Edit this Page

Using Stork with Kubernetes

This guide explains how to use Stork with Kubernetes for service discovery and load balancing.

If you are new to Stork, please read the Stork Getting Started Guide.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed. Specific improvements might require changing configuration or APIs, and plans to become stable are under way. Feedback is welcome on our mailing list or as issues in our GitHub issue tracker.

For a full list of possible statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

  • Roughly 15 minutes

  • An IDE

  • JDK 17+ installed with JAVA_HOME configured appropriately

  • Apache Maven 3.9.9

  • A working container runtime (Docker or Podman)

  • Optionally the Quarkus CLI if you want to use it

  • Optionally Mandrel or GraalVM installed and configured appropriately if you want to build a native executable (or Docker if you use a native container build)

  • Access to a Kubernetes cluster (Minikube is a viable option)

Architecture

In this guide, we will work with a few components deployed in a Kubernetes cluster:

  • A simple blue service.

  • A simple red service.

  • The color-service is the Kubernetes service which is the entry point to the Blue and Red instances.

  • A client service using a REST client to call the blue or the red service. Service discovery and selection are delegated to Stork.

Architecture of the application

For the sake of simplicity, everything will be deployed in the same namespace of the Kubernetes cluster.

Solution

We recommend that you follow the instructions in the next sections and create the applications step by step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-quickstarts.git, or download an archive.

The solution is located in the stork-kubernetes-quickstart directory.

Discovery and selection

Before going further, we need to discuss discovery vs. selection.

  • Service discovery is the process of locating service instances. It produces a list of service instances that is potentially empty (if no service matches the request) or contains multiple service instances.

  • Service selection, also called load-balancing, chooses the best instance from the list returned by the discovery process. The result is a single service instance or an exception when no suitable instance can be found.

Stork handles both discovery and selection. However, it does not handle the communication with the service but only provides a service instance. The various integrations in Quarkus extract the location of the service from that service instance.

Bootstrapping the project

Create a Quarkus project importing the quarkus-rest-client and quarkus-rest extensions using your favorite approach:

CLI
Maven
quarkus create app org.acme:stork-kubernetes-quickstart \ --extension='quarkus-rest-client,quarkus-rest' \ --no-code cd stork-kubernetes-quickstart

To create a Gradle project, add the --gradle or --gradle-kotlin-dsl option.

For more information about how to install and use the Quarkus CLI, see the Quarkus CLI guide.

mvn io.quarkus.platform:quarkus-maven-plugin:3.21.0:create \ -DprojectGroupId=org.acme \ -DprojectArtifactId=stork-kubernetes-quickstart \ -Dextensions='quarkus-rest-client,quarkus-rest' \ -DnoCode cd stork-kubernetes-quickstart

To create a Gradle project, add the -DbuildTool=gradle or -DbuildTool=gradle-kotlin-dsl option.

For Windows users:

  • If using cmd, (don’t use backward slash \ and put everything on the same line)

  • If using Powershell, wrap -D parameters in double quotes e.g. "-DprojectArtifactId=stork-kubernetes-quickstart"

In the generated project, also add the following dependencies:

pom.xml
build.gradle
<dependency> <groupId>io.smallrye.stork</groupId> <artifactId>stork-service-discovery-kubernetes</artifactId> </dependency> <dependency> <groupId>io.smallrye.stork</groupId> <artifactId>stork-load-balancer-random</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-kubernetes</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-kubernetes-client</artifactId> </dependency> <dependency> <groupId>io.quarkus</groupId> <artifactId>quarkus-container-image-jib</artifactId> </dependency>
implementation("io.smallrye.stork:stork-service-discovery-kubernetes") implementation("io.smallrye.stork:stork-load-balancer-random") implementation("io.quarkus:quarkus-kubernetes") implementation("io.quarkus:quarkus-kubernetes-client") implementation("io.quarkus:quarkus-container-image-jib")

stork-service-discovery-kubernetes provides an implementation of service discovery for Kubernetes. stork-load-balancer-random provides an implementation of random load balancer. quarkus-kubernetes enables the generation of Kubernetes manifests each time we perform a build. The quarkus-kubernetes-client extension enables the use of the Fabric8 Kubernetes Client in native mode. And quarkus-container-image-jib enables the build of a container image using Jib.

The Blue and Red services

Let’s start with the very beginning: the service we will discover, select and call.

The Red and Blue are two simple REST services serving an endpoint responding Hello from Red! and Hello from Blue! respectively. The code of both applications has been developed following the Getting Started Guide.

As the goal of this guide is to show how to use Stork Kubernetes service discovery, we won’t provide the specifics steps for the Red and Blue services. Their container images are already built and available in a public registry:

Deploy the Blue and Red services in Kubernetes

Now that we have our service container images available in a public registry, we need to deploy them into the Kubernetes cluster.

