A MUSICO-LINGUISTIC COMPOSITION ENVIRONMENT

Reginald Bain
Northwestern Computer Music
School of Music, Northwestern University
Evanston, IL 60201 USA
(312) 491-3895/5431
ihnp4!numusic!reg

ABSTRACT

This paper presents work being done at Northwestern University developing compositional tools that perform
transformational processes on text which generate music having parallel syntactic, semantic, and eventually
prosodic structures. The generation of the initial musical gesture and subsequent motivic cells is derived from
computational linguistic analysis of the text. The resulting music is then subjected to the composer's
aesthetic evaluation and integrated into the final composition.

1. ISSUES AND CONCERNS

The genesis of my interest in the logical structures of natural language, and its eventual mapping into a
musical experience, originated from an attempt to set Wittgenstein's Tractatus Logico-Philosophicus for orchestra
and chorus. The Tractatus is a philosophical text concerned with the principles of symbolism and the conditions
that must be met by a logically perfect language. Confronted with an aphoristic structure and the relations of
predicate calculus in the text, it seemed evident that a musico-dramatic presentation of the text should include
algorithmic transformations of natural language and symbolic logic to music. Instead of pursuing universal
representations of natural language, one can view the relationship of music to language as primarily a metaphorical
one (Cope 1987) and thus use the computer simply as a means of creating an inexorable link between text and
music. The primary objective of my work has been to use personal representations of linguistics and music which
in turn create "interesting” logical structures.

2. A CONTEXT-FREE GRAMMAR FOR MUSIC COMPOSITION

Three things are needed in order to perform the syntactic transformation from linguistic structures into a music
composition: 1) compositional tools for music analysis and transformation 2) a rules base or grammar to guide
and select operations to be performed on the musical domain 3) an augmented transition network (ATN) for parsing
and storing the linguistic structures of the text. Also needed is a description of propositional logic and predicate
logic to provide a situational semantic context for the eventual musical mapping.

The Object Logo music environment for the Macintosh (Greenberg 1987, Krakowsky 1986) provides the
basis for my compositional tools, and my linguistic analysis and transformation routines. The use of a symbolic
language such as LOGO or LISP provides the modularity, recursive structure, and interactive environment needed to
realize this grammar. Built-in MIDI drivers, MacWrite/Paint editing features, objects for creating windows and
menus, and full support for input/output streams between windows are just a few of the resourses of this Object
LOGO environment. This environment will eventually run on a Macintosh II with 8Mb.

2.1 Transformational Tools

The first thing needed is a set of interactive compositional tools for music analysis and transformation. All
of the transformational composition tools have been developed according to the definitions and theorems set forth in
John Rahn's, Basic Atonal Theory (1980). This model was chosen because the transformations and pitch
organization of atonal and serial music are most congruent with my compositional style. The analytical music tools
analyze intervalic content. For example, one could determine the possible common-tone structures, or examen set
relationships such as z-relations, symmetry, or subset content. The transformational music tools are needed to map
musical structure onto musical materials. These transformations include operations like transposition, inversion,
retrograde, retrograde inversion, as well as muitiplicative interval operations (e.g. the M5(x) circle of fourths
transformation). Two examples of compositional tools are presented in figure #1. Figure #1a shows the
predicate function z_relatedp which tests to see if two pitch class sets have the same interval_vector. Figure

101 ICMC Proceedings 1988

#1b shows the procedure TICS_vector which outputs a 12-tuple vector representing the Tnl-common-tone

structure of some set A. It enumerates the number of pitch classes in common between A and TnI(A) for each of the
12 indices n = 0,11.

Figure #la: [Examples of Compositional Tools
to z_relatedp :pc.setl :pc.set2

if equalp (interval_vector :pc.setl) (interval_vector :pc.set2) [output "TRUE]
output "FALSE

end

Figure #1b
to TICS_vector :pc.set

output (add_vectors (multipy_vector_by_scalar (M+AN* :pc.set) 2)(Q+AN* :pc.set)
end

*<M+AN denotes M+A(n), the multiplicity of the sum n of pairs of piich classes from set A, and
Q+AN denotes Q+A(n) the number of pitch classes in a set A which add to themselves to make the
index n. For more information see Rahn 1980, Basic Atonal Theory p. 111>

2.2 Rules Base

In order to create music, the compositional tools need a rules base or grammar to guide and select operations
to be performed on the musical material. The rules base is essentially a meta-grammar (Hemke 1988) composed of
algorithms for generating musical material that parallels the syntactic and semantic nature of the text. The rules
base also invokes computational linguistic analysis of the text to generate both the initial musical gesture and
subsequent musical generations. The results of the computational analysis and generation of musical material can be
archived by the composer for further reference by the rules base.

