
PROCESSING SOUND AND MUSIC DESCRIPTION DATA USING
OPENMUSIC

Jean Bresson, Carlos Agon

IRCAM – CNRS UMR STMS
Paris, France

{bresson,agon}@ircam.fr

ABSTRACT

This paper deals with the processing and manipulation of
music and sound description data using functional programs
in the OpenMusic visual programming environment. We go
through several general features and present some toolkits
created in this environment for the manipulation of different
data formats (audio, MIDI, SDIF).

1. INTRODUCTION

Musical information processing often requires manipulating
large musical or sound description data bases. Ordering,
sorting, renaming files, automatic indexing, contents brows-
ing or transformations are basic operations in compositional,
analytical, or other experimental applications.

Visual music programming environments make it possi-
ble to define specialized and personalized programs and to
adapt such sound or music description processing to specific
aims in their respective domains. Real-time music/sound
processing environments such as Max/MSP or PureData [5]
are commonly used for this purpose. They provide conve-
nient interactive features and efficient realtime buffering and
rendering of audio or other music description data.

In this paper, we try to show how similar applications
can be performed in OpenMusic (OM) [1] emphasizing some
related features and specificities of this computer-aided
composition environment. OM provides a set of predefined
structures allowing to perform complex iterative processes
on musical data in a visual and symbolic context. Special-
ized toolkits allow to perform these processes with music
description data using standard formats.

2. OM: A VISUAL PROGRAMMING LANGUAGE

OpenMusic (OM) is a visual programming environment
based on the Common Lisp language. Programs are created
in patch editors, where the user/programmer assembles and
connects functional units represented by boxes. Basically,
OM boxes are function calls (Lisp functions or user-defined
functions), and the OM patches are more or less complex

graphs corresponding to functional expressions. The lan-
guage provides a set of graphical control structures, such as
iterations and conditional controls, as well as the possibility
to carry out other programming concepts like abstraction,
higher-order functions or recursion [4].

OM includes specialized functions and data structures
designed for musical applications. The different musical or
extra-musical objects are represented by classes (as meant
by object-oriented programming) and used in the visual
programs by means of factory boxes, i.e. boxes generating
instances of these classes and allowing to access their dif-
ferent attributes (called slots).

Compared to most existing visual programming envi-
ronments, OM has the particularity to run a demand-driven
execution model. In this model, the user triggers execution
by evaluating a box somewhere in the visual program graph,
which recursively evaluates the upstream connected boxes
and returns a value. This model is very close (semanti-
cally equivalent) to the evaluation of functional expressions
in Lisp. It also provides time-independent conception of
programs and proved to be a relevant model for formal
music composition and generation of complex and struc-
tured musical data.

3. FUNCTIONAL BATCH PROCESSING IN OM

In order to introduce our subject and emphasize some
possibilities provided by this environment, we present an
example of how OM visual programming can be used for
the design of automated audio file analysis and processing.

Let us first consider the case of a single sound file to be
processed. Figure 1 shows an OM patch performing suc-
cessive operations using sound analysis tools available in
OM [2]: 1) Analysis of the sound (sound object, top of the
figure) with a fundamental frequency estimation (external
call to the sound analysis kernel pm2). 2) Storage of the
analysis results as a temporary SDIF file (SDIFFile object).
3) Extraction of the frequency estimation data (“1FQ0”) from
the SDIF file. 4) Determination of a pitch value (e.g. in this
example, the mean of all estimated frequency values – 186
Hz). 5) Conversion of the pitch value (frequency in Hz) to

546



Figure 1. Example of sound file processing in OM: copy
and rename a sound file after its inner estimated pitch. This
patch will be referred as auto-rename in the next figures.

a symbolic (MIDI) value (5410 midicents in the example,
i.e. F#2 + 10 midicents) and then to a textual name (e.g.
“F#2+10”). 6) Renaming and saving the sound file after the
estimated note value (e.g. “∼/mysoundfiles/ F#2+10.aiff”).

Visual programs such as the one in Figure 1 can be
embedded in abstractions, i.e. autonomous procedures or
functional elements usable in other programs, where they
communicate by argument passing through some inputs and
outputs. These abstractions are represented by “patch” boxes,
that is, they are patches used as functions in higher-level
patches.