The following file contains all the Kubernetes resources needed to deploy the Blue and Red services in the cluster and make them accessible:

kind: Role apiVersion: rbac.authorization.k8s.io/v1 metadata: namespace: development name: endpoints-reader rules: - apiGroups: [""] # "" indicates the core API group resources: ["endpoints", "pods"] verbs: ["get", "list"] --- apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: stork-rb namespace: development subjects: - kind: ServiceAccount # Reference to upper's `metadata.name` name: default # Reference to upper's `metadata.namespace` namespace: development roleRef: kind: Role name: endpoints-reader apiGroup: rbac.authorization.k8s.io --- apiVersion: v1 kind: Service metadata: annotations: app.quarkus.io/commit-id: f747f359406bedfb1a39c57392a5b5a9eaefec56 app.quarkus.io/build-timestamp: 2022-03-31 - 10:36:56 +0000 labels: app.kubernetes.io/name: color-service app.kubernetes.io/version: "1.0" name: color-service (1) spec: ports: - name: http port: 80 targetPort: 8080 selector: app.kubernetes.io/version: "1.0" type: color-service type: ClusterIP --- apiVersion: apps/v1 kind: Deployment metadata: annotations: app.quarkus.io/commit-id: f747f359406bedfb1a39c57392a5b5a9eaefec56 app.quarkus.io/build-timestamp: 2022-03-31 - 10:36:56 +0000 labels: color: blue type: color-service app.kubernetes.io/name: blue-service app.kubernetes.io/version: "1.0" name: blue-service (2) spec: replicas: 1 selector: matchLabels: app.kubernetes.io/name: blue-service app.kubernetes.io/version: "1.0" template: metadata: annotations: app.quarkus.io/commit-id: f747f359406bedfb1a39c57392a5b5a9eaefec56 app.quarkus.io/build-timestamp: 2022-03-31 - 10:36:56 +0000 labels: color: blue type: color-service app.kubernetes.io/name: blue-service app.kubernetes.io/version: "1.0" spec: containers: - env: - name: KUBERNETES_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace image: quay.io/quarkus/blue-service:1.0 imagePullPolicy: Always name: blue-service ports: - containerPort: 8080 name: http protocol: TCP --- apiVersion: apps/v1 kind: Deployment metadata: annotations: app.quarkus.io/commit-id: 27be03414510f776ca70d70d859b33e134570443 app.quarkus.io/build-timestamp: 2022-03-31 - 10:38:54 +0000 labels: color: red type: color-service app.kubernetes.io/version: "1.0" app.kubernetes.io/name: red-service name: red-service (2) spec: replicas: 1 selector: matchLabels: app.kubernetes.io/version: "1.0" app.kubernetes.io/name: red-service template: metadata: annotations: app.quarkus.io/commit-id: 27be03414510f776ca70d70d859b33e134570443 app.quarkus.io/build-timestamp: 2022-03-31 - 10:38:54 +0000 labels: color: red type: color-service app.kubernetes.io/version: "1.0" app.kubernetes.io/name: red-service spec: containers: - env: - name: KUBERNETES_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace image: quay.io/quarkus/red-service:1.0 imagePullPolicy: Always name: red-service ports: - containerPort: 8080 name: http protocol: TCP --- apiVersion: networking.k8s.io/v1 kind: Ingress (3) metadata: annotations: app.quarkus.io/commit-id: f747f359406bedfb1a39c57392a5b5a9eaefec56 app.quarkus.io/build-timestamp: 2022-03-31 - 10:46:19 +0000 labels: app.kubernetes.io/name: color-service app.kubernetes.io/version: "1.0" color: blue type: color-service name: color-service spec: rules: - host: color-service.127.0.0.1.nip.io http: paths: - backend: service: name: color-service port: name: http path: / pathType: Prefix

There are a few interesting parts in this listing:

1 The Kubernetes Service resource, color-service, that Stork will discover.
2 The Red and Blue service instances behind the color-service Kubernetes service.
3 A Kubernetes Ingress resource making the color-service accessible from the outside of the cluster at the color-service.127.0.0.1.nip.io url. Note that the Ingress is not needed for Stork however, it helps to check that the architecture is in place.

Create a file named kubernetes-setup.yml with the content above at the root of the project and run the following commands to deploy all the resources in the Kubernetes cluster. Don’t forget to create a dedicated namespace:

kubectl create namespace development kubectl apply -f kubernetes-setup.yml -n=development

If everything went well the Color service is accessible on http://color-service.127.0.0.1.nip.io. You should have Hello from Red! and Hello from Blue! response randomly.

Stork is not limited to Kubernetes and integrates with other service discovery mechanisms.

The REST Client interface and the front end API

So far, we didn’t use Stork; we just deployed the services we will be discovering, selecting, and calling.