Basic computational linguistics tools can calculate the probability of a letter or word occurring, the average
length of a word, the relative position of a letter or word, or the contextual significance of the reiteration of a word.
Comparisons are made by the predicate equal_phrasep and other linguistic analysis predicates. Two simple
examples follow. Figure #2a shows the procedure start_with_phrase which outputs the phrase argument and
whatever follows it in the sentence. Figure #2b shows the procedure get_descriptions which outputs a list of
all phrases in which the argument :key.phrase appears. The argument :text is a list of any complete section of the
text. The procedure after_phrase outputs whatever follows the given :key.phrase.

Figure #2a: [Examples of Linguistic Context Primitives
to start_with_phrase :phrase :sentence
if lessp (count :sentence) (count :phrase) [output "FALSE]
ifelse equalp (first :sentence) (first :phrase)
[if (start_phrasep :phrase :sentence) [output :sentence]
[output start_with_phrase :phrase (bf :sentence)]

output (start_with_phrase :phrase (bf :sentence))
end

Figure #2b
to get_descriptions :key.phrase :text
if (emptyp :text) [output []]
output fput (after_phrase :key.phrase (first :text))

_ (get_descriptions :key.phrase (bf :text))
end :

<Propositional contexts can also be directly tested for their musical mapping potential without the
aid of a computer interface by using concordances (Plochmann 1962), indexes, or glossaries which
often accompany philosophical texts and mapping them to music directly. This has proven to be
quite useful since parsing the text can fill the object list very quickly. Saving computation time in

the early stages of developing linguistic-music transformations lets one concentrate more on the
compositional issues at hand.>

ICMC Proceedings 1988 102

2.21 Initial ngulstlc -Music Mapping

One of the most mterestmg applications of this musico- linguistic environment is its ability to explore
many different possible mappings from language to music. From the most basic transformation to one that is
deeply nested, it is possible to create musical gestures for immediate auditory analysis by the composer. For the
sake of brevity, the concerns here will be limited to pitch mappings, even though the program analagously
extapoltates this process to the domains of duration and amplitude. At first, a one to one mapping from letter to note
might seem to be a somewhat obvious choice. However, this approach to musical realization of a text can create
very interesting possibilities. For example, if we used Messiaen's communicable language letter to note mapping
from his Meditationen iiber das Geheimnis der heiligen Dreieinigkeit fiir Orgel (see figure #3a, middle C = C(0))
and apply it to ngenstem s Tractatus we can see the results. The procedure map_pitch_to_integer (see
figure #3b) takes a given mapping of pitches to integers and performs the necessary binding of variables.

Figure #3a: Letter to Note Mapping using Messiaen's Communicable Language

A B C D E F G H I J K L M N
AQ) B C) DM EM FD G BO) F#Q) F#1) CD Eb() A1) EbO)
o P Q R S T U v w X Y y/

B1) G(-1) C(0) E@2 F2) D(-2) C#-1) D(0) D(2) G#0) F#0) F(-1)

<The "musical alphabet” is derived as follows. 8 basic letters [a, b, c, d, e, f, g, h], palatals [j, j, y],
5 vowels [a, e, i, o, u], sibilants [s, z], dentals [d, t], K [c q k], labials {b, f, m, p, v], linguals
[Ln], and [r, w, x]. All articles, pronouns, prepositions, and adverbs are eliminated in order to
avoid verbal agglomerations. Messiaen employs the case system of Latin declensions providing each
word with a musical formula or "case”. The verbs to be and to have have been assigned a
descending and ascending melodic formula respectively. The durations are Messiaen's.>

Musical Figure #1: A setting of 'The world is everything.'

