
PETROL: REACTIVE PATTERN LANGUAGE FOR IMPROVISED MUSIC

Alex McLean, Geraint Wiggins

Intelligent Sound and Music Systems
Department of Computing

Goldsmiths, University of London

ABSTRACT

Humans infer patterns from musical sequences, perceiv-
ing them as repeated themes or processes of transformation.
Computational means of representing and transforming pat-
terns are reviewed, motivating the introduction of Petrol,
a new live coding environment including pattern language
embedded in the Haskell programming language. Petrol
represents patterns as functions over time, and provides a
combinator library for constructing and transforming those
patterns, designed for use during live coded music perfor-
mance.

1. INTRODUCTION

A pattern is a theme of events repeating in a predictable
manner. Humans predict forthcoming events in a patterned
stream by inferring a process by which previous events may
have been generated. It follows that the essence of a pat-
tern is not a particular sequence, but the underlying process
we infer from the sequence. This process then grounds our
perception of further development of the sequence. Many
approaches to the composition and improvisation of music
are concerned with the processes of pattern, which motivates
representation of pattern in computer music.

The desire to capture musical patterns with machines
goes back to well before digital computers. For example,
Leonardo da Vinci invented a hurdy gurdy with movable
pegs to encode a pattern, and multiple adjustable reeds which
transformed the pattern into a canon [12]. Patterns may
however be applied to any musical dimension; not just of
pitch but also of time, of one of the dimensions of timbre, or
indeed across several such dimensions, interacting or run-
ning in parallel. In this paper we are concerned with the de-
scription of such musical patterns with computer languages,
primarily in the context of live coding [3, 14] where com-
puter language serves as a human environment for the live
patterning of improvised music. Many of the issues cov-
ered are potentially of general interest to the field of com-
puter music; computational approaches to music analysis,
indexing and composition all have focus on discrete musi-
cal events and the pattern rules to which they conform [10,

§4.2]. To take best advantage of the present medium, exam-
ples are shown in the visual form of colour patterning.

2. PATTERN LANGUAGE

The term pattern language was coined in the field of ur-
ban design by Christopher Alexander [1]. Inspiration has
been gained from this work across disciplines, but while in-
sightful analogies between architecture and music have been
drawn by artists, Alexander’s architectural focus on prob-
lems and solutions does not lend itself easily to music. We
could perhaps align Alexander’s problem forces with those
of musical expectation, but that would lead us too far into is-
sues of human perception, outside of the scope of the present
paper. The music languages discussed here provide building
blocks for the construction and transformation of pattern, ar-
rived at through analysis and introspection, but do not come
with prescription for where, or even less why these might be
used, at least not here.

A need for music pattern language was identified by
Laurie Spiegel in her 1981 paper “Manipulations of Musical
Patterns” [11]. Twelve pattern transformations, taken from
Spiegel’s own introspection as a composer are detailed:
transposition (translation by value), reversal (value inver-
sion or time reversal), rotation (cycle time phase), phase
offset (relative rotation, e.g. a canon), rescaling (of time or
value), interpolation (adding midpoints and ornamentation),
extrapolation (continuation), fragmentation (breaking up of
an established pattern), substitution (against expectation),
combination (by value – mixing/counterpoint/harmony), se-
quencing (by time – editing) and repetition. Spiegel felt
these to be ‘tried and true’ basic operations, which should
be included in computer music editors alongside insert,
delete and search-and-replace. Further, Spiegel proposed
that studying these transformations could aid our under-
standing of the temporal forms shared by music and experi-
mental film, including human perception of them.

Pattern transformations are evident in Spiegel’s own
Music Mouse software, and can also be seen in modern
commercial sequencer software such as Roland Cubase and
Apple Logic Studio. However Spiegel is a strong advocate
for the role of the musician programmer, and hoped these
pattern transformations would be formalised into program-

331

ming libraries. Such libraries have indeed emerged follow-
ing Spiegel’s early vision. For example, the Scheme based
Common Music environment, developed from 1989, in-
cludes a well developed object oriented pattern library [13].
Classes are provided for pattern transformations such as per-
mutation, rotation and random selection, and pattern gener-
ation such as Markov models, state transition and rewrite
rules. The SuperCollider language [7] also comes with a
well developed pattern library, benefiting from an active free
software development community.