Various batch processing can be derived from our exam-
ple procedure. In Figure 2, it is applied successively to a list
of files contained in a given directory. The program from
Figure 1 is now embedded as an abstraction in a patch box,
which has one input corresponding to the sound to be ana-
lyzed and saved with the appropriate name. This patch box
is used in association with the mapcar box, a Lisp function
applying another function to the successive elements of a
list. The function om-directory returns the list of all the files
present in a given directory. The mapcar call will therefore
trigger the analysis and renaming of each one of these files.

Figure 2. Applying the procedure to the files in a directory.

The process in Figure 2 is known as higher-order pro-
gramming: by setting the auto-rename box to a specific
mode (‘lambda’ – see little λ icon on the patch box), its con-
tent is compiled and returned as a function (lexical
closure) to the mapcar box: mapcar is a higher-order
function accepting functions as parameters. It is therefore
possible to perform the same iterative process with other
functions or patches, by simply connecting them instead of
the current one.

Other extensions can be implemented: We could now
suppose that our initial sounds are melodic sounds, which
should first be segmented in “notes” and then processed as
previously. This can be done with preliminary transient
detection and segmentation of the initial sound file (also
available in OM), and creating other iterations where each
segment wound be subjected to pitch analysis. The omloop
(a patch, i.e. a visual program or abstraction, with spe-
cific features adapted to the creation of iterative processes—
equivalent to the Lisp loop statement) would be for instance
an appropriate tool for this purpose. Further on, this new
process could also be embedded in a directory iteration, like
in Figure 2. The resulting visual program would then build
a sound bank of single pitch samples out of a melodic sound
directory.

4. ENHANCING INTERACTION

In order to enhance the interaction over the visual program
design and execution, a set of special boxes (called dialog-
item boxes) have been created, which correspond to standard
user interface dialog-items connected to the boxes and com-
ponents of the OM patches. The dialog-item boxes include
simple text input and display, check boxes, buttons, pop-up
menus, multiple-choice lists, sliders, etc. (see Figure 3).

547



Figure 3. Example of use of some dialog-item boxes in
OM patches: pop-up-menu (top—used to select a file among
the contents of a directory), check-box (middle), button
(bottom—triggers the evaluation of the sound box and the
global visual program execution).

5. STANDARD FORMATS TOOLKITS

In the next sections we describe specialized toolkits
dedicated to the manipulation of musical data using standard
formats, and how they can be used for devising processing
algorithms on this data.

5.1. MIDI

Although several new formats tend to propose more
complete representations, MIDI is still one of the most wide-
spread platform for the interchange and storage of
“symbolic” musical data. A significant amount of informa-
tion can be stored in MIDI files or transferred through MIDI
streams, such as program changes, continuous controllers,
tempo, textual data, and so forth.

In OM, MIDI data can be manipulated thanks to a com-
plete toolkit of classes and specialized functions, allowing
users to personalize its processing and transfers in parti-
cular situations. The primitive in this toolkit is the class
MidiEvent, whose slots represent the type, date, channels
and values of a MIDI event. An instance of this class con-
stitutes a symbolic object which can be represented in OM
patches and take part to processing algorithms. Starting
from this primitive object, other classes have been defined,
representing more complex and structured data such as event
sequences, continuous controllers, etc.

A number of OM functions allow to process and convert
musical objects and MIDI structures. Eventually the MIDI
events sequences can also be stored and saved as MIDI files.
Wide ranges of algorithms for the processing and generation
of complex MIDI event sequences can therefore be imple-
mented graphically and interactively, using all the available
features of the visual programming language.

The function get-midievents, for instance, receives an
object (e.g. a MIDI file, one of the aforementioned MIDI
classes, or traditional musical objects like chords, voices,
etc.) and returns a list of MIDI events (instances of the class
MIDIEvent) corresponding to this object or to its closest
description using MIDI events. The higher-order program-
ming features can be used here again and allow for a
personalized processing: An optional input parameter of
get-midievents allows one to specify a function designed to
process MIDIEvents and determine whether they should be
considered or not in the conversion or transfer. That is, the
behaviour of get-midievents can be let as default or special-
ized by the user. A set of predefined filtering functions are
provided, e.g. test-date, test-type, test-channel etc., which
will allow to select events in a given time interval or, respec-
tively, of a given type or a given channel, but more complex
filtering processes can be defined by the user as well (in Lisp
or as visual programs—see Figure 4).