Figure #3b: Letter to Note Mapping (Top-Level Routines)
map_pitch_to_interval :mapping ; assign pitch names integer values
localmake "text (get_proposition "i "i) ; temporary variable text for section i, proposition i

play [(eval_llst_ characters (explode :text)) ; plays a list of pitch integers with a
[:durations] ; list of durations and a
[: amplltudes]] list of amplitudes

2.3 Augmented Transition Network (ATN)

A recursive transition network with LOGO procedures to enforce grammatical constraints and generate a deep
structure is called an augmented transition network. A transition network can be described as a representation of a
finite grammar. The LOGO procedures that enforce the grammatical constraints are the predicate compositional
tools and the propositional and predicate logic functions described in section 3.0. Conditions are written as LOGO
predicates which perform tests for certain attributes in the definition of the current word or object. A top-level
example of the method of storing a transformation can be seen in Figure #4 using 'Verlaine shot Rimbaud.' as the
sample text and a very basic ATN parser.

Figure #4: Example of Transformation Data Storage

[S DCL [NP Verlaine] S- sentence, DCL- type=declaritive
[TNS past] NP- noun phrase, TNS- tense, VP- verb phrase
[VP [V shoot] [NP Rimbaud]] V -verb

<For a more comprehensive definition and graphic analysis of ATN's see Charniak 1984, pp. 195-223.>

One could envision a transformation not unlike Messiaen’s communicable language that could convert the ATN's
resulting data to a musical representation. For example, one could use a mapping of lexical terminals (e.g. verb,

103 ICMC Proceedings 1988

noun, etc.) directly to music using intuitive musical resultants such as verb -> motion or noun -> stasis. But
substituting lexical types or even syntactic transformations with intuitively analagous transformations of "musical
strings" (Bernstein 1976) is not the main issue here. What is of immediate interest to our linguistic-music
transformation is the meta-grammar’s specific implementation. The meta-grammer is used to generate logical
musical structures from the situational semantics of a given aphorism in relation to its main proposition.
Wittgenstein's Tractatus was conceived as a set of propositions with a logical importance explicitly indicated by the
author's numbering system. From the context provided, we can extract semantic relations using propositional logic
and predicate logic to serve as conditions for our rules base.

2.4 Semantic Analysis
A brief introduction to the aspects of propositional logic and predicate logic which hold meaning in this
program’s implementation follows.

2.41 Propositional Logic
The simplest type of symbolic logic, propositional logic, can categorize arguments such as:

given: If it is Sunday Paul will play the piano. & It is Sunday.
conclusion: Paul is playing the piano.

It is apparent that as long as we preserve the if ... then ... connective in what is given and retain the general
structure of the argument one will arrive at a valid argument. A proposition then is a sentence which makes a
declaration and evaluates to either TRUE or FALSE. Thus, in symbolic notation the following (modus ponens
rule) is a valid inference:

p and q are propositions: other operators can be defined:
given: pP->q » if p then q pvq sporq

p ; P occurs P"q ;pandq
conclusion: q ; q results ~p ;notp

The following rules of propositional logic can generate all possible formulas:
1. A proposition is a formula.

2. If X is a formula, [~X] is a formula.

3. If X and Y are formulas, {X * Y], [X v Y], and [X -> Y] are formulas.

4. All formulas are generated by applying these rules.

2.42 Predicate Logic

Some of the meanings of English connectives have yet to be accounted for by the rules of propositional
logic. For example, propositional logic doesn't delineate any differentiation between strict implication and material
implication, where there is a causal relationship between X and Y [if X then Y]. Since each line is a separate
proposition we cannot represent it with propositional logic. Let's call Beethoven the object and say that the
proposition ‘Beethoven is a man' asserts the predicate 'is a man' of the object Beethoven and that ‘Beethoven is
mortal' asserts the predicate 'is mortal' about the exact same object. Let us call Beethoven a term, which is to say
that its value is some object in the universe. Predicates can then be described as functions which operate on terms
and evaluate to the values TRUE and FALSE. We can then represent ‘Beethoven is mortal' with a function f(x)
where 'is mortal' is the function f and x is the object.

given: All men are mortal. Beethoven is a man.
M(Beethoven) ; 'is mortal' (Beethoven)
conclusion: Beethoven is mortal.

In the above example M is the predicate, Beethoven is the argument, and M(Beethoven) is called an atom. Retention
of the logical connectives of propositional logic and the introduction of a universal quantifier to account for
propositions such as "All men are mortal’ will complete our definition of predicate logic. Assign x to represent the
object of one or more predicates [Beethoven], then e(x) represents a predicate logic expression. Thus we can rewrite
the original propositions as:

given: (Vx) P(x) -> M(x) ; for all x, if x is a man then x is mortal,

ICMC Proceedings 1988 104

P(Beethoven) ; where 'P' represents 'is a man'
conclusion: M(Beethoven) .

(A definition of a formula for predicate logic can be found in any textbook on symbolic logic. The
inclusion of restricted quantification and semantic nets, etc. are left out for the sake of brevity.)

3. THE LINGUISTIC-MUSIC TRANSFORMATION

3.1 Tractatus Logico-Philosophicus

The opening of Tractatus Logico-Philosophicus appears in figure #5. The English translation by C. K.
Ogden follows the original German text. Decimal figures appear to the left of each proposition. According to
Wittgenstein, they indicate the logical importance of the propositions in his exposition. Thus, proposition x.1,
x.2, x.3 , etc. comment upon proposition No. x and x.y1, x.y2, etc., are comments on proposition No. x.y. Here
we are given a macro-level semantic context that can be used as a musical form generating element. Given the
constructs of propositional logic and the logical importance assigned to each proposition by the Wittgenstein, one
can construct musical transformations that generate elements paralleling the situational semantics of a particular set
of related propositions. Figure #6 shows the similaritiy between the context-free representation and a grammatical
representation of the logical importance of propositions.

Figure #5
Die Welt ist alles, was der Fall ist.
Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge.
Die Welt ist durch die Tatsachen bestimmt und dadurch, dass es alle Tatsachen sind.
Denn, die Gesamtheit der Tatsachen bestimmt, was der Fall ist und auch, was alles nicht
der Fall ist.
1.13 Die Tatsachen im logischen Raum sind die Welt.
1.2 Die Welt zerfillt in Tatsachen.

—— et
——
[

The world is everything that is the case.

The world is the totality of facts, not of things.

The word is determined by the facts, and by these being all the facts.

For the totality of facts determines both what is the case, and also all that is not the case.
The facts in logical space are the world.

The world divides into facts.

bt bt ek bt bt et
B
WA -

Figure #6: Grammar Representation Comparison

so ->$sentz 1 > 11 | 12

sent -> sub vp . 1.1 -> 111 } 112 | 113
vp -> verb obj 1.2 -> 1.21

z >$ ($=blank, z=terminal state)

obj -> det noun | det adj noun

terminal lexical categories: det, noun, adj, verb 1.11, 1.12, 1.13, 1.21

<This hierarchical structure is used to determine the inheritance relationships of gesture objects. Thus, for the current
environment & gesture object is created for each proposition which holds the text, its inital mapping to music, and the
procedure names and results of any transformations performed. The gesture objects can thus communicate via window
objects (where data is) to logically related propositions comparing information about the transformations of musical
ideas that have been performed in the piece.>

3.2 Interaction of the Compositional Tools and Rules Base

Music generauon is controlled by the rules base construction in figure #7. The LOGO construction for
dynamic execution of predicate functions Pkn is invoke :state :inputs where :state (a node in the
transformation network) is one of the transformational composition tools and :inputs is the integer/pitch data to be
transformed. The predicate functions are taken from either truth functions in the Tractatus text or the
propositional/predicate logic equivalent of the propositions. If some Pkn evaluates to TRUE then it is stored in the
most recent gesture object along with Tkn so that any part of the musical material generated can be accessed.

105 ICMC Proceedings 1988

Figure #7: Rules Base Construction
[PT1 [key.name [T1 T2 ... Tn]
T1{T11 P11 T12 P12.. Tin Pln]
T2 [T21 P21 T22 P22 ... T2n P2n]
Tk [Tkl Pkl Tk2 Pk2...Tkn Pkn]]

{PTn [etc...

<PTn - a compound musical operation (e.g. a sequence of transpositions, inversions, etc.)
key.name - name of gesture object to be transformed, Tn - a transformational
composition tool, Pkn - an analytical composition predicate.>

4.0 MUSICAL REALIZATION

To summarize, taking proposition 1.2 "The world divides into facts' and running it through the linguistic-
music transform yields the following results.

4.1 Flow of Control’

1) Initial Mapping [2.21].

2) ATN parser - stores syntactic representation and propositional/predicate logic
representations [2.3].

3) Meta-Grammar - Invokes rules base and performs comparisons between
representations stored by the ATN.

4) Rules Base - creates musical gestures which are stored as gesture objects by
invoking the compositional tool operations according to the conditional scheme set
forth in each compound compositional operation [3.2].

