly, and we kept it
for the PLCA algorithm. A binary mask was used on the
output of the algorithm as this improved the separation per-
formance. For resynthesis, we gather all components of the
source we want to resynthesize, make a spectrogram out of it
using to equation 1, and resynthesize that spectrogram. The
method works on magnitude spectrograms; for the phase we
copy the phase of the mix to each of the extracted sources.
The results can be seen in figure 3.

5. FUTURE WORK

Future work consists of, amongst other things, studying the
different parameters and how they influence the analysis,
and objectively evaluating the results using a framework like
BSS EVAL [3]. The latter was not possible yet during these
preliminary experiments since it requires access to the sep-
arate tracks of the real recording to compare the separation
results with the original, which we did not have available.
We may further investigate incorporating phase information
(here we only work on the magnitude spectrum), applying
sparsity constraints and further developments of the PLCA
model as described in [7], or using one separated recording
to separate another. Also, instead of stretching the spectrum
of the score to match the spectrum of the mix, we are likely
better off using an alignment method that directly matches
the score data to the mix, only then to synthesize the score.
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Figure 3. Extraction of an instrument from a mix, corresponding to approximately the first 3 beats of the second measure of
figure 2. On the x-axis are time frames, on the y-axis frequency bins, calculated using a 2048-point DFT with 75% overlap.

6. CONCLUSION

In this paper we have presented a robust and scalable method
for source separation using synthesized scores of the mu-
sic under consideration as prior input to guide the analy-
sis. The method can be used to extract single or multiple
instruments from a recording and resynthesize them sepa-
rately. The method does not require any human input, aside
from setting a few parameters, and is thus readily usable on
a large scale. The results are accurate and meaningful, and
the first experiments on real recordings were successful and
hold promise for the future .
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