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Abstract

In this paper we propose different models of un-
usual friction-driven musical instruments, together with
a spectral analysis of the instruments. A real-time im-
plementation of the glass harmonica and the musical
saw is proposed.

1 Introduction

Friction-induced self-excited vibrations appear in
many different structural materials and with different
surfaces of contact. All these materials present sim-
ilar frictional behaviors. Friction is also the excita-
tion source of a well-known family of musical instru-
ments, i.e. the family of bowed string instruments. The
player coats his bow with rosin, in order to increase the
amount of adherence between the bow and the string.

In this paper we are interested in musical instru-
ments driven by friction which are less common than
those belonging to the bowed string instrument family,
i.e. the musical saw and the glass harmonica. We stud-
ied the sounds generated when exciting a saw or a wine
glass with a cello bow and when rubbing a finger along
the rim of a wineglass.

Sounds have been recorded and analyzed in these
cases in order to construct models simulating these in-
struments. Both physical and signal models have been
used for this purpose, and parameters related to attenu-
ation and dispersion have been extracted from the real
sounds and compared with already existing models de-
scribing the physics of these instruments. A real-time
implementation based on digital waveguides with dif-
ferent models for the excitation mechanism is proposed.

2 The musical saw

The origins of the musical saw go back to the early
20th century. First played with a mallet, it later became
standard to play the saw using a violin bow in the lap
style of playing, as is shown in figure 1.

57

Figure 1: One of the authors playing a saw.

2.1 Acoustics of the musical saw

When an ordinary handsaw is bent into an S-shape,
an interesting acoustical effect can occur. Beyond a
certain critical degree of curvature, a very lightly damped
vibrational mode appears which is confined to the mid-
dle region of the S. This confined mode can be excited
by a bow to produce the pure sound of the “musical
saw” (5).

The S-shape forces other modes as well to be trapped
in the vicinity of the inflection by a process of reflection
from points of critical curvature. Since these modes
must have an integral number of wavelengths on a round
trip of propagation, the frequencies of higher modes
are brought into harmonic relation with the main (fun-
damental) mode.

The tone produced is almost sinusoidal, and the
player controls the pitch by changing the curvature of
the blade. Increasing the curvature gives rise to a higher
pitch. The vibrato is obtained by slightly moving the
extremity of the saw in the hand of the player. Figure
2 shows the spectrogram of a sound obtained from a
Stanley 26-inch crosscut handsaw bowed at the curva-
ture. While the saw is bowed many harmonics appear
in the spectrum, but when the bow is released mainly
the fundamental frequency resonates.

For analysis purposes, the curvature of the saw was
kept constant by fixing the handle against the wall and
securing the tip with a clamp, as shown in figure 3.



Figure 2: Sonogram of a bowed saw tone. The saw is bowed

for about one second and then left to resonate. While the
fundamental has a long decay time, the higher harmonics are
quickly damped.

Figure 3: Configuration of a saw fixed at both ends.

3 The glass harmonica

Glass harmonicas are musical instruments of two
kinds. The first one, invented by Benjamin Franklin,
adopts glass bowls turned by a horizontal axle so that
one side of the bowl dips into a trough of water. The
second one is a combination of wineglasses similar to
the ones shown in figure 4. Different melodies can be
played on a set of tuned glasses (filled with appropriate
amounts of water or carefully selected by size), simply
by rubbing the edge of the glass with a moist finger.
Rubbing rims of glasses in order to produce music be-
came very popular in Europe during the 18th century.
Music on glasses has been successfully composed by
Mozart, Beethoven, and many others.

Figure 4: Young performers playing the glass harmonica.
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Figure 5: Spectrum of a large wineglass. Top: impulse re-
sponse, center: bowing with a cello bow; bottom. rubbing
with a wet finger. The circles indicate harmonics of the (2,0)
mode, and the x’s indicate the (m, 0) modes for m = 2 to 6.

