
Glottal source modeling for singing voice synthesis 

Hui-Ling Lu Julius O. Smith III 

Center for Computer Research in Music and Acoustics 
(CCRMA) 

Center for Computer Research in Music and Acoustics 
(CCRMA) 

Stanford University, Stanford, CA94305, USA Stanford University, Stanford, CA94305, USA 
vickylu@ccrma.stanford.edu jos@ccrma.stanford.edu 

ABSTRACT 

Naturalness of sound quality is essential for singing-voice synthesis. Since 95% of singing is voiced sound (Cook, 1990), the focus of this 
paper is to improve the naturalness of the vowel tone quality via glottal excitation modeling. We propose to use the LF-model (Fant et al., 
1985) for the glottal wave shape in conjunction with pitch-synchronous, amplitude-modulated Gaussian noise, which adds an aspiration 
component to the glottal excitation. The associated analysis and synthesis procedures are also provided in this paper. By analyzing baritone 
recordings, we have found simple rules to change voice qualities from “laryngealized” (or “pressed”), to normal, to “breathy” phonation.  
 

1. INTRODUCTION 

Glottal source modeling has been shown to be an important factor 
for improving the naturalness of speech synthesis (Childers and 
Hu, 1994). Since naturalness of the sound quality is essential for 
singing voice synthesis, and since roughly 95% of singing is 
voiced, we focus on improving the naturalness of the vowel tone 
quality via the glottal excitation model described in this paper. 
The motivation is to support variation of glottal excitation model 
parameters based on estimation results from recordings of 
singing. 

To trade off between the complexity of the model and 
the corresponding analysis procedure, we propose to use a 
source-filter type synthesis model based on a simplified human 
voice production system. The source-filter model (Fant, 1970), 
shown in Fig. 1, decomposes the human voice production system 
into three elements: glottal source, vocal tract, and radiation 
impedance. The radiation impedance is approximated by a 
differencing filter. The vocal tract filter is assumed all-pole, since 
we will only deal with non-nasal voiced sound in this study. 
Since both the vocal tract filter and the radiation filter are linear 
and time-invariant (over short time frames), they can be 
commuted. The glottal source and the radiation are then 
combined to form the “derivative glottal wave” as shown in Fig. 
2. Figure 2 illustrates the concept of the source-filter modeling 
clearly: the human voice is modeled as the output of a linear all-
pole filter excited by a glottal excitation.  
  In addition to providing flexible pitch and volume 
controls, the desired excitation model is expected to be capable of 
changing the voice quality. “Voice quality” has a wide range of 
possible meanings. In this study, the voice quality dimension 
considered ranges from laryngealized (pressed), to normal, to 
“breathy” phonation (Klatt and Klatt, 1990). To enhance the 
versatility of voice synthesizers with limited available storage of 
voice data, conversion of voice data from the speaker stored to a 
different target speaker is widely studied. In contrast, intra-
speaker voice quality variations have apparently not been 
explored until recently (d’Alessandro and Doval, 1998).  

Klatt (1990) has summarized the important acoustic 
features for different voice qualities. Two acoustic parameters are 
considered perceptually important indicators of voice quality: (1) 
degree of aspiration noise intruding at high frequencies in vowels, 
and (2) the relative strength of the fundamental component of the 

glottal source wave. Therefore, our glottal excitation model 
consists of two parts, as depicted in Fig. 2: (1) high-pass glottal 
noise (turbulence noise); and (2) a smooth, quasi-periodic, 
derivative glottal wave. The derivative glottal wave shape can 
control the relative strength of the fundamental component of the 
glottal source.  
 
 
 
 
 
 
 
 
 
 

Figure 1. Source-filter speech production model 
 

 
 
 
 
 
 
 
 
 

Figure 2. A simplified source-filter model 
 

In the speech literature, there exist plenty of models for 
the smoothed derivative glottal wave. Cummings and Clement 
(1995) did an extensive literature survey on various models of the 
derivative glottal wave. The glottal models are divided into three 
rough categories: parametric non-interactive glottal volume 
velocity models, interactive parametric and mechanical glottal 
models, and three-dimensional physiological and numerical 
glottal models.  The models differ as to how closely they 
approximate the physiology of voice production, and as to how 
much interaction is assumed among the glottal source, subglottal 
area, and supraglottal area. 
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Although a physical model is attractive for control 
flexibility in terms of physical parameters, a parametric, non-
coupled glottal waveform model was chosen for this study, as 
such a model can provide good synthesis quality with the 
necessary controls. Among such glottal models, the LF-model 
and the KLGLOTT88 model appear to be most widely discussed.  