5) Score production and Realization using MIDI (Greenberg 1988).

4.11 Initial Mapping
Using the same letter to note mapping described in [2.21], integer values are assigned to each letter and all
pitch characters are declared globally fluid in the environment.

Musical Figure #2: A resultant mapping of ‘The world divides into facts.'
~~

ek . ¥ gfp

i S=EEw L

e

4.12 ATN parser
The ATN parses the proposition accordingly:

syntactic description propositional rélalion
[S [DCL [NP The World} [The world -> divides into facts]
[TNS Pres]

[VP [V divides] [OB]J into facts]

4.13 Meta-grammar

When we are dealing with an initial gesture, the meta-grammar creates the necessary parent objects according
to the logical importance of the propositions. For 1.2 the only parent object is proposition 1 (see figure #8a). The
meta-grammar looks for the values of any variables first on the object list, then in all parent objects where the
linguistic-music transformations have been performed as stored (see 2.21). Flow control is then sent to the rules
base.

4.14 Rules Base

The rules base is then invoked with key.name 1.2 (see 3.2). Many different invocations are possible. As an
simple example, say that [V divides] (see 4.13) evaluates to TRUE for some predicate Pnk in the rules base (see 3.2)

ICMC Proceedings 1988 106

and this invokes the compositional tool transpose with the argument [OBJ into facts]. As a result, the pitch-
integer representation of [into facts] is transposed by the pitch-class-integer representation for {divide]. If t is the
composition tool for pitch class transposition the result would be:

(t(t(t(t(t(t(t (eval_list (explode "facts)) -3) 1) -3) 1) -3) -1) 12)
The result (transposition by 12 - 10 + 2 = 4 semitones) can be seen below in musical example #3a. Finally the
musical result of this transformation is combined with the previous musical generations using "contrapuntal syntax"
(Bernstein 1976) to determine how the new material should relate to the former material harmonically. For example,
if computational linguistic analysis results indicate that it should sound in homophony with the previous
generation, the result can be seen in ex. #3b. This dialogue between the rules base and meta-grammar continues
until all of the text has been set to music.

Musical Figure #3a & b
A pitch representation of (into facts] transformed by [divide] resulting in 3b.

5.0 FUTURE DIRECTIONS

Though full automation is probably neither feasible nor desirable, an implementation that utilizes a set of
exclusive restrictions as a dictate for style would be useful in the task of automation. Using predicate calculus and
logically correct inference (Charniak 1984), it is intended that certain heuristics can be set up to mimic one's
compositional process that are more sophisticated than those in the present implementation.

REFERENCES

Bernstein, Leonard (1976). The Unanswered Question: Six Talks at Harvard. Cambridge, MA: Harvard University
Press.

Charniak, Eugene, and Drew McDermott (1984). Introduction to Artificial Intelligence. Reading, MA: Addison-
Wesley Publishing Company.

Chomsky, Noam (1957). Syntactic Structures. The Hague: Mouton.

Cope, David (1987). "Experiments in Music Intelligence". InJ. Beauchamp ed., Proceedings of the 1987
International Computer Music Conference. San Francisco: Computer Music Association.

Greenberg, Gary (1987). "Procedural Composition”. In J. Beauchamp ed., Proceedings of the 1987 International
Computer Music Conference. San Francisco: Computer Music Association.

Greenberg, Gary (1988). "Composing with Performer Objects”. In C. Lischka ed., Proceedings of the 1988
International Computer Music Conference. San Francisco: Computer Music Association.

Hemke, Frederick L., and Gilbert K. Krulee (1987). Patterns in Music: A Formal Representation.. Northwestern
University, Evanston, IL.

Krakowsky, Philippe, ed. (1986). Object LOGO Reference Manual. Cambridge, MA: Coral Software Corporation.

Plochmann, George Kimball, and Jack B. Lawson (1962). Terms in Their Propositional Contexts in Wittgenstein's

_ Tractatus. Southemn Illinois University Press. .

Rahn, John (1980). Basic Atonal Theory. New York, NY: Longman Inc.)

Wittgenstein, Ludwig (1947). Tractatus Logico-Philosophicus. C.K. Ogden, ed. New York, NY: Harcourt, Brace
& Company.

107 ICMC Proceedings 1988

	ICMA_1988.pdf

