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ABSTRACT

The physical modeling of complex sound generators would
be feasible if approached by individually synthesizing and
discretizing the objects that contribute to the generation of
sounds. This raises the problem of show to correctly im-
plement the interaction between these objects. In this paper
we show how to synthesize sounds in an object-based fash-
ion, i.e. by building objects individually synthesized and
making them interact with each other through the modeling
of a potential interaction topology. We will also show how
this interaction topology can be made dynamical and time
varying.

1. INTRODUCTION

The physical synthesis of sounds [1, 2] consists of modeling
the vibrational phenomena that occur in a complex resonat-
ing structure, which can be made of a number of simpler res-
onators connected together. The vibrational phenomena are
normally caused and, possibly, sustained by the interaction
with other structures. This way of looking at physical model
synthesis suggests an object-based approach to the model-
ing of sounds, which requires a strategy that allows us to
manage all possible interactions between individually syn-
thesized objects, by planning and implementing the inter-
action topology and solving all possible computability and
stability problems beforehand.

One major difficulty in this approach, however arises
when we need to connect together two discrete-time mod-
els, each of which exhibits an instantaneous connection be-
tween input and output. In fact, the direct interconnection
of the two systems would give rise to a delay-free loop (an
implicit equation) in their implementation algorithm. This
problem usually occurs when we try to connect together two
individually discretized systems without taking into account
any global interconnection constraint. Inserting a delay ele-
ment in the non-computable loops (i.e. deciding an artificial
ordering in the involved operations) or solving the relative
implicit equation involves a certain cost or risk in the final
digital implementation, especially when discontinuous non-
linearities are present in the model. In fact, too simple a

solution will tend to modify the system’s behavior and, of-
ten time, to cause severe instability. Conversely, a more so-
phisticated iterative solution will dramatically increase the
computational cost, as an implicit equation will have to be
solved at each time instance. As a matter of fact, it would
be highly desirable for a block-based synthesis strategy to
be able to preserve the stability properties of the analog ref-
erence system. In fact, this would allow us to select a sam-
pling frequency that is only related to the involved signal
bandwidths, rather than to the adopted discretization strat-
egy. In other words, we would like to keep the oversampling
factor (of the temporal discretization) as low as possible,
without giving up the physicality or the behavioral plausi-
bility of the system. Unlike what it may seem, this problem
is, in fact, quite critical when highly nonlinear elements are
involved in the model implementation, which is our case
not just because systems may be intrinsically nonlinear, but
because contact conditions are modeled by step functions.

2. WAVE DIGITAL STRUCTURES

A physical structure (mechanical or fluidodynamical) can
be described by an electrical equivalent circuit made of lum-
ped or distributed elements. The equivalence can be estab-
lished in a rather arbitrary fashion as a physical model is
always characterized by a pair of extensive-intensive vari-
ables (e.g. voltage-current, force-velocity, pressure-flow,
etc.), and reciprocity principles can always be invoked. For
example, if we wanted to model the hammer-string interac-
tion in a piano we could first select a simplified model of the
actual piano mechanism, and then adopt an electrical equiv-
alent of it, as shown in Fig. 1. In this case the equivalence
is established by having forces and velocities correspond to
voltages and currents, respectively.

Using the electrical equivalent of the sound-production
mechanism provides us with a standard representation of
physical models. However, this representation cannot be
digitally implemented using a local approach, as a direct
interconnection of individually discretized elements would
give rise to problems of computability. This is to be at-
tributed to the fact that, when using extensive-intensive (vol-
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Fig. 1. Construction of the electrical equivalent of a piano
model. When the hammer is in contact with the string, the
velocities of hammer and string are the same at the contact
point, therefore the contact junction is a series junction (cur-
rent corresponds to velocity, voltage corresponds to force).

tage-current) pairs of variables, a direct interconnection of
the blocks will not account for global constraints such as
Kirchhoff laws. One way to overcome this difficulty is to
describe the system by means of scattering parameters. This
allows us to exploit the concept of adaptation in order to
avoid computability problems. A well-known “local” method
for designing filters after linear circuits, which is based on
this approach, is that of Wave Digital Filters (WDF’s) [3].
The method consists of adopting a different pair of “wave”
variables a = v + Ri and b = v � Ri for each element of
the circuit, R being a free parameter called “reference re-
sistance”. This corresponds to a linear change of reference
frame, from a (v; i) pair to an (a; b) pair, performed with
a linear transformation with one degree of freedom (refer-
ence resistance R). The global constraints (Kirchhoff laws)
are modeled in the interconnection phase, using multi-port
series and parallel adaptors, which also account for all the
changes in the reference frames from point to point. The de-
gree of freedom in the specification of the reference frame
can be exploited to satisfy an adaptation condition on one
of the ports of each adaptor. An adapted port, in fact, will
not exhibit a local instantaneous wave reflection, thus guar-
anteeing that no computability problems will take place.