The LF-model is used in this study to model the 
derivative glottal wave. Moreover, the aspiration noise is 
modeled as pitch-synchronous, amplitude-modulated Gaussian 
noise. We will describe both the LF-model and the noise model in 
the next section. 

Once the synthesis model is constructed, the next step 
is to explore the space of model parameters such that one can 
generate desired voices by manipulating model parameters. The 
advantage of source-filter models over articulatory (Bavegard, 
1996) or formant synthesis (Lin, 1990) models is that synthesis 
based on analysis is relatively simple. Hence, we can obtain the 
synthesis parameters via analysis of sound recordings.  

For our model, the effort is then to estimate (1) the 
vocal tract filter parameters and (2) a glottal excitation waveform 
to mimic the desired singing vowels. We have developed a de-
convolution algorithm using convex optimization techniques 
(Lu, 1999). Through this de-convolution, one can obtain the 
vocal tract filter parameters and the inverse-filtered glottal 
excitation waveform. The glottal excitation waveform consists of 
two parts: the derivative glottal wave and a residual (high-passed 
aspiration noise). These two components are separated by 
wavelet packet analysis (Coifman, 1992). We then use 
constrained nonlinear optimization to fit the derivative glottal 
wave to the LF-model. For breathy phonation, the noise residual 
is analyzed in terms of its average strength, location of maximum 
noise level, and the duty cycle of the amplitude modulation 
envelope.  

In the remainder of this paper, we will describe the 
proposed synthesis model in Section 2. Section 3 will illustrate 
the overall analysis procedures for retrieving the model 
parameters from sound recordings. Using the proposed analysis 
procedure, the glottal excitation model parameters are studied for 
the case of a baritone singing sustained vowels with varying 
sound quality. Section 4 will show the results of the analysis and 
give a statistical summary of the model parameters.  

2. Synthesis Model 

The overall synthesis model is shown in Fig. 2. In this section, 
we will describe the LF-model and the noise residual model for 
glottal excitation modeling. 

2.1 LF-model 

The smoothed derivative glottal wave is modeled via the LF-
model (Fant et al., 1985), which is a parametrized time-domain 
model of one cycle of the derivative glottal wave. This time-
domain model characterizes the wave-shape of the derivative 
glottal wave in the open and the closed phases via only four 
parameters. The LF model is chosen because its properties appear 
to have been studied most extensively. It has been shown that the 
model can accommodate a wide range of natural variations.  Its 
parameters can be estimated via inverse filtering of recorded 
samples, and the parameters vary with diverse voice qualities 
such as loudness, fundamental frequency and tenseness 
(Karlsson, 1995) (Childers, 1995). Moreover, synthesized voice 
quality can easily be altered by a single parameter in the extended 
transformed LF-model (Fant, 1995).  

The LF-model models the differentiated glottal flow. 
The model consists of two segments. The first segment 
characterizes the differentiated glottal flow from the glottal 
opening to the maximum negative peak. The second segment 
characterizes the closure of the glottis. The model can be 
parametrized as follows: 
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Where the parameters are described below.  
Figure 3 plots two periods of the glottal wave (top) and 

the derivative glottal wave generated from the LF-model using a 
typical set of normal phonation parameters (bottom). 
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Figure 3. Glottal wave/Derivative glottal wave from LF-model 
 

Along with the magnitude of the glottal closure 
excitation, 

eE , the modeled waveform can be specified by two 

independent sets of parameters: the direct synthesis parameters 
( εωα ,,,0 gE ), and the timing parameters (

caep TTTT ,,, ). The 

parameter 
pT denotes the instant of the maximum glottal flow. 

