sol1 Algorithm

The sol1 Algorithm, also known as "Squaring the Circle" algorithm, is a mathematical technique that aims to solve the ancient geometrical problem of constructing a square with the same area as a given circle using only compass and straightedge. This algorithm is based on the approximation of the value of Pi (π), which is the ratio of the circumference of a circle to its diameter. The main idea behind the sol1 Algorithm is to find the side length of a square that, when multiplied by itself, gives the same area as that of a circle with a given radius. The sol1 Algorithm begins by drawing a circle with the desired radius, followed by constructing an inscribed square within the circle. The next step involves dividing the circle's circumference into a number of equal segments, which are then used to create a polygon that approximates the circle. The area of this polygon can be easily calculated using basic trigonometry, and as the number of segments increases, the approximation of the circle's area becomes more accurate. Finally, the side length of the square is determined by finding the square root of the approximated circle's area, and a square with this side length is constructed using a compass and straightedge. Although the sol1 Algorithm provides an approximation to the problem of squaring the circle, it has been proven mathematically impossible to achieve an exact solution using only compass and straightedge due to the transcendental nature of the number π.
"""
Sum of digits sequence
Problem 551
Let a(0), a(1),... be an integer sequence defined by:
a(0) = 1
for n >= 1, a(n) is the sum of the digits of all preceding terms
The sequence starts with 1, 1, 2, 4, 8, ...
You are given a(10^6) = 31054319.
Find a(10^15)
"""
ks = [k for k in range(2, 20 + 1)]
base = [10 ** k for k in range(ks[-1] + 1)]
memo = {}
def next_term(a_i, k, i, n):
"""
Calculates and updates a_i in-place to either the n-th term or the
smallest term for which c > 10^k when the terms are written in the form:
a(i) = b * 10^k + c
For any a(i), if digitsum(b) and c have the same value, the difference
between subsequent terms will be the same until c >= 10^k. This difference
is cached to greatly speed up the computation.
Arguments:
a_i -- array of digits starting from the one's place that represent
the i-th term in the sequence
k -- k when terms are written in the from a(i) = b*10^k + c.
Term are calulcated until c > 10^k or the n-th term is reached.
i -- position along the sequence
n -- term to calculate up to if k is large enough
Return: a tuple of difference between ending term and starting term, and
the number of terms calculated. ex. if starting term is a_0=1, and
ending term is a_10=62, then (61, 9) is returned.
"""
# ds_b - digitsum(b)
ds_b = 0
for j in range(k, len(a_i)):
ds_b += a_i[j]
c = 0
for j in range(min(len(a_i), k)):
c += a_i[j] * base[j]
diff, dn = 0, 0
max_dn = n - i
sub_memo = memo.get(ds_b)
if sub_memo is not None:
jumps = sub_memo.get(c)
if jumps is not None and len(jumps) > 0:
# find and make the largest jump without going over
max_jump = -1
for _k in range(len(jumps) - 1, -1, -1):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
max_jump = _k
break
if max_jump >= 0:
diff, dn, _kk = jumps[max_jump]
# since the difference between jumps is cached, add c
new_c = diff + c
for j in range(min(k, len(a_i))):
new_c, a_i[j] = divmod(new_c, 10)
if new_c > 0:
add(a_i, k, new_c)
else:
sub_memo[c] = []
else:
sub_memo = {c: []}
memo[ds_b] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
_diff, terms_jumped = next_term(a_i, k - 1, i + dn, n)
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
_diff, terms_jumped = compute(a_i, k, i + dn, n)
diff += _diff
dn += terms_jumped
jumps = sub_memo[c]
# keep jumps sorted by # of terms skipped
j = 0
while j < len(jumps):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(j, (diff, dn, k))
return (diff, dn)
def compute(a_i, k, i, n):
"""
same as next_term(a_i, k, i, n) but computes terms without memoizing results.
"""
if i >= n:
return 0, i
if k > len(a_i):
a_i.extend([0 for _ in range(k - len(a_i))])
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
start_i = i
ds_b, ds_c, diff = 0, 0, 0
for j in range(len(a_i)):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
addend = ds_c + ds_b
diff += addend
ds_c = 0
for j in range(k):
s = a_i[j] + addend
addend, a_i[j] = divmod(s, 10)
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(a_i, k, addend)
return diff, i - start_i
def add(digits, k, addend):
"""
adds addend to digit array given in digits
starting at index k
"""
for j in range(k, len(digits)):
s = digits[j] + addend
if s >= 10:
quotient, digits[j] = divmod(s, 10)
addend = addend // 10 + quotient
else:
digits[j] = s
addend = addend // 10
if addend == 0:
break
while addend > 0:
addend, digit = divmod(addend, 10)
digits.append(digit)
def solution(n):
"""
returns n-th term of sequence
>>> solution(10)
62
>>> solution(10**6)
31054319
>>> solution(10**15)
73597483551591773
"""
digits = [1]
i = 1
dn = 0
while True:
diff, terms_jumped = next_term(digits, 20, i + dn, n)
dn += terms_jumped
if dn == n - i:
break
a_n = 0
for j in range(len(digits)):
a_n += digits[j] * 10 ** j
return a_n
if __name__ == "__main__":
print(solution(10 ** 15))

LANGUAGE:

DARK MODE: