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Abstract

A special class of feedback delay networks using circulant matrices is proposed. These
structures can be efficiently implemented and allow to control the time and frequency be-
havior. Several applications of circulant feedback delay networks in audio signal processing

are presented.

1 Introduction

In the seventies, M. A. Gerzon [1976] introduced
feedback delay networks (FDN) as structures well
suited for artificial reverberation. These struc-
tures are characterized by a set of delay lines con-
nected in a feedback loop through a “feedback ma-
trix” (see Fig. 1).

J. Stautner and M. Puckette [1982] have uti-
lized FDNs for multichannel reverberation, and
more recently, J. M. Jot [1991, 1992] extensively
studied FDNs and developed associated tech-
niques for designing good reverberators.

In this work, we explore some of the algebraic
properties of FDNs and consider the use of circu-
lant feedback matrices. We show how they can be
used to reduce computational complexity and give
good control over time-frequency behavior. An
FDN having a circulant feedback matrix will be
called a circulant feedback delay network (CFDN).

In addition to reverberation applications,
CFDNs have other uses in sound processing and
synthesis. Examples include simulating radiat-
ing structures such as instrument bodies, feedback
resonators, and digital delay effects in live elec-
tronic performance.

2 Basic Formulation
An FDN is built using N delay lines, each hav-
ing a length in seconds given by 7; = m;T, where

T = 1/F, is the sampling period. The complete
FDN is given by the following relations:
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y(n) =Y _cisi(n) + dz(n)

i=1

N
s.-(n + m,~) = Za;,,-sj(n) + b.-z(n)

j=1
where s;(n), 1 < i < N, are the delay-line out-
puts at time sample n. If m; = 1 for each ¢, we
obtain the conventional state-variable description
of a discrete-time linear system [Kailath, 1980]. In
the present case, the variables s;(n) form a subset
of the system state at time n, with the remaining
state variables being the samples contained within
the delay lines at time n. Using the Z-transform,
we can rewrite Eq. (1) in the frequency domain as

{

1)

Y(z) = cTS(z) + dX(z)

S(z) = D(2)[AS(z) + bX(z)] 2

' where sT(2) = [51(2)...sn(2)] , BT =[b1...bn],
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cT'=[cr...cn)- The diagonal  matrix
D(z) = diag(z~™,27™1,...27™V) is called the
“delay matrix” and A = [ a;; | is called the
“feedback matrix”.

From Eq. (2), the transfer function is easily
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Figure 1: Order 3 Feedback delay network.
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found to be

H(z)=Y(2)/X(z) =cT[D(z"") — A]"'b + 0(13)

The system poles are the solutions of either

detfA —D(z"Y)] =0 4)

or

det[zI — At]=0, 2+#0 (5)

where At is the state-transition matrix of the
linear system of Eq. (2). The matrix A! is not
uniquely determined by A, but we can express A'
in such a way that

AtAT = diag (Im, 1, ... Iny -1, AAT).

The system zeros are the solutions of

det[A — b-l-cT -D(z7Y)] =0

p ©)

The formulation of Eq. (1) represents a refer-
ence structure, in the sense that, with the appro-
priate choice of feedback matrix, it is a lossless
structure. In practice, we must insert attenuation
coefficients and filters in the feedback loop. In
general, if one inserts a gain g; at the output of
each delay line in the FDN, this corresponds to
replacing D(z) with D(z/a) in Eq. (2), where

(7)

In the companion paper we show the re-
lationship between FDNs and waveguide net-
works [Smith and Rocchesso, 1994]. The feedback
matrix can be seen as the scattering matrix of a
generalized waveguide junction. We are interested
in matrices associated with lossless junctions, be-
cause in these cases the signal power is conserved.

The set of lossless matrices strictly contains
that of unitary matrices. For instance, the scatter-
ing matrix of a generic lossless waveguide junction
is not necessarily unitary.

It is easy to check that A is unitary if and only
if the state transition matrix A is unitary. It fol-
lows that if A is unitary, its eigenvalues are unit
modulus, and therefore, all of the FDN poles are
on the unit circle. Thus, choosing a unitary feed-
back matrix corresponds to choosing undamped,
non-decaying eigenmodes for the FDN.

