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Abstract:

The visual interpretation of mathematical objects can
produce fascinating images. In the paper we discuss
several. possibilities for acoustical representations of
such objects. Topics discussed are the rhythm of primes,
the 0/1-sequence of m, MORSE-sequences, chaotic dynamic
systems, the method of simulated annealing in the
application to the generation of counterpoint and a new

method for sound generation: additive fractal synthesis.
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(1) Introduction

Visual representations of mathematical objects can
produce intriguing and beautiful patterns. A recent
example is given by the work of Benoit MANDELBROT on
fractals and the research group "Komplexe Dynamik" at
the university of Bremen ( "JULIA sets"). In our lecture
we address the problem of acoustical representations of
mathematical objects. We will listen to some of the

sounds produced by mathematical objects.

(2) variations on prime numbers.

The medium of music is time. Time is structured by the
creation of rhythm. Mathematically, a rhythm is given by
a strictly monotone sequence of natural numbers

23,808 . Here a specifies the attack time of
the n’th tone in a composition and a can be chosen as a
natural number once a basic uniform quantization of time

is agreed upon.

Uniform rhythms are specified by sequences whose first
order differences are periodic:

1 3 4 5 7 8 91112

port p et porr
What rhythm 1is generated by the sequence of prime
numbers :

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

[ A A A A A A A A A A A
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This is certainly not a completely regular rhythm, but
it reveals a remarkable amount of structure and
fascinating patterns if it is compared to a completely

random rhythm.

The rhythm is enforced if further percussive voices with
regular beats are added, for instance

2 4 6 810 12 14 16 18 20 22

3 6 912 15 18 21 24 27 30 33

5 10, 15 20 25 30 35 40 45 50 55 etc.
This structure illustrates the sieve of ERATHOSTENES,
where all multiples of the prime numbers already found

are weeded out in the natural number sequence.
Several other variations have been developed :

Prime number alternating walk with antiparallel voices,
Tonal phrases between maximal prime number distances

etc.

(3) The rhythm of n

An alternative and completely isomorph description of a

rhythmic structure 1is via the specification of an

infinite O-1-sequence s ,s,...,s,... , Wwhere s =1
1 2 n n

iff time point number n is attacked.

To the prime number sequence there corresponds the

0-1-sequence
01101010001010001010001...

Several other mathematical objects are most naturally

given as infinite O-1-sequences.
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The set of all such sequences can be made into a
topological space ( the so called shift space) by
imposing the shift topology wupon it. In this space
several "nearly periodic" sequences have been studied
which produce highly regular but nonperiodic rhythms.
Some examples are possible: Rhythms in shift space, The

MORSE sequence, An infinite waltz.

A simple way to create many interesting O-1-sequences is
to study the binary expansion of real numbers. Rational

fractions yield uniform rhythms:

1/3=010101010101010101
1/§=001100110011001100
1/7=001001001001001001
1»”/9=000111000111000111
1/11=000101110100010111

Aperiodic rhythms appear when one expands irrational
numbers, like m or e :
n = 11.0010010000111111011010101000100010000101. ..

(4) The sound of chaos
The compositio;s discussed above could be played on any
MIDI-controllable instrument. For the following
experiments, however, a somewhat more elaborate
equipment 1is  required, since sounds are directly
computed by a digital computer. We used an IBM/AT
together with an individually manufactured linear 16-bit
high resolution D/A-converter which is controlled from
an STSC/APL environment with some embedded assembler

functions.
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It is well known that the differential equation of the
undamped unforced linear oscillator:
vx(t) + (2nf)%k(t) = 0
has as golution a pure sinus wave of normalized
frequency f
x(t) = a sin(2nft-¢),
where amplitude a« and phase ¢ are determined by the

initial conditions x(0) and Vx(0).

By variation of the basic differential equation, more
complex wave forms can be obtained. A simple example is

given by the undamped unforced nonlinear oscillator

.sz(t) + (2nf)%sin(x(t)) = 0
which produces non-sinusoidal waveforms with constant
amplitude and period and spectral power at frequencies
w,3w,5w,..., where the frequency w depends on the given

initial conditions.