Mode | Freq.(Hz) | Amp. (dB) | Decay (dB/sec)
(2,0) | 676 -16.669 -19.474
(3,0) 1625 -18.207 -52.477
4,0) | 3185 -10.582 -86.801
(5,0) | 5111 0 -153.23
6,0) | 7127 -12.963 -172.42

Table 1: Frequencies, relative magnitudes (normalized to 0
dB), and decay rates for the first few major modes of a large
wineglass.

3.1 Acoustics of wineglasses

The main vibrational modes of a wineglass resem-
ble those of a large church bell. The modes can be de-
scribed with the label (m, n), where 2m is the number
of nodes around the rim and n is the number of nodes
around the circumference of the glass. The wineglass
modes are generally of the form (m,0), and the reso-
nance frequencies are nearly proportional to m?2 (1).

During the recordings two wineglasses of diameter
6.7 and 6.0 cm, respectively, and of height 10.3 and 9.5
cm were used. A microphone was positioned about 1
meter from the glasses. The wineglasses were tapped
with an impulse hammer, rubbed with a wet finger, and
bowed with a cello bow. Tapping the glass excites a
number of “bell modes”, while rubbing or bowing it
strongly excites the (2,0) mode and its harmonics, and
to a lesser degree the other modes as well. Figure 5
shows spectra of the steady-state portion of bowed and
rubbed tones of the larger glass when played at medium
volume, as well as its impulse response. Table 1 sum-
marizes the resonance behavior of the same glass; here
the mode frequencies are proportional to m?*17.

As in the case of the bowed string and the musical
saw, rubbing the rim of the glass with a wet finger ex-
cites vibrations in the glass through a stick-slip process.
Moving the finger around the rim creates a pulsation of
about 4 to 8 beats per second, depending on the speed



of the player.

4 Analysis of the instruments

Analysis of natural sounds can be used to extract
parameters for different kinds of synthesis models. In
this paper the resonator model using digital waveguides
and the signal model of the source use parameters ex-
tracted from the analysis.

By filtering each individual spectral component of
the analytic signal of the transient sounds, the frequen-
cies and damping factors of the main resonances can be
extracted. The frequencies are obtained from the mean
values of the average instantaneous frequencies, while
the damping factors are obtained from linearization of
the logarithm of the instantaneous amplitude (4).

S Real-time synthesis models

In order to reproduce the behavior of the glass har-
monica and the musical saw while rubbed, tapped, or
bowed, we developed a digital waveguide model us-
ing the exciter-resonator approach. The resonator was
modeled using digital waveguides. To model the exci-
tation we developed both a physical model of the stick-
slip mechanism and a spectral model of the source, as
described in section 5.2.

5.1 The resonator model

In order to model the resonator, we considered the
main resonating modes of the glasses and the saw and
developed each inharmonic mode using a digital waveg-
uide.

In the case of the saw, as figure 2 shows, all com-
ponents are harmonic and only the first and the sec-
ond harmonics resonate long after the release of the
bow. Our implementation consists therefore of a single
waveguide model whose damping filters are very sharp
around the main resonance.

In the case of the wineglasses, the presence of strong
inharmonic modes required the implementation of five
waveguides all connected at the excitation point. In
order to model waves propagating in both directions,
each mode of the wineglass is modeled as a pair of dig-
ital waveguides, each one propagating in each side of
the glass. For each waveguide pair 7 we have combined
delay lengths d;; + di2 = s; with s; = fs/ f;, where
fs is the sampling rate (44.1 kHz) and f; is the fre-
quency of that mode in Hertz. The motion of the finger
around the rim of the wineglass is obtained by moving
the excitation point around the waveguide.

5.2 The source model

The resonator model takes into account damping
and dispersion in the glass and in the saw. This means
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Figure 6: Spectrum of the source for the fixed saw, exracted
Jfrom notes played at different dynamics. Horizontal axis: fre-
quency (Hz), vertical axis: magnitude (dB). From top to bot-
tom: piano, mezzo forte, forte, and fortissimo.

that this model makes it possible to accurately resyn-
thesize transient sounds obtained by striking the saw
or wineglass. However, if we want to model sustained
sounds, an additional model should be made for the
source.