The parameter 
oT  is the fundamental period. The parameter 

cT  

denotes the ending of the return phase. The parameter 
aT  is the 

effective duration of the return phase. The exponent ε  in Eq. (2) 
is related to 

aT  and can be uniquely determined from 
aT . Since 

the timing parameters can be easily identified from the estimated 
derivative glottal wave, one usually obtains the timing parameters 
and then derives the direct synthesis parameters from the timing 
parameters with the following constraints: 
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Lin (1990) gives further details regarding the implementation of 
the LF-model.  
 The return phase is a major constituent of the LF-
model. The effective duration of the return phase, 

aT , is 

perceptually the most important parameter for the LF-model. It 
has been shown to be inversely proportional to the frequency, 

)2/(1 aa TF π= , at which the spectrum of the derivative glottal 



wave attains an extra –6 dB/oct slope. Hence, increasing 
aT will 

lower the cut-off frequency 
aF of an equivalent low-pass filter. 

Therefore, 
aT  determines the spectral tilt of the glottal source. 

For example, the closure of each glottis cycle is less abrupt for 
the breathy phonation. The gradual closure of the glottis, 
resulting in a larger 

aT , introduces fewer higher harmonics and 

therefore greater spectral tilt. 
 In additional to the direct synthesis parameters and the 
timing parameters, one could also describe the model via a set of 
normalized timing parameters (

kga RRR ,,
), defined as follows: 

0/TTR aa =      (3) 
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ppek TTTR /)( −=      (5) 

 In the transformed LF-model (Fant et al., 1994), a new 
wave-shape parameter, dR , is introduced. This parameter is 

proportional to (
eo EU / ), where 

oU is the peak value of the 

glottal flow, exclusive of a superimposed constant leakage flow, 
and 

eE is the excitation amplitude at the glottal closure instants. 

dR  can also be estimated from the measured set of LF-

parameters (Fant, 1997) as 
)4/)(2.15.0)(11.0/1( agkkd RRRRR +⋅+=  (6) 

The accuracy of this formula is within 0.5dB for 4.1<dR . This 

formula tends to over-estimate dR with a maximum error of 

1.5dB at dR = 2.7. 

 It has been shown that dR is one of the most effective 

parameters for quantifying the quality of the voice source with a 
single numerical value. Another advantage of using dR is that we 

can predict 
kga RRR ,, from it. The predicted values are denoted 

kpgpap RRR ,, . The following prediction equations are derived 

by Fant (1995) via linear regression:  
100/)8.41( dap RR +−=     (7) 

100/)8.114.22( dkp RR +=     (8) 

gpR is then obtained by substituting (7) and (8) into (6). 

These predicted values may deviate from the desired value; 
hence, three deviation constants are defined here:  

kpkkgpggapaa RRKRRKRRK /,/,/ ===  (9) 

 In Section 1.3, the analysis results are summarized in 
terms of dR . In the synthesis stage, 

kga RRR ,, are first 

predicted from dR  Timing parameters can then be obtained via 

equations (3), (4) and (5). Direct synthesis parameters are 
retrieved thereby.  
 In addition to dR , the “open quotient” parameter is 

another good indicator of different phonations. The open quotient 
parameter, OQ, is defined as 

oe TT / . Breathy voices tend to have 

a larger open quotient. The open quotient can be related to the 
relative amplitude of the voice fundamental, H1, and the second 
harmonic, H2. By regression analysis of data generated by the LF-
model for different phonation types, Fant (1997) found the 
following relationships.  

)5.5exp(27.0621 OQHH +−=−    (10) 

dRHH 1.116.721 +−=−     (11) 

These are good approximations for dR up to 2.7.  

2.2 Noise residual model 

For the singing voice to sound “breathy”, aspiration noise is 
perceptually most important (Klatt and Klatt, 1990). The increase 
of the relative amplitude of the fundamental component is 
secondary. Without the presence of aspiration noise, the increase 
of the fundamental component may induce the sensation of 
nasality in a high-pitch voice. Therefore, despite the fact that 
breathiness can be simulated to some extent by using a 
sophisticated glottal-source model, a more natural simulation of 
breathiness requires the addition of aspiration noise.  