One key aspect of WDF’s is the fact that they preserve
many properties of the analog filters that are used as a ref-
erence, such as passivity and losslessness [3]. Because of
that, in the past few years we witnessed renewed interest in
WDF’s as the research in musical acoustics started to turn
toward synthesis through physical modeling. This interest
in WDF’s is also due to the popularity gained in the past
few years by Digital WaveGuides (DWG’s) [8], which are

close relatives of WDF’s. Such structures, in fact, are suit-
able for modeling resonating structures in a rather versatile
and simple fashion.

The similarity between DWG’s and WDF’s is not in-
cidental, as the former represent the distributed-parameter
counterpart of WDF’s. In fact, they both use (incident and
reflected) waves and scattering junctions. Thanks to such
similarities, WDF’s and DWG’s turn out to be fully compat-
ible with each other. However, while DWG’s waves are de-
fined with reference to a physical choice of wave parameters
such as propagation velocity and characteristic impedance,
the reference parameters for WDF’s waves represents a de-
gree of freedom to be used to avoid computability problems.

It is quite clear that hybrid WDF/DWG structures seem
to offer a flexible solution to the problem of sound synthesis
through physical modeling. One should keep in mind, how-
ever, that both the classical WDF theory and the DWG the-
ory are inherently linear, which raises the problem of how to
incorporate nonlinearities into a generic Wave Digital (WD)
structure, as they are predominant in musical acoustics.

Nonlinear elements can be quite easily incorporated in
WDF structures by exploiting that one degree of freedom
that WDF structures have in the combination of reference
resistances. In fact, this allows us to adapt the port where the
nonlinear element needs to be connected to. Since the wave
variables are either voltage or current waves, nonlinear ele-
ments that can be incorporated in classical WDF structures
are resistors, and their wave nonlinearity (a b�a curve) can
be obtained from the Kirchhoff characteristic (a v� i curve)
using the transformation that defines wave pairs (a; b) in
terms of Kirchhoff pairs (v; i). Nonlinear resistors, how-
ever, are only a subset of the nonlinearities encountered in
musical acoustics. Among the simplest ones are those non-
linearities are that have a nonlinear capacitors or a nonlinear
inductors as their electrical equivalent.

Modeling such nonlinearities with classical WDF prin-
ciples is known to give rise to problems of computability,
since closed loops without delays cannot be avoided in the
resulting WD structure. In order to avoid such problems,
a solution for a wave implementation that includes reactive
nonlinearities was proposed in [6]. In this solution, new
waves were defined in order to be suitable for the direct
modeling of algebraic nonlinearities such as capacitors and
inductors. In fact, with respect to the new waves, the de-
scription of the nonlinear element became equivalent to that
of a resistor. In order to adopt such new waves, a special
two-port element that performs the change of variables is
defined and implemented in a computable fashion. The re-
active nonlinear element is thus modeled in a new WD do-
main, where its description becomes memoryless. Roughly
speaking, with respect to the new wave variables, the behav-
ior of the nonlinear bipole becomes resistor-like, therefore
the two-port junction that performs the change of wave vari-



ables plays the role of a device that transform the reactance
into a resistor.

A further extension of these ideas can be found in [7],
where a more general family of digital waves is defined,
which allow us to model a wider class of nonlinearities.
This generalization of WDF principles include dynamic mul-
tiport junctions and adaptors, which synergically combine
ideas of nonlinear circuit theory (mutators) and WDF the-
ory (adaptors). This generalization provides us with a cer-
tain degree of freedom in the design of WD structures. In
fact, not only can we design a dynamic adaptor in such a
way to incorporate the whole dynamics of a nonlinear ele-
ment into it, but we can also design a dynamic adaptor that
will incorporate an arbitrarily large portion of a linear struc-
ture. It can be easily proven [7] that, under mild conditions
on their parameters, such multiport adaptors are nonener-
getic, therefore the global stability of the reference circuit is
preserved by the wave digital implementation. For this rea-
son, such multiport junctions can be referred to as dynamic
adaptors.