Figure 4. Filtering MIDI events by user-defined process.
The patch midi-event-filter is used as the test function for
get-midievents.

5.2. SDIF

SDIF is a standard data format for the codification, storage
and transfer of sound descriptions. This format is currently
used by an increasing number of composition and sound
processing tools and software for varied purposes and data
types [6]. An SDIF file basically describes the evolution
of data sets of predefined or user-defined types, stored as
matrices and embedded in time-tagged frames.

548



SDIF is also supported in OM and is used to commu-
nicate sound description data with external sound analysis
and synthesis tools (see for instance the SDIFFile box in
Figure 1). It also helps unifying the codification and mani-
pulation of the various possible types of such descriptions
inside the environment [3]. Various tools allow to inspect,
extract and manipulate the contents of an SDIF file in OM
visual programs.

A set of classes have been added to the OM library to
represent the components of a sound description in this
format: The classes SDIFBuffer, SDIFStream, SDIFFrame
and SDIFMatrix allow to reconstitute the hierarchical struc-
ture of the SDIF data; and the SDIFType object stands for
a data type definition to be declared. In Figure 5 a set of
data generated in OM is processed and formatted as SDIF
matrices, then stored in a file.

Figure 5. Generating SDIF data in OM: Three new types are
declared (a), then frames (b) and matrices (c) of these types
are created and collected to constitute the frame stream (d).

6. CONCLUSION

The particular programming paradigm, execution model and
other specificities of the OM environment, such as iterative
processes or higher-order functions, may lead to original
ways of thinking and designing music description
data analysis, manipulation or generation processes.

Complementarily to automatic conversions between low-
level description data and the high-level musical ones, the
visual programming tools presented in this paper enable deal-
ing with this low-level description data in OM visual
programs. Even though, the environment provides sym-
bolical representations of the related processes and allow
to maintain intuitive and high-level control. Moreover, this
integration with computer-aided composition ensures the
possibility to connect the different data sets generated or
manipulated in these processes to symbolic musical data
such as chords, sequences or rhythmic structures.

Even if OM is principally dedicated to music composi-
tion, some collaborations in other contexts, such as musico-
logy or experimental data analysis, gave us the opportunity
to experiment the use of these tools for extra-compositional
purposes in different situations where automatic analysis,
processing and/or formatting of music or sound file databases
were needed.

This approach could be extended to other data formats
and standard protocols as well. For real-time interaction,
for instance, the class OSCEvent already allows to build,
process and send OSC formatted data [7] in OM. However,
concrete and real-size applications of OSC messages cre-
ation and scheduling in OM visual programs remain to be
found and developed.

7. REFERENCES

[1] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer Assisted Composition at Ir-
cam: From PatchWork to OpenMusic,” Computer Mu-
sic Journal, vol. 23, no. 3, 1999.

[2] J. Bresson, “Sound Processing in OpenMusic,” in Proc.
Int. Conf. on Digital Audio Effects, Montréal, 2006.

[3] J. Bresson and C. Agon, “SDIF Sound Description Data
Representation and Manipulation in Computer Assisted
Composition,” in Proc. International Computer Music
Conference, Miami, 2004.

[4] J. Bresson, C. Agon, and G. Assayag, “Visual
Lisp/CLOS Programming in OpenMusic,” Higher-
Order and Symbolic Computation, vol. 22, no. 1, 2009.

[5] M. Puckette, “Combining Event and Signal in the MAX
Graphical Programming Environment,” Computer Mu-
sic Journal, vol. 15, no. 3, 1991.

[6] D. Schwartz and M. Wright, “Extensions and Applica-
tions of the SDIF Sound Description Interchange For-
mat,” in Proc. International Computer Music Confer-
ence, Berlin, 2000.

[7] M. Wright, “Open Sound Control: an enabling technol-
ogy for musical networking,” Organised Sound, vol. 10,
no. 3, 2005.

549