The aspiration noise (turbulence noise) is pitch 
synchronous with the smoothed quasi-periodic derivative glottal 
wave since the likelihood of the turbulence noise is proportional 
to the flow and inversely proportional to the radius of the 
aperture. Cook (1990) has calculated the likelihood of the 
existence of the turbulence noise. He concluded that the 
likelihood of the turbulence exists for the entire open phase and 
achieves maximum sound radiation power right after the point 
where the vocal folds begin to close. A high power burst of noise 
is also likely at the glottal opening instant, corresponding to 
highly pressurized air rushing through a small slit. Hence, it is 
expected that there are two pulses of noise per cycle in some 
cases. One occurs when the vocal folds are closing and the other 
one occurs when the vocal folds are opening. Pitch-synchronous 
noise is also found in other musical instruments such as bowed 
strings (Chafe, 1990). 

From the psychoacoustics experiments, Hermes (1991) 
did a study on the perception of the synthetic breathy vowels. In 
his experiments, the synthetic vowels are generated based on the 
source-filter theory, and the derivative glottal wave is simplified 
as a low-pass filtered pulse train. He indicated that the noise 
segregates from the speech signal and perceived as a separate 
stream when stationary noise is used. Hence, adding stationary 
noise hardly contributes to the breathy timbre of the vowel. 
Hermes further concluded that using pitch-synchronous 
amplitude modulated noise, i.e., the noise has a temporal 
envelope of the same periodicity as the pulse train, could solve 
this problem.  

Combined with the low-pass filtered pulse train, a de-
emphasized, high-pass filtered, pitch-synchronous, amplitude-
modulated noise is used as the source to excite the vocal tract 
filter. In this way, the noise integrates with the pulse train in the 
sense that a reduction of the loudness of the noise stream and a 
timbre change in the breathy vowel are perceived. It is found that 
the reduction of the noise loudness is maximized when the 
interval between the noise bursts and the pulses is less than 1 ms 
in a glottal period of 8 ms. The cut-off frequency of the high-pass 
filter is chosen from 1200 Hz to 2k Hz. A lower cut-off frequency 
results in a greater degree of breathiness. The de-emphasis is 
implemented by the low-pass filter )1/(1)( 1−⋅−= zpzH , 

where the pole p is set to 0.9. Childers (1995) also proposed a 
similar noise model, but without the de-emphasis.  

As a first approximation, the nature of the double 
pulses of the aspiration noise is neglected. The noise residual 
before spectral shaping is roughly modeled as a pitch 
synchronous amplitude modulated Gaussian noise with larger 
power around the glottal closure instants.  

Figure 4 shows the noise synthesis model for the high-
passed aspiration noise. The first block is the Gaussian noise unit 



generator, which generates a zero mean, unit variance, Gaussian 
white noise sequence. Second, a scaled Hanning window centered 
around the glottal closure instants modulates the amplitude of the 
Gaussian noise. The scale of the Hanning window for each glottal 
period is specified in the An parameter sequence. L in the above 
figure indicates the lag of the center of the Hanning window with 
respect to the glottal closure instants. The lag is specified as a 
percentage relative to the length of the glottal period. The 
locations of the Hanning window centers are then calculated from 
the glottal closure instants and the desired lag. After the 
amplitude modulation, a spectral shaping filter is used to account 
for the average spectral density of the aspiration noise.  The 
shaping filter also includes the high-pass filtering introduced by 
commuting the radiation filter with the vocal tract filter as shown 
in Figure 2.  

 
 
 
 
 
 
 
 
 

 
Figure 4. Noise residual synthesis model 

 
The current spectral shaping filter used is a 

combination of a de-emphasis filter and a high-pass filter. We use 
the same de-emphasis factor 0.9 as Hermes did. The cut-off 
frequency of the high-pass filter is 4 kHz, which is chosen by 
observing the spectrum magnitude of the noise residual extracted 
from real recordings. Figure 5 shows several frequency spectra of 
noise residuals extracted from the baritone sustained singing 
vowels. Vowels /a/, /e/, and /i/ are included in this figure. We can 
see that the spectral shaping is quite consistent except for the 
residual vocal tract filter formant structure. Therefore, a better 
spectral shaping filter could be obtained by matching an ARMA 
filter to the frequency spectrum of the noise residuals extracted 
from singing recordings. This idea is still under investigation.  
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Figure 5. Frequency spectra of the noise residuals 

