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ABSTRACT

This paper presents a framework in which samples of bow-
ing gesture parameters are retrieved and concatenated from
a database of violin performances by attending to an anno-
tated input score. Resulting bowing parameter signals are
then used to synthesize sound by means of both a digital
waveguide violin physical model, and an spectral-domain
additive synthesizer.

1. INTRODUCTION

In the context of instrumental sound synthesis, generating
realistic, natural-sounding performances from an annotated

input score represents a difficult task, especially for excitation-

continuous musical instruments [4]]. On one hand, although
synthesis techniques based on sound sampling provide in
general higher fidelity, eventual discontinuities in generated
sound limit the naturalness of the synthetic performance. On
the other hand, synthesis methods based on physical or spec-
tral models present a more continuous behavior, but the ne-
cessity of appropriate input controls keeps them from raising
more Success.

These two general problems reflect a clear limitation that
performance modeling traditionally presented: the focus has
been put on the sound and not on how the performer controls
the instrument. In fact, the unavailability of reliable mea-
surement techniques for acquiring those physical actions di-
rectly involved in the sound production process has derived
into certain lack of attention to the important role of instru-
mental gestures in music performance.

When the acquisition becomes feasible, the possibility
of sampling instrumental gesture parameters from real per-
formance recordings arises as an attractive opportunity for
driving physical or spectral sound models. In spite of the
complexity of violin practice, the measurement and analysis
of bowing parameters has received attention during the last
years [9, 3} 14,7, 18], but no attempt has been done to bring the
classical ideas of sample-based synthesis to the domain of
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bowing gestures. Recently, an interesting work dealing with
percussive gestures brought up the possibility of retrieving
gesture signals for reconstructing a natural performance by
using physical models [2].

As a natural continuation of previous works by the authors
[6) [7, 5], this paper presents a case study on gesture sam-
pling for instrumental sound synthesis. Samples of bowing
parameter signals are retrieved from a multi-modal database
of real violin performances by attending to an annotated in-
put score. Synthetic bowing parameter signals are obtained
by stretching and concatenating retrieved samples, and then
used as input controls both to a violin physical model, and
to a violin spectral model based on additive synthesis. An
overview of the framework is depicted in Figure T}
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Figure 1. Schematic view of the proposed system.

The rest of the paper is structured as follows. Section
describes the construction of the gesture sample database.
Then, the process of rendering (bowing) gestures by sam-
ple retrieval and concatenation is introduced in Section [3]
An overview of sound synthesis is given in Section[d] The
paper closes by pointing out some conclusions and possible
improvements.

2. DATABASE CONSTRUCTION

The performance database used for this study is composed
by annotated samples of gesture parameter signals. Each
sample, corresponding to a note, contains the segmented
streams of bowing parameters plus a number of annotations
to be used during sample retrieval.


mailto:esteban.maestre@upf.edu

Recording scripts (including both exercises and short musi-
cal pieces) were designed to cover four different articulation
types (détaché, legato, staccato, and saltato), three differ-
ent dynamics, and varied note pitch and duration values in
different performance contexts (attending to bow direction
changes and rest segments).

2.1. Bowing data acquisition

Acquired bowing parameters are bow velocity, bow force,
and f ratio. The f ratio is defined the proportion between
the bow-bridge distance and the effective string length (dis-
tance from the finger to the bridge). Bowing data acquisi-
tion is performed by means of a commercial electromagnetic
field sensing device, and using strain gauges for extracting
bow force. See [4] for a detailed description.

Recorded performances are segmented at note level by
means of a dynamic programming procedure (based on the
Viterbi algorithm) as introduced in [4]]. In a post-processing
step, minor manual corrections are applied for ensuring the
appropriate segmentation of around 10K notes.

2.2. Database annotation

Each note is first classified into one of several note groups
by attending to score annotations. Secondly, four note fea-
tures are attached to the note: the note duration, the string
played, and the effective string length (obtained from the
string played and the fundamental frequency), and the dy-
namics. Finally, the contour of the bowing gesture param-
eters of each note is characterized, and a feature vector is
extracted. Next we provide an scheme containing the dif-
ferent annotations that accompany each i-th sample in the
database:

— Note group G'.

— Note features: duration D', string played s',
effective string length [/, and dynamics d'.

— Contour feature vector f'.

2.2.1. Note classification

Attending to the score annotations, segmented notes are clas-
sified into different groups attending to both two intrinsic
characteristics, and two contextual characteristics.

Regarding intrinsic characteristics, we considered the
bowing technique (détaché, legato, saltato, or saltato), and
the bow direction (down or up).