The pattern languages within both Common Music and
SuperCollider represent processes well explored in algorith-
mic composition, and programmers may integrate their own
pattern operations. It is generally helpful to have these al-
gorithms together in a coherent library, but the primary mo-
tivation for a pattern library is provision for composition of
patterns. In both cases, patterns may be composed of numer-
ous sub-patterns in a variety of ways and to arbitrary depth,
to produce complex wholes from simple parts.

The representation of pattern streams used in both Com-
mon Music and SuperCollider are equivalent to lazy lists [6],
with sequential access and delayed evaluation allowing ef-
ficient representation of long, perhaps infinite lists. This al-
lows the representation of cyclic, fractal or pseudo-random
patterns. In Haskell, lists are lazily evaluated by default, and
so we could represent a pattern as follows:

type Pattern a = [[a]]

This declares a pattern to be a two dimensional list of
any type a. The list is two dimensional to allow multiple
values for each time element – polyphony. However a draw-
back in this representation, is that patterns must be accessed
sequentially – you cannot directly request the 1000th value
without first evaluating the first 999. This presents a prob-
lem for live coders, who may wish to replace a pattern with
a new one, but continue at the position they left off. The
same problem exists in Common Music and SuperCollider,
although in the latter live coding is made possible using Pat-
ternProxys [9]. PatternProxys act as placeholders within a
pattern, allowing a programmer to define sub-patterns which
may be modified later.

3. PETROL

The Petrol pattern language is a library for the dialect of the
Haskell programming language implemented by the Glas-
gow Haskell Compiler (GHC). Haskell is a purely functional
programming language based on the lambda calculus, but
with monadic modelling of ‘real world’ computation such
as I/O side effects. The Petrol library is a domain specfic
language embedded in Haskell, defining the Pattern type
as a Applicative Functor instance and providing a suite of
functions for constructing and transforming patterns. The
Petrol environment is a complete live coding environment

including a scheduler for combining patterns into OSC mes-
sages, time synchronisation between processes via netclock
(http://netclock.slab.org/) and integration with
the emacs editor. This paper however focusses on Petrol’s
provision for representation and combination of patterns.

Rather than representing patterns as lists of lists, as
shown in the previous section, Petrol uses the following:

data Pattern a =
Pattern {at :: Int → [a], period :: Int}

This is a datatype with two parameters. The first, given
the fieldname at, is Int →[a], a function from integers to
lists. This acts as a function from a discrete time point to val-
ues co-occurring at that point; a temporal lookup function.
The second parameter is the integer period of the pattern;
the point at which the pattern repeats. The assumption of a
finite period makes Petrol only suitable for cyclic patterns.

Patterns may be constructed and accessed as follows:

p = Pattern {at n = (n % 4) ∗ 2, period = 4}
l = map (at p) [0 .. 16]

Where l would evaluate to the list:

[0, 2, 4, 6, 0, 2, 4, 6]

This representation of patterns as functions over time is
strongly related to Functional Reactive Programming (FRP)
[4]. FRP generally treats time as continuous, allowing be-
haviour to be described with a declarative function with ar-
bitrarily high time resolution. Continuous time, represented
as a floating point number, would make a great deal of
sense if we were representing music on the physical signal
level. However, patterns exist on a higher perceptual level
of scored events, and so in Petrol time is instead represented
using integers. This does not however rule out expressive
manipulation of time, as we will see in §4.

3.1. Constructing patterns

A pattern may be specified as a string, made possible
through a string overloading extension to GHC. The pattern
type is inferred from the context, and the string parsed ac-
cordingly. For example the draw function requires a colour
pattern, parsed into type Pattern ColourD, and renders a
diagram visualising the pattern:

draw "black blue lightgrey"

The draw and similar convenience functions are used to vi-
sualise the output of patterns through the remainder of this
section. Syntax for specifying polymetric patterns is pro-
vided by Petrol, where co-occurring events are visualised
here as vertically stacked colours. Sub-patterns with differ-
ent periods may be combined in two straightforward ways,
by repetition and by padding. In both cases the result is a

332

http://netclock.slab.org/

combined pattern with period of the lowest common multi-
ple of that of the constituent patterns.