The class of digital waves that we use for modeling a
“port” in the WD domain is basically of the form

A(z) = V (z) +R(z)I(z) ; B(z) = V (z)�R(z)I(z) ;

where R(z) is a “reference transfer function” (RTF). With
this choice, the class of nonlinearities that can be modeled
in the WD domain is, in fact, that of all algebraic bipoles of
the form

p = g (q) ; P (z) = Hv(z)V (z) ; Q(z) = Hi(z)I(z) ;

where p and q are related to v and i, respectively, through
a finite difference equation, while R(z) = Hv(z)=Hi(z).
The above choice of digital waves allows us to model a
wide class of nonlinear dynamical elements, such as non-
linear reactances (e.g. nonlinear springs) or, more gener-
ally, linear circuits containing a lumped nonlinearity. The
memory of the nonlinear element is, in fact, incorporated in
the dynamic adaptor or in the mutator that the nonlinearity
is connected to. As a consequence, our adaptors cannot be
memoryless, as they are characterized by reflection filters
instead of reflection coefficients.

With this more general definition of the digital waves,
we can define the adaptation conditions for any linear bipole
by selecting the reference transfer function in such a way
as to eliminate the instantaneous input/output connection
in its WD implementation (instantaneous adaptation). An
“adapted” bipole will thus be modeled in the WD domain
as B(z) = z�1K(z)A(z), where the delayed reflection fil-
ter K(z) can also be identically zero.

The interconnection between WD elements is implemen-
ted through a network of elementary (series or parallel) dy-
namic adaptors, as shown in Fig. 2. These adaptors take care

of the necessary transformation (with memory) between vari-
ables, as each wave pair is referred to a different RTF. This
network of elementary adaptors constitutes a dynamic macro-
adaptor that can be proven to be non-energetic [7]. This
is an important feature of such elements as it allows us to
guarantee that the passivity properties of the individual ele-
ments of the reference analog circuit be preserved by their
WD counterpart. In fact, we have already verified that par-
allel and series multiport junctions are intrinsically nonener-
getic provided that the port RTF’s be stable. A computable
interconnection through nonenergetic junction of elements
having the same passivity properties as the reference ones
will preserve the stability properties of the reference analog
circuit.
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Fig. 2. Macro-adaptors in extended WDF structures are ob-
tained by arbitrarily interconnecting together a number of
dynamic adaptors. Such macro-adaptors model the local
topology of “istantaneously decoupled” subsystems.

3. OBJECT INTERACTION

Let us consider an object that could potentially interact with
a number of other objects in a sound environment. For ex-
ample, we could think of a mallet that could collide, at dif-
ferent times, with a number of drum-like resonators. Indeed,
this situation cannot be implemented with a fixed interac-
tion topology such as the one of Fig. 4. In order to make
this dynamic topology possible, we need to be able to con-
nect or disconnect objects while the system is running. This
can be achieved by exploiting the fact that a connection be-
tween systems is irrelevant when their contact condition is
not satisfied.

As a simple example, let us consider the case of hammer-
string interaction in the piano mechanism. The WD struc-
ture that corresponds to the equivalent circuit of Fig. 1 is
shown in Fig. 3, where the macro-block M corresponds to
the contact point between hammer and string. The nonlin-
ear element (NLE) connected to the R�C mutator [6, 5, 7]



(the double-boxed two-port junction of Fig. 1, whose aim is
to “transform” the nonlinear capacitor into a nonlinear re-
sistor) corresponds to the nonlinear spring that models the
felt deformation and, at the same time, the contact condi-
tion. It can be easily shown that, when the contact condition
is not satisfied, the series adaptor that connects the hammer
to the two portions of the string becomes “transparent” for
the two portions of waveguides that model the string. This
fact suggests us that removing the whole connection by re-
placing that series adaptor with a direct connection between
the two waveguide portions would not modify the behavior
of the resonator.
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Fig. 3. WD structure for the modeling of piano sounds with
fixed interaction topology. The contact condition is incor-
porated in the nonlinear element that is connected to the
macro-adaptor M. When the contact condition is not satis-
fied, the macro-adaptorM becomes irrelevant and the string
keeps evolving as if the macro-adaptor was not there.

The above reasoning can be extended to more complex
resonators and has a significant impact onto our implemen-
tation scheme. In fact, there are two important direct conse-
quences that are worth mentioning:

� systems that are not “close” to contact can be discon-
nected and may evolve independently;

� if the topology of the DWG network that implements
the resonator is fixed, then a measure of “proximity”
can be used for deciding whether and where to insert
a transparent junction on the delay lines, in order to
“preset” the contact point.