3. Analysis Algorithms 

In order to mimic the original recording, the analysis procedure 
involves three steps. The first step is to obtain the glottal 
excitation from sound recordings via a recently proposed inverse 

filtering method. The second step is to decompose the inverse 
filtered glottal excitation into a smoothed derivative glottal wave 
and the noise residual. Finally, the smoothed derivative glottal 
wave is fitted to the LF model via constrained nonlinear 
optimization. The magnitude of the noise residual is measured to 
determine the variance of the Gaussian noise around the glottal 
closure instants and the duty cycle of the amplitude modulation. 
These three steps will be illustrated in the following.  

3.1 Source-filter de-convolution 

A novelty of this newly proposed source-filter de-composition 
algorithm is that it provides a derivative glottal wave constraint 
when estimating the vocal tract filter. Hence, the resulting 
inverse-filtered derivative glottal waves are closer to the true 
glottal excitation, at least when the source-filter interaction is 
negligible. A brief discussion of this algorithm is provided in the 
following. A detailed analysis of the performance of this 
algorithm is published elsewhere (Lu, 1999).  
 The derivative glottal wave is constrained to the 
KLGLOTT88 model (Klatt, 1990). The KLGLOTT88 model 
consists of the Rosenberg model describing the basic wave-shape 
of the derivative glottal wave and a spectral tilt implemented by 
low-pass filtering. Figure 6 shows the synthesis model assumed 
under this algorithm, where the KLGLOTT88 model replaces the 
glottal excitation in Fig. 2.  
 
  
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6.  The synthesis model at the analysis phase 

 
In the KLGLOTT88 model, the basic voicing 

waveform describes the wave-shape of the derivative glottal wave 
without the return phase. In the open phase, the derivative glottal 
wave is modeled by a simple second order polynomial, 
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Where 
0T is the fundamental period of the voice, 

sF is the 

sampling frequency, AV is the amplitude parameter, and OQ is 
the “open quotient” of the glottal source (0 for always closed and 
1 for always open). 

 Although the basic waveform always has abrupt 
changes at the glottal closure instants, the low-pass spectral tilt 
filter gives some smoothing of the return phase. This first-order 
low-pass filter and the vocal tract filter are further combined to 
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form an order N+1 all-pole filter. The glottal spectral tilt can be 
associated with a single real root of the order N+1 filter.  

Due to the simplicity of the basic waveform, we may 
formulate the parameter estimation as a convex optimization 
problem by estimating the parameters of the all-pole vocal tract 
filter and the glottal source waveform pitch synchronously. More 
explicitly, if we know the fundamental period 

0T  and the open 

quotient OQ, the task is then to estimate the filter coefficients of 
the N+1 order all-pole filter and two shaping parameters (a and 
b) of the basic waveform using one or more periods of the voice 
pressure data.  

To mimic the original speech pressure wave input, we would 
like to minimize the error between the estimated speech pressure 
wave and the true speech pressure wave. However, for the 
convex optimization formulation, a so-called “equation error” 
(Ljung and Soderstrom, 1987) is used for measuring the model 
fit. Using the equation-error method, we try to minimize the 
error between the estimated glottal wave and the true glottal 
wave signal. 

Denote the filter coefficients as T
NaaA ]ˆ...ˆ[ 11 +′′= , the 

known speech signal as y(n), and the estimated derivative glottal 
waveform as )(ˆ ng . We now form the error between the true 

glottal wave (that belongs to the KLGLOTT88 model by 
assumption) and the estimated glottal wave. For i = 1,….,m, 
where m is the number of sampling points in one glottal period, 
we have  
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T

N baaaX ]ˆ...ˆ[ 11 +′′=  is the parameter vector we 

wish to estimate. Note that the chosen error is linear in the 
parameters, as is characteristic of equation error formulations.  