In this section we describe both a physical and a
signal model approach to this problem. The physical
approach is based on an exponentially decaying fric-
tion model in which friction depends on the relative
velocity between the exciter and the resonator. The
signal model is obtained by extracting the excitation
by deconvolution between the recorded signal and the
resonator model. The spectral evolution of this signal
as a function of the dynamic level is further modeled
by a waveshaping model, allowing a resynthesis of the
original sound.

5.2.1 A signal model of the source

By observing the spectra of the extracted sources
in the glass and in the saw cases we can see that they
evolve nonlinearly as the dynamic level increases (see
figure 6). To model this nonlinear source behavior,
we used a so-called waveshaping synthesis method (2)
which consists in distorting a sinusoidal function by a
nonlinear function:

s(t) = y(I(t) cos(wot)) )

It is convenient to decompose the nonlinear func-
tion into Chebychev polynomials T, where n is the
number of spectral components, since this gives a sim-
ple relationship between the function and the generated
signal. For I(t) = 1 for all t, we obtain

K K
s(t) = D anTncos(wot) = > ancos(nwot)

In this case o, is given by the values of the components
of the spectrum to be generated.
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Figure 7: Waveguide structure of the models. H(z) repre-
sents lowpass filters used to model internal losses. The fil-
ters ' coefficients are estimated using the data obtained from
the analysis described in section 4.

By varying the index of distortion a spectral evolu-
tion close to the real one can be simulated (7). Since
the waveshaping function does not allow us to exactly
simulate the spectral evolution of the real sound, per-
ceptual criteria are used to evaluate the values of I for
which the spectrum evolves from pianissimo to fortis-
simo. In our case the spectral centroid criteria was used
for this purpose.

5.2.2 A physical model of the source

Considering the strong analogy between the musi-
cal saw, the bowed glasses, and the bowed string, we
decided to model the source using a simplified friction
curve on a violin:

(Ns - Hd)UO
Vg + U — Uy

N (2)
where v, vy, and vg are the string velocity, bow ve-
locity, and initial bow velocity, pq is the dynamic fric-
tion coefficient, and p is the static friction coefficient.
Friction coefficient tables suggest s = 0.9 and g =
0.4 for glass and p; = 0.6 and pq = 0.4 for metal-
when excited by a lubricated surface. This function is
coupled with the equation representing the wave prop-
agation in the resonator (6).

An advantage of this approach is the ability to use
physically meaningful parameters. A disadvantage is
the lack of real data concerning the real shape of the
friction curve specific to the materials in contact.

5.3 Implementation

Figure 7 shows the digital waveguide structure of
the musical saw and the glass harmonica. The real-
time models have been implemented as Pure Data (3)
external objects, in order to explore the performance
possibilities.
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When the source is modeled by the signal model,
the input is a sinusoidal function whose frequency equals
the fundamental frequency of the sound. When the
source is physically modeled, the control parameters
are the velocity and force of the excitation (either the
bow or the finger), the position of the excitation, and
the fundamental frequency (determined either by the
curvature of the saw or the dimensions and amount of
water in the glasses). In addition, the resonator out-
put is coupled back into the excitation source in order
to take into account the mutual interaction between the
two parts (see, for example, (6)).

6 Conclusions

In this paper we proposed exciter-resonator mod-
els of unusual friction-driven oscillators. The purely
physical model is driven by physically meaningful pa-
rameters but lacks precise data on the frictional inter-
action between the excitation mechanism and the res-
onator. The hybrid model makes use of spectra data to
construct a close perceptual rendering of the frictional
characteristics. On the other hand, the input parameters
are not the actual physical inputs of the instruments and
are not as intuitive to control.
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