In general, while for a bipole the condition of adapta-
tion corresponds to the possibility of “extracting” a delay
element from it, for a multi-port element this is no longer
true. In fact, the port adaptation only implies that no lo-
cal instantaneous reflections can occur, while nothing can
be said about instantaneous reflections through outer paths.
If it is true that a delay can actually be extracted from a
port, then we talk about instantaneous decoupling, which is
a stronger condition than adaptation. The concept of instan-
taneous decoupling is important as it allows us to split the
synthesis and the initialization of large WD structures into

that of smaller substructures [5, 4]. If N portions of a WD
structure that are connected together through a decoupling
N -port block (N � 2), which is a multi-port element that
exhibits at least N � 1 decoupling ports, then such portions
are said to be instantaneously decoupled, as they do not in-
stantaneously interact with each other. One other reason
why this decoupling condition is important is that it allows
us to model WD structures that contain more than one non-
linearity. We know, in fact, that only one of all the ports of a
macro-adaptor (oval block of Fig. 2) can be adapted, there-
fore only one nonlinearity can be connected to it. Through a
decouplingN -port block, however, we can connect together
N macro-adaptors, each of which is allowed one nonlinear
element.

Decoupling multi-port blocks are quite frequently en-
countered in musical acoustics, especially when using DWG
to implement reverberating structures. An example of block-
based sound synthesis structure where the decoupling con-
dition allows us to model a large number of nonlinear el-
ements is that of the acoustic piano. In this case, in fact, a
number of wave digital hammers are connected, each through
a DWG model of a string, to the same (decoupling) resonat-
ing structure (soundboard).

In conclusion, the global structure of a WD implementa-
tion of a physical model can be seen as a number of decou-
pled interconnection blocks such as those of Fig. 4, whose
aim is to connect together either linear macro-blocks or in-
stantaneous nonlinear blocks. The presence of decoupling
ports, allows us to approach the synthesis/initialization prob-
lem in a block-wise fashion. For example, if an intercon-
nection block is connected to a set of adapted macro-blocks
of the form B(z) = z�1K(z)A(z), then we can separate
the synthesis/initialization of the macro-blocks of the form
K(z) from that of the interconnection block [5, 4]. A simi-
lar reasoning holds for two decoupled portions of the global
WD structure.

The contact conditions allow us to unplug and isolate
subsystems, while decoupling blocks allow us to approach
the synthesis and the initialization of WD structures in a
block-wise fashion.

Macro-adaptors – An N -port macro-adaptor can be
automatically built through a tableau-based approach, specif-
ically designed for WD structures [5, 4]. Its description, in
fact, can be given in the form S(z)C(z) = 0

T , where S(z)
is a 2N �N Tableau matrix, 0 is a vector with N zero ele-
ments and C(z) = [A1 � � �ANB1 � � �BN ]T is the vector of
digital waves. A generic macro-adaptor can be thought of as
a network of elementary (parallel or series) three-port adap-
tors with memory that belong to a pre-defined collection.
This allows us to construct S(z) by “pasting” a number of
pre-defined 6� 3 matrices into a larger sparse matrix. This
matrix equation can be quite easily rearranged and inverted
in order to obtain a state-update equation, or else it can be
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Fig. 4. Structure of a nonlinear block-based WD system
with fixed interaction topology. The gray boxes at the ports
of decoupling multi-port block denote the presence of a de-
lay element, which guarantees that neither instantaneous lo-
cal reflections nor instantaneous reflections through outer
loops will occur.

solved iteratively using some efficient numerical method for
sparse matrix equations.

As our macro-adaptors are not memoryless, they need
to be properly initialized, which is a critical operation for
WD models of mechanical systems as it usually affects the
mutual position and contact conditions of mechanical ele-
ments. The determination of the state update equation can
be seen as a direct form of the synthesis problem, as out-
put signals are computed from input signals and memory
content. Initialization, on the other hand, can be seen as an
inverse problem, as memory content must be derived from
output and input signals. As the nonlinearity is “lumped“,
this operation can be quite easily performed through nonlin-
earity inversion and matrix inversion.

Time-varying structures – Changing any model pa-
rameters in a WD structure usually affects all the other pa-
rameters as they are bound to satisfy global adaptation con-
ditions. Temporal variations of the nonlinearities are eas-
ily implemented by employing special WD two-port ele-
ments that are able to perform a variety of transformations
on the nonlinear characteristics (non-homogeneous scaling,
rotation, etc.). Temporal variations of RTFs, on the other
hand, are implemented through a global re-computation of
all model parameters on the behalf of a process that works
in parallel with the simulator [5, 4]. This operation requires
the re-mapping of the nonlinearities as well. This parame-
ter update, however, is not computationally intensive as it is
performed at a rate that is normally only a fraction of the
signal rate (e.g. 100 times slower). It is important to re-
member, however, that abrupt parameter changes must be
carefully dealt with in order not to affect the global energy
in an uncontrollable fashion.