Combining patterns by repetition is straightforward, and
denoted by square brackets, where constituent parts are sep-
arated by commas:

draw "[black blue green, orange red]"

Combining by padding each part with rests is denoted curly
brackets, and inspired by the Bol Processor [2]. In this ex-
ample the first part is padded with one rest every step, and
the second with two rests:

draw "{black blue green, orange red}"

Polymetries may be embedded to any depth (note the use of
a tilde to denote a rest):

draw "[{black ∼ grey, orange}, red green]"

There are other ways of constructing patterns, for example
the sine1 function produces a sine cycle of floating point
numbers with a given period, here rendered as grey values
with the drawGray function:

drawGray $ sine1 16

3.2. Pattern transformation

When the underlying pattern representation is a list, a pat-
tern transformer must operate directly on sequences of
events. For example, we might rotate a pattern one step
forward by popping from the end of the list, and un-
shifting/consing the result to the head of the list. In Petrol,
because a pattern is a function from time to events, a trans-
former may manipulate time values as well as events. Ac-
cordingly the Petrol function rotL for rotating a pattern to
the left is defined as:

rotL p n = Pattern (λt → at p (t + n)) (period p)

Rotating to the right is simply defined as the inverse:

rotR p n = rotL p (0 - n)

We won’t go into the implementation details of all the
pattern transformers here, suffice to say that they are all im-
plemented as composable behaviours. The reader may refer
to the source code for further details.

The every function allows transformations to only be
applied every n cycles. For example, to rotate a pattern by a
single step every third repetition:

draw $ every 3 (‘rotR‘ 1) "black grey red"

The Pattern type is defined as an Applicative Functor, al-
lowing a function to be applied to every element of a pattern
using the <$> functor map operator. For example, we may
add some blue to a whole pattern by mapping the blend

function (from the Haskell Colour library) over its elements:

draw $ blend 0.5 blue <$> p
where p = every 3 (‘rotR‘ 1) "black grey red"

We can also apply the functor map conditionally, for exam-
ple to transpose every third cycle:

drawGray $ every 3 ((+ 0.6) <$>) "0.2 0.3 0 0.4"

The Haskell Applicative Functor syntax also allows a new
pattern to be composed by applying a function to combina-
tions of values from other patterns. For example, the follow-
ing gives a polyrhythmic lightening and darkening effect, by
blending values from two patterns:

draw $
(blend 0.5) <$> "red blue" <∗> "white white black"

The Petrol onsets function filters out elements that do not
begin a phrase. Here we manipulate the onsets of a pattern
(blending them with red), before combining them back with
the original pattern.

draw $ combine [blend 0.5 red <$> onsets p, p]
where p = "blue orange ∼ ∼ [green, pink] red ∼"

The onsets function is particularly useful in cross-domain
patterning, for example taking a pattern of notes and accen-
tuating phrase onsets by making a time offset and/or velocity
pattern from it.

4. MUSICAL APPLICATION

The colour pattern examples in the previous section should
have given an impression of Petrol usage, however we must
now turn the discussion back to music. In improvised music
performance, Petrol patterns are used to control a variety of
parameters.

A central time server controls tempo across multiple in-
stances of Petrol, controllable via a bpm pattern. For exam-
ple the following decreases the tempo from 120 to 60 bpm
over each 16 beat cycle:

bpm $ tween 120 60 16

Besides controlling bpm, patterns are used to send Open
Sound Control (OSC) messages [5] to synthesisers. A pat-
tern may be defined and redefined for each synthesiser pa-
rameter while the music plays. A pattern offset specifies

333

a time offset to be added to OSC timestamps. This allows
OSC events to be scheduled in the future, or notionally in
the past, at least within the system-wide latency (defaulted
to 0.2 seconds). For example, the following adds a sub-
tle shuffling forwards and backwards by up to 0.04 seconds
over a 24 beat cycle, combined with a steady beat (the "0").