If OQ and 0T are assumed known, minimization of the 

equation error for a glottal period is then equivalent to the 
following convex optimization problem: 

Minimize BAX −  

Subject to a>0, b>0 and a = bOQT ⋅⋅0
  (18)                                                                      

where [ ] [ ]TTTT
m bbBaaA 211 ...,... == . 

To trade off between robustness and computational 
efficiency, the 

2L  norm minimization is chosen for our 

application. The above problem can then be solved via the 
sequential unconstrained minimization technique (SUMT) 
(Boyd, 1999). By uniformly sampling the OQ values and solving 
the problem at each sample, the best estimate can be obtained as 
the one having minimum error.  

In addition to the convex constraints of the glottal wave-
shape parameters (a and b), the value of the last coefficient of the 
filter, 

1ˆ +′Na , is also constrained to be within a predefined range. 

By observing that this coefficient is the product of all the poles 
and the spectral tilt µ , the poles of the all-pole filter are loosely 

regularized by the constraints on 
1ˆ +′Na .  

The overall estimation procedure is illustrated in Fig. 7. 
Before SUMT estimation, we need to estimate the fundamental 
period 

0T , and retrieve pitch-synchronized speech pressure data 

that start at the glottal closed phase. Several methods for GCI 

(glottal closure instant) detection from the speech signal have 
been discussed in the literature (Strube, 1974) (Ma, 1994). Most 
depend on either the short-time energy of the signal or the linear 
prediction residual signal. These methods are based on block 
data processing; since voice is rarely precisely stationary, there is 
some ambiguity in the locations of the detected glottal closure 
instants.  To overcome this problem, Smits (1995) developed 
another type of method to extract the instants of significant 
excitation (glottal closure) for speech signals. This method 
assumes that the excitation signal within a pitch period, starting 
from the significant excitation, is minimum phase. The glottal 
closure instants are then estimated as the frame start time plus 
the average group-delay of the LP residual within an analysis 
frame.  

The group-delay method has been shown to be robust 
against noise and distortion, since the average phase 
characteristics of the signal are determined mainly by the strength 
of the excitation (Murthy, 1999). Hence, this algorithm was 
chosen as the main algorithm for determining the GCIs. Since the 
estimates from this method tend to have a lag bias, the Frobenius 
norm approach (Ma, 1994) is also used in conjunction with the 
group-delay method to determine the final GCI locations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.  The analysis procedure for source-filter decomposition 

 
By studying the synthetic data, we have found that the 

inverse filtered glottal excitation is still acceptable even when the 
detected GCIs are off 15% from the correct locations. Hence, a 
byproduct of the SUMT estimation is GCI detection, where the 
GCIs are detected by locating the local minima of the inverse-
filtered glottal excitation. In our experiments for sustained 
vowels, the GCIs are actually further corrected using this method.  

Voice signal after amplitude normalization 

One glottal period 

Loop over different OQ values: 
Vocal tract filter and glottal source 

estimation via SUMT 
End 

Select and store 5 best 

Loop over each period: 
Enforce continuity constraints via 

Dynamic Programming 
End 

Smoothing the vocal tract area by time averaging 
and linear interpolation 

Estimated model parameters 

Loop 
over 
each 
period 

GCI 
detection 



3.2 Noise residual extraction 

From the above source-filter de-convolution procedure, one could 
obtain the inverse-filtered glottal excitation. We have modeled 
the glottal excitation signal as the sum of the smoothed derivative 
glottal wave and the high-passed noise residual. In this section, 
we want to separate the noise residual from the derivative glottal 
wave signal.  
 Short-time Fourier analysis methods consider the noise 
residual as the aperiodic component. The periodic part is 
considered as the derivative glottal wave. Since the derivative 
glottal wave, especially for pressed and normal phonation, has a 
sharp discontinuity around the glottal closures, traditional short-
time Fourier analysis cannot represent it well around the glottal 
closure instants. A certain amount of averaging around the glottal 
closure instants is inevitable. A strength of wavelet analysis is 
that it can remove the noise component without compromising 
the sharp detail of the original signal. Wavelet Packet Analysis 