In recent years many scientists have studied the
phenomenon of chaotic motions in such differential
equations. The non-dimensionalized equation of an impact

oscillator can be written as
VPx(t) + (2C/9)Vx(t) + (1/4n9)x(t) = (1/9°)sin(2nft)

This is a forced oscillator which allows steady state
chaotic waveforms with approximate subharmonics,
depending on the parameters 7 and {. Steady state
trajectories are depicted in THOMSON and
STEWART(1986),p.318, where the behaviour of the system
is studied in detail.
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In general, every oscillator can be investigated by
obtaining the trajectory generated by the system from
given initial conditions via some stable numerical ’
integration routine. This gives a sequence of real
numbers, which can be converted to an audio signal with

the help of a D/A converter. !

Chaotic solutions tend to produce strange sounds with
some noiselike components or sounds which shift between
different waveforms in an irregular and unpredictable
fashion. Fascinating effects can be obtained by slow
parameter variations which move the system from one

attractor basin to another.

The use of such dynamic systems for sound synthesis,
fascinating as it might be, does not lead to predictable
results. We have, however, created an innovative
approach to sound generation which is based on a
different notion from the theory of fractals. The method
is called additive fractal synthesis. The fundamental
idea behind this method can be understood if one looks
at a tree. At least approximately, such a tree is
self-similar in the sense, that the whole of the tree
can be mapped by an affine contracting transformation to
its parts. Exactly the same approach can be used for the
synthesis of sounds. The examples to be presented at the
conference wWill be sounds that have, in our opinion, a
liveliness comparable to the sound of acoustical
instruments, but possess completely controllable looping

points.
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(5) The emergence of regular structures

Consider a liquid metal at high temperatures. If the
metal is slowly cooled, thermal mobility is gradually
lost and it is possible that the atoms are able to align
themselves in a perfect crystal that is completely
ordered over a distance up to billions of times the size
of an individual atom. There exists an algorithm by
METROPOLIS et.al.(1953) and others (see f.i. PRESS et
al. (1986)), which simulates this slow cooling process in

the optimization of combinatorial structures.

A composition can be regarded as a combinatorial
structure that possesses a certain energy for instance
defined as the number of violations of the rules given
by the strict theory of polyphonic counterpoint. This
energy can gradually be lowered with the goal to produce

a cristalline structure with given pr'oper'tiés.

Several examples can be presented: Four voices chasing

one another, The emergence of counterpoint from noise.
(6) An open mathematical problem

A paper on mathematics would not be complete without an
unsolved mathematical problem. Legend has it that the
solution was in the possession of the pythagoreans. We

do, certalinly, not know a proof today.

Consider the sequence of all those numbers which have
merely the first three prime numbers 2,3,5 in their
prime factorization. The sequence begins as follows:
1234568891012 15 16 18 20 24 25 27 30 32
36 40 45 48 50 54 60 64 72 75 80 81 90 96 1GO ...
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Call two numbers in this sequence adjacent, if the two
numbers differ only by 1. The ten pairs (1,2), (2,3},
(3,4), (4,5), (5,8), (8,9), (8,10), (15,18), (24,25),
(80,81) correspond to the basic musical intervals from
octave to diatonic comma. By computer, we have developed
the sequence up to 1012. No further pair of adjacent
numbers has been found. The problem is to prove, that

indeed (80,81) is the last pair of adjacent numbers.
(7) The sound of a mathematician

A totally different interpretation of this paper’s title
is as follows: since mathematics is produced by mere
mortal brains, we <can try and listen to an
encephalographic signal, which is a recording of the
brain waves from both hemispheres of a mathematician.
The signal has been recorded during a REM-phase and we
hope that our mathematician was subconciously doing some

great mathematics while dreaming.

We transposed the signal through 7 octaves into the
audible range and applied a few natural transformations
in order to produce an eight channel raumklang. It has
been used as sound of a firestorm in recent stage
performances of Henrik Ibsens "Gespenster”" at the
Schauspielhaus in Duesseldorf. In a sense, however, this

is the true sound of mathematics.
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