Unitary matrices have nice properties in sig-
nal processing. In particular, they conserve signal
power, even under time-varying conditions, which
helps control dynamic range requirements in fixed-
point implementations [Smith, 1987).

gi=a™
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3 Circulant FDN Matrices

Consider the class of circulant feedback matrix A,
i.e., having the form

a(0) a(1) a(N —1)
A= a(N-1) a(0) a(N - 2)
a(1) a(0)

The following two facts can be proved
[Davis, 1979}

Fact 1: If a matrix is circulant, it is normal (i.e.,
A"A = AAY).

Fact 2. If a matrix is circulant and has eigenval-
ues on the unit circle (i.e., it is lossless), then it is

unitary.

It is well known that every circulant matrix is
diagonalized by the DFT matrix. This implies
that the eigenvalues of A can be computed by
means of the Discrete Fourier Transform of any
row or column:

{XMA)} = {A(k)} = DFT([a(0)...a(N - 1)}T)

where {A\(A)} denotes the set of all eigenvalues of
A, and {A(k)} denotes the set of complex DFT
samples obtained from taking the DFT of {a(n}}.

A matrix that is both unitary and circulant has
all eigenvalues on the unit circle, and the DFT can
be used to compute the eigenvalue phases. In the
case of equal-length delay lines, the eigenvalues
provide exactly the resonance frequencies. Con-
versely, we can easily design the circulant matrix
to have a desired distribution of eigenvalues.

The actual presence of resonance peaks corre-
sponding to eigenvalues depends on the positions
of the zeros, as given by Eq. (6). If we are in-
terested in having a maximally flat frequency re-
sponse, it is natural to put the zeros exactly over
the poles. This gives a perfectly flat response
for equal-length delay lines, and an almost flat
response at low frequencies for slightly different
delay lengths. Incidentally, this distribution of ze-
ros is very efficiently obtained by using d = 1,
bT=[11 1 ]T and c having n entries
equal to 1, n entries equal to —1, and zeros for
the remaining entries. This result is due to the
following fact, which can be proved by Fourier di-
agonalization:

Fact 3: Given a Circulant Nx/NV matrix A, add
a constant ¢ to each entry of n rows (columns) and
subtract the same constant ¢ from each entry of
another n rows (columns). The resultant matrix
A’ has the same eigenvalues as A.
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4 Implementation

In an N-th order FDN, the core computations con-
sist of N updates of the delay lines and a matrix
by vector multiplication. The delay line opera-
tions can proceed in parallel. The matrix by vec-
tor multiplication requires in general O(N?) op-
erations (multiplications and additions). If the
matrices arise from the scattering coefficients of
a waveguide junction, the computations reduce to
O(N). The same order of complexity is required
by the normalized junction. For the special case
of a junction of equal-impedance waveguides, the
multiplications can be replaced by shifts when N
is a power of 2. In all these efficient cases the
eigenvalues of the feedback matrix are constrained
to be at +1 or -1. The circulant matrix offers a
more general-eigenvalue distribution. Moreover,
the matrix by vector multiplication can be imple-
mented very efficiently in hardware. This multi-
plication can be viewed as a circular convolution
of the column vector with the first row of the ma-
trix. Such a convolution can be performed, when
N is a power of 2, using two FFTs (one of which
can be precomputed), a dot product between two
N-vectors, and an inverse FFT. The complexity
of this algorithm is O(Nlog(N)). It is easy to
implement this matrix-vector product in VLSI by
means of the butterfly or other hypercubic archi-
tectures [Leighton, 1992]. These architectures al-
low computations of the FFT in O(log(N)) time
steps, and the algorithm can be pipelined.

5 Applications

The circulant networks has been used for various
purposes in sound synthesjs and processing. The
initial application was artificial reverberation, but
other useful applications can be found.

5.1 Digital Reverberation

A reverberator may be characterized by its fre-
quency density and its time density [Jot, 1992].
We define the frequency density Ds as the
number of resonances per Hertz. In our case, if
the delay lines all have the same length m, assum-
ing that all the poles are distinct and no cancella-
tion occurs, we have an average frequency density
iven b
g y _ Nm

D;=

(®)

The time density D, is defined as the number
of pulses per second found in the impulse response.
In actual rooms, D, is an increasing function of
time. In order to obtain dense reverberation after
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the first reflections (e.g., after 80 msec), we use
different delay lengths.