(WPA) (Coiffman, 1992) is a generalization of the wavelet 
decomposition in that it offers a larger range of signal 
representations. Therefore, WPA is used to extract the noise 
residual.  
 The following three figures compare the effectiveness 
of three noise extraction methods by de-noising a synthetic glottal 
excitation signal. Figure 8 is the de-noising result obtained using 
the SMS (sinusoidal modeling) decomposition (Serra, 1997). This 
is a short-time Fourier analysis type method. The first plot on Fig. 
8 shows the desired derivative glottal wave and the estimated 
derivative glottal wave. The second plot shows the original noise 
component, and the third plot is the extracted noise component. 
In this example, we use 60 harmonics to present the derivative 
glottal wave in order to capture the sharp corner of the glottal 
closure instants. Since the number of harmonics is high, it tends 
to over-fit the input data, so that some noise is included in the 
estimated derivative glottal wave.  
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Figure 8 De-noising results using SMS 
 
 Fig. 9 shows the de-noising results obtained using a 
basic wavelet decomposition. The wavelet decomposition is 
performed at level 3 with the 3rd order Daubechies wavelet. A 
heuristic variant of the principle of Stein’s Unbiased Risk 
Estimate (SURE) thresholding is used to truncate the noise 
components (Donoho, 1995). The noise residual is obviously 
under-estimated in this example.   

Figure 10 shows the result for the Wavelet Packet 
Analysis (WPA) method. The WPA is performed at level 4 with 
the 2nd order Daubechies wavelet. The variance of the original 

noise and the extracted noise are comparable. The amplitude 
envelope of the extracted noise is very close to the original one. 
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Figure 9. De-noising results using a wavelet decomposition 
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Figure 10. De-noising results using Wavelet Packet Analysis 

3.3 LF-model fitting 

Once the estimated derivative glottal wave is obtained, the LF-
model is used to parametrize the derivative glottal wave period-
by-period. Two steps are involved in LF-model fitting.  

For each period of the derivative glottal wave, the LF-
model timing parameters and glottal excitation, Ee, are first 
retrieved by direct estimation methods (Strik, 1998). Since the 
estimated derivative glottal wave is usually noisy due to the 
model mismatch, the direct estimation method may yield 
unreliable results. The LF-model parameters are further refined 
via constrained nonlinear optimization using the Sequential 
Quadratic Programming method. The timing parameters are 
constrained such that the open quotient OQ will be bounded 
around the estimated value from Equation (10).  

4. Results and Discussion 

Fig. 11 illustrates the effectiveness of the source-filter de-
convolution algorithm. These results are estimated from the 
baritone sung vowel /a/ at pitch B2. The first plot overlays the 
inverse filtered glottal excitation, the KLGLOTT88 and the LF 



synthetic derivative glottal waves. The parameters for the 
KLGLOTT88 model are obtained at the source-filter 
decomposition step. The LF-model parameters are obtained via 
fitting the inverse filtered signal to the LF-model. We can 
observe some formant ripples during the closed phase. These 
inevitable ripples appear to result from the source-tract 
interaction that is beyond the assumptions of the source-filter 
model. One simple remedy for this problem is to introduce two 
different vocal tract filters, one at the closed phase and another 
one at the open phase. The perceptual improvements due to using 
two such filters are still under evaluation.   

The second plot shows a snapshot of the spectra of the 
inverse-filtered glottal excitation and two fitted synthetic 
derivative glottal waves. The third plot shows the spectra of the 
original recording and the synthetic sound generated by exciting 
the estimated vocal tract filter with the LF synthetic derivative 
glottal wave. Both of the frequency responses match quite well. 
We have separated these spectra by scaling their magnitude for 
better viewing. The synthetic vowel also sounds almost like the 
original singing from informal subjective listening. 
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Figure 11. Source-filter de-convolution results for a low-
pitched baritone sung vowel /a/ 