Automatic synthesis – Some methods are already avail-
able for synthesizing linear macro-blocks, therefore the au-
tomatic synthesis procedure is based on the assumption that
such elements are already available in the form of a collec-
tion of pre-synthesized structures. In its current state, the
system that we developed is able to automatically compile
the source code that implements a WD structure based on
standard WDF adaptors and new dynamic adaptors chosen
from a reasonably wide collection [5, 4]. The information
that the system starts from is a semantic description of the
network of interactions between all such elements.

Currently, the family of blocks includes WD mutators [6]
and other types of adaptors developed for modeling typical
nonlinear elements of the classical nonlinear circuit theory
(both resistive and reactive). The available linear macro-
blocks belong to the family of the DWG’s [8], while the
nonlinear maps are currently point-wise described in the
Kirchhoff domain and then automatically converted in a pie-
cewise linear WD map. Typical lumped WDF blocks are
masses, springs, dampers, nonlinearities, ideal generators
and filters (especially allpass filters, for the fine tuning of
strings or acoustic tubes, or to account for the dispersive
propagation in some enharmonic elastic structures such as
bells, low piano strings, etc.). Typical distributed-parameter
blocks are simple DWG implementation of strings and acous-
tic tubes, generalized DWG that account for rigidity and
losses in a distributed fashion, reverberators based on Toeplitz
matrices, green functions, DWG models of 2D and 3D struc-
tures such as membranes and bells.

The parameters can be modified “on the fly“ in order to
make the structure time-varying. A parallel process deals
with the problem of re-computation of all WD parameters,
depending on their changes expressed in the Kirchhoff do-
main.

4. AN EXAMPLE OF APPLICATION

Our approach to object-based sound synthesis has been tested
on a variety of applications of musical acoustics. Starting
from an appropriate semantic descriptions of the building
blocks and their topology of interconnection, we used our
authoring tool to automatically generate C++ source code
for the implementation of a number of typical acoustic mu-
sical instruments. The timbral classes implemented with
this method are hammered strings (piano, electric piano),
plucked strings (guitar), bowed strings (violin), reed instru-
ments (clarinet, oboe), jet-flow acoustic tubes (flute, organ
pipes), percussions, etc.

One of these examples, namely the grand piano, has
been developed with a twofold goal in mind: to test our
solution to the problem of the mechanical modeling of a
non-trivial acoustic instrument; and to test our approach to
the construction of a dynamic topology of interconnection.



The basic mechanism of hammer-string interaction is
shown in Fig. 1, which corresponds to the block-based WD
model of Fig. 3. As we can see in Fig. 5, the trajectories of
the hammer and of the string at contact point and the tem-
poral evolution of the force that the hammer exerts on the
string are very “physical” and realistic. In fact, the ham-
mer tends to bounce back a bit more every time a wave is
reflected by the nut or the bridge and returns at the contact
point, causing the ripples in the force’s profile. This behav-
ior turns out to have a very realistic impact on the resulting
sound. The plotted output corresponds to the acoustic signal
at the bridge.

The global implementation of the piano model has been
entirely built using a rather extended network of WDF and
DWG elements. The DWG model of each string includes
stiffness and losses. The bridge is modeled as a bandpass fil-
ter (the WD-equivalent of an RLC filter) and is connected to
a soundboard model based on a DWG network. The string’s
fine tuning is performed using high-order all-pass filters. A
limited number of hammers are used dynamically to hit a
full-scale resonator such as the one described above, with a
dynamical management of the contact conditions.

Indeed, the computational complexity of the resulting
algorithm in this case coincides with the complexity of the
resonating structure, whose role in the characterization of
timbres is predominant. However, some simpler implemen-
tations already run real-time on low-cost PC platforms. For
example, the WD model of an electro-mechanical piano (e.g.
Wurlitzer or Fender-Rhodes) can easily run with full poly-
phony (61 or 73 keys) on a Pentium III (350MHz).

5. CONCLUSIONS

The proposed approach has proven effective for the auto-
matic and modular synthesis of a wide class of physical
structures encountered in musical acoustics. In fact, the
wave tableau approach we implemented makes the construc-
tion and the implementation of the interaction topology sys-
tematic. In its current state, the implementation of the de-
scribed synthesis system is able to assemble the synthesis
structure from a syntactic description of its objects and their
interaction topology, providing the user with a first CAD
approach to the construction of an interactive sound envi-
ronment.
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