The actual positions of frequency peaks de-
pend on the feedback matrix and on the delay
lengths. If the delay lengths are fixed, we can
vary the time-frequency properties of the struc-
ture simply by varying the distribution of eigen-
values of the feedback matrix. A uniform dis-
tribution of eigenvalues along the unit circle is
optimum for the frequency response in the sense
that it minimizes the maximum distance between
peaks. However, it produces a highly repetitive
time response. Conversely, clustering the eigen-
values around a point on the unit circle can be
good for maximizing the length of time patterns,
but the clustering of frequency peaks produces
a poor reverberator amplitude response vs. fre-
quency. We see from these considerations that
there is a time-frequency tradeoff. This tradeoff
can be addressed using circulant matrices.

The shape of the frequency response depends
also on the zeros, and the discussion leading up
to Fact 3 considers ways to choose the vectors b
and ¢ to obtain a flat amplitude response at low
frequencies.

An FDN can be interpreted as a diffusing ob-
ject in a reverberant environment. Consider a
square room as in Fig. 2. In the center of the
room imagine an object that is the sound source,
the listener, and a diffusing element at the same
time. A pictorial view could be a musician listen-
ing to himself and contributing with his body to
the scattering of acoustic waves.

Figure 2: FDN as reverberator

Let us consider propagation of waves only in
certain well-defined trajectories. These trajecto-
ries correspond to closed paths from the source
to itself, each involving only a small number of re-
flections. Let N be the number of these differently
shaped trajectories.

In the interpretation, each closed ray path cor-
responds to a delay line. The vector of input-
weighting coefficients b corresponds to the radia-
tion strength of the sound source along each path.
The feedback matrix corresponds to the diffusing
characteristics of the object. For instance, the ma-
trix element a; ; corresponds to the energy trans-
ferred from pattern j to pattern i.

The diagonal of the feedback matrix deter-
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mines the strength of “standing waves” which set
up along each pattern. To model the frequency
dependent nature of specular versus diffuse reflec-
tion, the matrix elements a; ; may be replaced by
digital filters A; j(2) in which case the diagonal
elements would be gentle lowpass filters while the
off-diagonal elements would tend to be highpass.
It is possible to share lowpass filtering among all
“standing waves” and to share highpass filtering
among all “diffusing waves.” This modeling point
of view is limited by the fact that only N “closed
ray paths” in the room are being simulated, and
all non-specular reflections are being forced to en-
ter some subset of the supported ray paths.

A circulant matrix can be interpreted as a dif-
fusing object where the transfer of energy between
two patterns depends only on the relative position
of the patterns (under a certain ordering).

This physical interpretation is useful for com-
puting the lengths of the delay lines, according to
the geometrical proportions of the room and to the

fact that each path corresponds to a normal mode.-

For this purpose, a three-dimensional model may
be used.

5.2 Resonators

FDN’s with short delay lines may be used to pro-
duce resonances irregularly spread over frequency.
A possible application could be the simulation of
resonances in the body of a string instrument.

M. Mathews and J. Kohut [1973] showed that
in this kind of simulation, the exact position and
height of resonances is not important; on the con-
trary, they stated that the Q’s of the resonances
must be sufficiently large and the peaks must be
sufficiently close together.

With CFDNs we can easily achieve these goals,
and we can vary the distribution of peaks by
acting on the delay lengths and/or the feedback
matrix. This means we have the possibility of
spanning a large number of resonances using a
small number of parameters. Another interest-
ing application of CFDNs is as resonators in a
feedback loop for pseudo-physical sound-synthesis
techniques. By exciting these structures with
bursts of white noise we obtain a multidimen-
sional extension of the Karplus-Strong algorithm
[Karplus and Strong, 1983}, that is very effective
for simulating membranes and bars. Alterna-
tively, we can couple these resonators with non-
linear exciters and explore new families of sus-
tained sounds.

6 Summary

Feedback delay networks, and special cases using
circulant matrices, have been discussed. We find
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that circulant networks provide good efficiency
and versatility, and they can be used in a variety
of applications.

We continue to study the algebraic properties
of circulant networks and to look for further prac-
tical applications.
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