 
 Fig. 12 shows the results of noise residual extraction 
using Wavelet Packet Analysis. The original recording is the 
breathy sung vowel /a/ at pitch B2. The upper plot shows the 
inverse-filtered glottal excitation and the de-noised signal. The 
bottom plot is the extracted noise residual. The estimated glottal 
open instants are also indicated in the plots as solid stem lines. 
The estimated glottal closure instants are shown by dashed stem 
lines. From this figure, we can clearly see that the noise bursts 
occur right after the glottal closure instants and the glottal 
opening instants. This result is consistent with the study by Cook 
(Cook 1990).  
 Table 1 summarizes the LF-model parameters from the 
analysis of the baritone sung vowels. The results are averaged 
across different singing phonations, pitch scales, and vowel 
types. The low pitch is B2, the medium pitch is G3 and the high 
pitch is B3. Comparing to Karlsson’s results for speech data 
(Karlsson, 1995), we have a larger dR parameter and a lower cut-

off frequency Fa, i.e., a larger spectral tilt. From the summary, 
we also see that the deviation constants are close to 1 in most of 
the cases; hence, one could predict the LF parameters quite well 
from a single dR parameter. Furthermore, we see that increasing 

the degree of breathiness or the phonation frequency will result 
in a larger dR . 
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Figure 12. Extracted noise residual for a breathy sung /a/ 
 
Condition OQi Fa Kk Ka Rd 

Pressed 0.49 675 1.07 1.23 0.84 
Normal 0.64 515.3 1.04 0.95 1.19 
Breathy 0.78 161 0.89 1.21 2.90 
Low F0 0.61 349 1.05 0.97 1.30 
Medium F0 0.64 326 1.02 1.05 1.63 
High F0 0.69 300.7 0.90 1.35 2.26 
Vowel /a/ 0.63 349 0.99 1.10 1.57 
Vowel /e/ 0.66 318.9 1.01 1.10 1.79 
Vowel /i/ 0.65 298.3 1.00 1.12 1.81 

Table 1.  The summary of the LF-model parameterization    
 

0 .5 0 .6 0 .7 0 .8 0 .9 1 1 .1 1 .2 1 .3 1 .4 1 .5
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

N o rm a liz e d  p e rio d  le n g t h

N
u

m
b

e
r 

o
f 

p
e

ri
o

d
s

 
 

Figure 13.  Histogram of normalized noise period length 
 

A statistical analysis of the noise residual for breathy 
vowels was carried out. First, the degree of pitch synchrony was 
evaluated by measuring the intervals between adjacent peaks in 
the smoothed noise time-domain magnitude envelope. The 
intervals were normalized such that an interval of 1 is one 
period. A histogram of these normalized amplitude-envelope 
peak intervals (see Fig. 13) shows that the noise residual is 
highly pitch synchronous. We also found that the average noise 
peaks occurs at a lag of 10% of the period after the glottal 
closure instants. The corresponding interval between the major 
excitation and the noise bursts is less than 1ms. This is consistent 
with D.J. Hermes’s experiments with synthetic noise.  



We also evaluate the strength and the duty cycle of the 
noise bursts. The strength of the noise burst is measured as the 
normalized amplitude-envelope peak for each glottal period.  
The amplitude is normalized by the strength of the glottal 
excitation, Ee. We found that the normalized strength could be 
approximated as a constant except at the onset and the offset of 
the vowel.  The average strength was 0.04 in our experiments. 
The duty cycle is measured as the normalized time duration for 
the noise bursts decay to 10% above the noise floor. The duty 
cycle is less consistent across different sung tones. The average 
duty cycle measured was 42%.  

Fig. 14 shows the normalized noise floor. The 
normalized noise floor is defined as the minimum noise 
amplitude-envelope magnitude relative to the normalized 
strength of the noise burst in the period. The average noise floor 
measured was 0.02. The normalized noise floor was found to be 
quite consistent and has a tendency to increase at the offset 
where the noise is less pitched.  
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Figure 14.  Normalized noise floor each period  

5. SUMMARY AND CONCLUSIONS 

In this paper, we proposed a model for glottal excitation which 
consists of the sum of a parametric glottal waveform (modeled 
using the LF method) and a pitch-synchronous amplitude-
modulated Gaussian noise (the aspiration component). We 
described the associated analysis and resynthesis procedures. By 
analyzing baritone recordings with different voice qualities, 
parameters of the glottal excitation model were computed and 
summarized. We conclude that the proposed model is capable of 
achieving a wide variety of synthetic voice “textures” by varying 
the wave-shape parameter dR  and the strength of the noise 

component.  
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