bpm $ combine ["0", (∗ 0.04) <$> sine 24]

The synthesisers currently controlled in Petrol perfor-
mances are the datadirt wavetable synthesiser by the first
author (http://yaxu.org/datadirt/), and nekobee
(http://www.nekosynth.co.uk/), an emulator for
the Roland TB-303 Bassline synthesiser. Many parameters
may be controlled, including sample name, vowel formant
filter, playback acceleration, waveshape, pan, combfilter,
cutoff and resonance parameters for datadirt, along with the
parameters for the TB-303 emulator. Simple patterns giving
effects obvious to a listener are quick to specify, before be-
ing developed further, leading the listener into complexity.
As a trivial example, to apply an oscillation to bassline note
duration (thereby interfering with the TB-303 glide) we may
quickly apply the following:

duration303 $ sine1 16

And then start building in some complexity:

duration303 $ (∗) <$> sine1 16 <∗> sine1 12

Screencasts demonstrating Petrol are available online to-
gether with sourcecode for the whole system under the GNU
Public License, at http://yaxu.org/petrol/.

5. CONCLUSION

Through terse, expressive syntax, Petrol allows fast appli-
cation of patterns across many parameters, allowing rich
musical texture to be built and manipulated during live per-
formance. Petrol has already been successfully used before
large audiences including club venues by the first author,
and our particular approach of treating pattern as manipula-
tion of behaviour has proved rewarding. However some de-
sires have come to light through its use; these include OSC
message structure easily configurable, more easily trans-
forming OSC parameters together, allowing representation
of non-cyclic patterns and finding alternative approaches to
combining patterns. An extensive rewrite addressing these
points, with the working title of Tidal is nearing completion,
and will be detailed in future work. Further, research into vi-
sual representation of code is ongoing [8], towards develop-
ing a visual interface for pattern transformation based upon
this research.

6. REFERENCES

[1] C. Alexander, S. Ishikawa, and M. Silverstein, A
Pattern Language: Towns, Buildings, Construction,
1st ed. Oxford University Press, August 1977.

[2] B. Bel, “Rationalizing musical time: syntactic and
symbolic-numeric approaches,” in The Ratio Book,
C. Barlow, Ed. Feedback Studio, 2001, pp. 86–101.

[3] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 03, pp. 321–330, 2003.

[4] C. Elliott, “Push-pull functional reactive program-
ming,” in Haskell Symposium, 2009.

[5] A. Freed and A. Schmeder, “Features and future of
open sound control version 1.1 for nime,” in NIME,
2009.

[6] P. Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Comput.
Surv., vol. 21, no. 3, pp. 359–411, September 1989.

[7] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[8] A. McLean, D. Griffiths, N. Collins, and G. Wiggins,
“Visualisation of live code,” in Electronic Visualisa-
tion and the Arts London 2010, 2010.

[9] J. Rohrhuber, A. de Campo, and R. Wieser, “Algo-
rithms today: Notes on language design for just in
time programming,” in Proceedings of the 2005 Inter-
national Computer Music Conference, 2005.

[10] R. Rowe, Machine Musicianship. The MIT Press,
March 2001.

[11] L. Spiegel, “Manipulations of musical patterns,” in
Proceedings of the Symposium on Small Computers
and the Arts, 1981, pp. 19–22.

[12] ——, “A short history of intelligent instruments,”
Computer Music Journal, vol. 11, no. 3, 1987.

[13] H. K. Taube, Notes from the Metalevel: Introduction to
Algorithmic Music Composition. Lisse, The Nether-
lands: Swets & Zeitlinger, 2004.

[14] A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,
D. Griffiths, N. Collins, and A. Alexander, “Live algo-
rithm programming and a temporary organisation for
its promotion,” in read me — Software Art and Cul-
tures, O. Goriunova and A. Shulgin, Eds., 2004.

334

http://yaxu.org/datadirt/
http://www.nekosynth.co.uk/
http://yaxu.org/petrol/