As contextual characteristics, we considered its position
within a slurred note sequence, and its position within a se-
quence of consecutive notes (no rest segments in between).
In both cases, a note can be labelled as init, mid, or end, if it
respectively appears at the beginning, middle, or end of the
sequence; or as iso for a single-note sequence.
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Each feasible combination of the four characteristics above
leads to a note group. Detailed information on note classifi-
cation can be found in [6, 4]].

2.2.2. Gesture feature extraction

The contours of the gesture parameter signals segmented for
each note in the database are automatically analyzed by at-
tending to a predefined contour model based on sequences
of cubic Bézier segments. For each note group, a specific
contour model is defined by attending to the temporal signa-
ture of bow velocity, bow force and f ratio. Roughly, a con-
tour model consists on the number of Bézier segments, and a
series of slope constrains to be respected when applying the
model. Out of this analysis, introduced in [6} 4], contours
of gesture parameter signals are represented by concatena-
tion of Bézier curve segments whose parameters are used for
constructing a vector p’ for each i-th note in the database.
Vectors corresponding to notes of each group present a dif-
ferent dimensionality, typically ranging from 25 to 40.

In a second step, principal component analysis is applied
to the contour parameter vectors p of samples of each note
group, obtaining a lower dimensionality feature vector f' for
each i-th sample in the database. Depending on the note
group, a different dimensionality reduction is applied, with
ratios typically ranging from 4 to 5 [5]. For each note group
Gy, a normal distribution is estimated from the feature vec-
tors f of its corresponding samples, having the resulting co-
variance matrix X, annotated. Both the feature vectors and
the covariance matrices are used during sample search, as it
is described in Section[3.2

3. CONCATENATIVE GESTURE RENDERING

In this section we give details on gesture sample selection
and concatenation. Out of this process, bowing control pa-
rameter signals (bow velocity, bow force, and 8 ratio) are
rendered from an annotated input score. Roughly, sample
search is based on computing a distance (or cost) between
each note in the input score and a number of sample candi-
dates. Each m-th note in the input sequence is first assigned
a note group G™ as described in Section 2.2.1] Then, for
each m-th note a sample candidate list is generated by col-
lecting those database samples matching the assigned note

group.

3.1. Gesture feature prediction

In a preprocessing step, a predictive model based on induc-
tive logic programming is constructed for each note group,
using the database sample examples that were previously
analyzed. Each model is trained with the samples belong-
ing to the corresponding note group, having the performance
context features used as inputs, and the contour feature vec-
tors used as outputs. The bowing gesture prediction models



(they have been built by means of the Tilde algorithm [1]])
achieve mean absolute errors of around MAE = (.2, as re-
ported in a previous work by the author which uses the same
database and gesture features for a different application (see
[S]] for a detailed description).

For each m-th note in the score, the note’s group model
Tgn is applied, and a vector f,' of gesture features is pre-
dicted out of the score annotations (duration D™, effective
string length [, string played s,,, and dynamics d"™).

3.2. Sample Search

For an input sequence of M notes, the task of sample selec-
tion is set as finding the vector q* = {¢"*... ¢"*} of sam-
ple candidate indexes which minimizes a total cost C(q),
expressed as

M

. m

= argmin Z cm,
q m=1

q" = argmin C(q) (D)
q

where the value for ¢ will iterate over the m-th note’s possi-
ble candidates, and cma” represents the cost associated the
m-th note when choosing the candidate pointed by ¢”. The
solution is found using dynamic programming (in particular
the Viterbi algorithm).

The cost C™4" is decomposed as a weighted sum of
two different terms, as expressed in equation (3.2). The
first one, referred to as basic cost and labelled as CZ”qm, is
computed by attending to database annotations not regard-
ing specific gesture features. The second one, referred to as

gesture cost and labeled as an,q , is computed from a vec-
tor of gesture-specific features (see Section[2.2.2) predicted
from the score.

m
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Basic cost. The cost CZ”q is computed as a weighted sum
of five different sub-costs:

m, m m, m m, m m, m m "
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3)

The duration cost Cpy'?" =| log, gT’:l" | is computed from the
duration ratio, and is equal to one for duration ratios of two
m .

rd |, associated to the
effective string length, is computed in an analogous man-
ner: its value equals one for length ratios of two or point

five. Given the three different dynamics levels present in the

or point five. The cost CZ”[’ =| log,

database, the dynamics cost C:l"’qm is given a value of zero
when dynamics match, a value of point five when there is
one-level difference, and a value of one for two-level dif-
ference. Similarly, the string cost Cs is given a value of
1/3 if the candidate corresponds to a note played at a string
next to the string that was scripted in the score, a value of
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2/3 for two-strings differences, and a value of one for sam-
ples played at the string E and score notes annotated with
G string (or viceversa). Finally, the continuity cost C™7"
(computed for each note and its predecessor) is set as a
penalty for strong sample-to-sample discontinuities in bow-
ing parameter signals.