We will call the services using the REST Client. Create the src/main/java/org/acme/MyService.java file with the following content:

package org.acme; import org.eclipse.microprofile.rest.client.inject.RegisterRestClient; import jakarta.ws.rs.GET; import jakarta.ws.rs.Produces; import jakarta.ws.rs.core.MediaType; /** * The REST Client interface. * * Notice the `baseUri`. It uses `stork://` as URL scheme indicating that the called service uses Stork to locate and * select the service instance. The `my-service` part is the service name. This is used to configure Stork discovery * and selection in the `application.properties` file. */ @RegisterRestClient(baseUri = "stork://my-service") public interface MyService { @GET @Produces(MediaType.TEXT_PLAIN) String get(); }

It’s a straightforward REST client interface containing a single method. However, note the baseUri attribute: * the stork:// suffix instructs the REST client to delegate the discovery and selection of the service instances to Stork, * the my-service part of the URI is the service name we will be using in the application configuration.

It does not change how the REST client is used. Create the src/main/java/org/acme/FrontendApi.java file with the following content:

package org.acme; import org.eclipse.microprofile.rest.client.inject.RestClient; import jakarta.ws.rs.GET; import jakarta.ws.rs.Path; import jakarta.ws.rs.Produces; import jakarta.ws.rs.core.MediaType; /** * A frontend API using our REST Client (which uses Stork to locate and select the service instance on each call). */ @Path("/api") public class FrontendApi { @RestClient MyService service; @GET @Produces(MediaType.TEXT_PLAIN) public String invoke() { return service.get(); } }

It injects and uses the REST client as usual.

Stork configuration

Now we need to configure Stork for using Kubernetes to discover the red and blue instances of the service.

In the src/main/resources/application.properties, add:

quarkus.stork.my-service.service-discovery.type=kubernetes quarkus.stork.my-service.service-discovery.k8s-namespace=development quarkus.stork.my-service.service-discovery.application=color-service quarkus.stork.my-service.load-balancer.type=random

stork.my-service.service-discovery indicates which type of service discovery we will be using to locate the my-service service. In our case, it’s kubernetes. If your access to the Kubernetes cluster is configured via Kube config file, you don’t need to configure the access to it. Otherwise, set the proper Kubernetes url using the quarkus.stork.my-service.service-discovery.k8s-host property. quarkus.stork.my-service.service-discovery.application contains the name of the Kubernetes service Stork is going to ask for. In our case, this is the color-service corresponding to the kubernetes service backed by the Red and Blue instances. Finally, quarkus.stork.my-service.load-balancer.type configures the service selection. In our case, we use a random Load Balancer.

Deploy the REST Client interface and the front end API in the Kubernetes cluster

The system is almost complete. We only need to deploy the REST Client interface and the client service to the cluster. In the src/main/resources/application.properties, add:

quarkus.container-image.registry=<public registry> quarkus.kubernetes-client.trust-certs=true quarkus.kubernetes.ingress.expose=true quarkus.kubernetes.ingress.host=my-service.127.0.0.1.nip.io

The quarkus.container-image.registry contains the container registry to use. The quarkus.kubernetes.ingress.expose indicates that the service will be accessible from the outside of the cluster. The quarkus.kubernetes.ingress.host contains the url to access the service. We are using nip.io wildcard for IP address mappings.

For a more customized configuration you can check the Deploying to Kubernetes guide

Build and push the container image

Thanks to the extensions we are using, we can perform the build of a container image using Jib and also enabling the generation of Kubernetes manifests while building the application. For example, the following command will generate a Kubernetes manifest in the target/kubernetes/ directory and also build and push a container image for the project:

./mvnw package -Dquarkus.container-image.build=true -Dquarkus.container-image.push=true

Deploy client service to the Kubernetes cluster

The generated manifest can be applied to the cluster from the project root using kubectl:

kubectl apply -f target/kubernetes/kubernetes.yml -n=development

Please note that if you use Elliptic Curve keys with Stork and are getting exceptions like java.lang.ClassNotFoundException: org.bouncycastle.jce.provider.BouncyCastleProvider, then adding a BouncyCastle PKIX dependency (org.bouncycastle:bcpkix-jdk18on) is required.

Note that internally an org.bouncycastle.jce.provider.BouncyCastleProvider provider will be registered if it has not already been registered.

You can have this provider registered as described in the BouncyCastle or BouncyCastle FIPS sections.

We’re done! So, let’s see if it works.

Or if you prefer, in another terminal, run:

> curl http://my-service.127.0.0.1.nip.io/api ... > curl http://my-service.127.0.0.1.nip.io/api ... > curl http://my-service.127.0.0.1.nip.io/api ...

The responses should alternate randomly between Hello from Red! and Hello from Blue!.

You can compile this application into a native executable:

CLI
Maven
Gradle
quarkus build --native
./mvnw install -Dnative
./gradlew build -Dquarkus.native.enabled=true

Then, you need to build a container image based on the native executable. For this use the corresponding Dockerfile:

> docker build -f src/main/docker/Dockerfile.native -t quarkus/stork-kubernetes-quickstart .

After publishing the new image to the container registry. You can redeploy the Kubernetes manifest to the cluster.

Going further

This guide has shown how to use SmallRye Stork to discover and select your services. You can find more about Stork in:

Related content