Gesture cost. Based on the predicted gesture features, the
gesture cost C;"’qm is computed as the Mahalanobis distance
between the sample candidate’s feature vector fsqm and the
predicted vector f7, using the covariance matrix Xgn corre-
sponding to the m-th note’s group distribution (see Section

2.2.2)). This is expressed as:

=\ VS - @

3.3. Time-stretch and concatenation

Retrieved samples are first transformed in duration by ap-
plying time-stretch to the bowing parameter signals, so that
the duration matches that scripted in the score. Time-stretch
factors are equally applied to the three signals (bow veloc-
ity, bow force and B ratio) in a non-linear fashion, so that
sample edges remain unaffected. Then, sample concatena-
tion is carried out for each bowing parameter, by means of
smoothly connecting retrieved samples’ signals around note
junctions.

4. SOUND SYNTHESIS

The synthetic bowing parameters obtained through the pro-
cess described above are used to drive both physical and
spectral-domain synthesizers of violin sound. Due to the
focus on right-hand gestures, no fingering controls are con-
sidered. Thus, the input signals to the sound synthesis al-
gorithms are bow velocity, the bow force, and the B ratio.
The scripted pitch leads to a step-wise constructed pitch sig-
nal as input control, together with the string being played.
Given the importance of left-hand control in violin play-
ing (e.g., vibrato), the naturalness of synthetic sound falls
still upon the inclusion of an appropriate left-hand control
model, especially for legato bowing technique. To our sub-
jective perception, the obtained preliminary sounds never-
theless showed a degree of realism that demonstrates the
potential of considering gesture samples as a basic source
for instrumental sound synthesis.

Physical modeling synthesis. Physical modeling synthe-
sis is carried out by means of the Synthesis Toolkit in C++
(STKB) implementation of Smith’s waveguide bowed-string

Ihttp://ccrma.stanford.edu/software/stk/
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model. A single string model with a low-pass one-pole im-
plementation of the loss filter has been chosen as a proof-
of-concept physical model for this work. For obtaining the
violin sound from the string velocity signal, we used im-
pulse responses computed through different methods [4].

Spectral-domain additive synthesis. Violin additive syn-
thesis is achieved trough the violin timbre model reported
in [7]. The model is based on neural networks that are
trained with audio and bowing descriptors from real perfor-
mances. The model is able to predict the spectral envelopes
of the harmonic and residual components of the string vi-
bration signal given the instantaneous values of bowing pa-
rameters. A simplified model was built for the three bowing
parameters being considered here. Predicted harmonic en-
velopes are filled with the harmonics corresponding to the
pitch in the score, while and residual envelopes are filled
with white noise, following the SMS modeﬂ After overlap-
add of resulting frames, the output sound is convolved with
a violin body impulse response previously estimated by de-
convolution of a microphone signal by a pickup signal, as
described in [7].

Tuning of a sample-based selection process is a difficult
task. In our experiments, we used different weight tunings
of the two main costs involved in sample selection: the basic
cost and the gesture cost[3.2] For both sound synthesis meth-
ods, the elimination of the gesture cost led to obtain sounds
presenting a less consistent timbre continuity, mainly due
to certain disparity in note’s dynamics annotated the perfor-
mance database. Also, biasing weights towards the basic
cost usually leads to selecting samples that present a worse
segmentation, especially at bow direction changes.

5. CONCLUSION

In this paper we have introduced gesture sampling and con-
catenative gesture rendering in the context of violin sound
synthesis. In our preliminary application case study, sam-
ples of bowing gesture parameters (bow velocity, bow force,
and f ratio) are retrieved and concatenated from a database
of performance recordings, by attending to an input score.
Synthetic bowing controls are then used for driving sound
generation through physical and spectral-domain synthesis.

Although the fidelity of obtained performances is lim-
ited by the quality of the sound synthesis methods, synthetic
sounds show in general a significant degree of realism. The
promising results lead us to believe that important improve-
ments can be achieved in less preliminary implementations
that will include a better balanced database, left-hand con-
trols, and cost weight tuning based on formal subjective
tests. So far, no gesture-specific sample transformation was

Zhttp://mtg.upf.edu/technologies/sms/
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studied, but the inclusion of higher level gesture transfor-
mations (for example, changing the dynamics of a sample),
appear as a promising post-processing step that should ac-
count for keeping resulting signals within the limits of the
playable space [7]. Moreover, the incorporation of a phys-
ical model considering the arm movements could be an in-
teresting tool for giving coherency to gesture concatenation
and transformation [2].

In the future, larger-scale subjective tests could be car-
ried out in order to determine whether gesture sampling might
represent an important improvement over generative models
trained to emulate the temporal evolution gesture parameter
signals out of a score [4].
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