High-Order Inference, Ranking, and Regularization Path for Structured SVM

Puneet Kumar Dokania

Supervisors: Prof. M. Pawan Kumar & Prof. Nikos Paragios

CentraleSupélec and INRIA Saclay

May 30, 2016

・ロト ・ 日 ・ ・ 田 ト ・ 田 ト

Presentation Outline

Thesis Overview

- 2) Parsimonious Labeling
- 3 Learning to Rank Using High-Order Information
- 4 Regularization Path for SSVM
- 5 Future Work
- O Publications

Quick Overview

• High-Order Inference: Parsimonious Labeling

$$E(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \sum_{i \in V} \theta(x_i, y_i; \mathbf{w}) + \sum_{c \in C} \underbrace{\theta_c(\mathbf{x}_c, \mathbf{y}_c; \mathbf{w})}_{diversity}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□▶ ▲□♥

3

Quick Overview

• High-Order Inference: Parsimonious Labeling

$$E(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \sum_{i \in V} \theta(x_i, y_i; \mathbf{w}) + \sum_{c \in C} \underbrace{\theta_c(\mathbf{x}_c, \mathbf{y}_c; \mathbf{w})}_{diversity}$$

• HOAP-SVM: w very high-dimensional → exhaustive search ??

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \underbrace{L(\mathbf{x}, \mathbf{y}; \mathbf{w})}_{AP-Based}$$

イロト イロト イヨト イヨト 一日

Quick Overview

High-Order Inference: Parsimonious Labeling

$$E(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \sum_{i \in V} \theta(x_i, y_i; \mathbf{w}) + \sum_{c \in C} \underbrace{\theta_c(\mathbf{x}_c, \mathbf{y}_c; \mathbf{w})}_{diversity}$$

● HOAP-SVM: w very high-dimensional → exhaustive search ??

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \underbrace{L(\mathbf{x}, \mathbf{y}; \mathbf{w})}_{AP-Based}$$

• **Regularization path for SSVM**: Efficiently explore the entire space of $\lambda \in [0, \infty]$

Presentation Outline

Thesis Overview

Parsimonious Labeling

- 3 Learning to Rank Using High-Order Information
- 4 Regularization Path for SSVM

5 Future Work

O Publications

Background

The Labeling Problem

Input

- Lattice $V = \{1, \dots, N\}$, Random variables $\mathbf{y} = \{y_1, \dots, y_N\}$
- A discrete label set $\mathcal{L} = \{l_1, \cdots, l_H\}$
- Energy functional to assess the quality of each labeling y:

$$\mathsf{E}(\mathbf{y}) = \sum_{i \in V} heta_i(y_i) + \sum_{c \in \mathcal{C}} heta_c(\mathbf{y}_c).$$

<ロ> (四) (四) (三) (三) (三)

(1)

Background

The Labeling Problem

Input

- Lattice $V = \{1, \dots, N\}$, Random variables $\mathbf{y} = \{y_1, \dots, y_N\}$
- A discrete label set $\mathcal{L} = \{l_1, \cdots, l_H\}$
- Energy functional to assess the quality of each labeling y:

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} \theta_c(\mathbf{y}_c).$$
(1)

Output

• Labeling corresponding to the minimum energy

$$\mathbf{y}^* = \underset{\mathbf{y}}{\operatorname{argmin}} E(\mathbf{y}).$$

• H^N possible labelings

Puneet K. Dokania

(2)

Special case - Metric Labeling (Pairwise)

- Pairwise Potentials $\theta(y_i, y_j) \rightarrow \text{Metric}$ over the labels
- Recall, distance function $\theta(y_i, y_j) : \mathcal{L} \times \mathcal{L} \to \mathbb{R}_+$ is metric if:
 - Non Negative
 - Symmetric
 - Triangular Inequality

• α -expansion¹ - Very Efficient - Approximate solution

¹Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 2001. Puneet K. Dokania

Special case – *Pⁿ* Potts Model² (High-Order)

²Kohli et al., P3 & Beyond: Solving Energies with Higher Order Cliques, 2007. ၁۹۹۰ Puneet K. Dokania

Special case – *Pⁿ* Potts Model² (High-Order)

²Kohli et al., P3 & Beyond: Solving Energies with Higher Order Cliques, 2007. ၁۹۹۰ Puneet K. Dokania

Special case – Pⁿ Potts Model² (High-Order)

• *Pⁿ* Potts Model $\theta_c(\mathbf{y}_c) \propto \begin{cases} \gamma^k, & \text{if } y_i = l_k, \forall i \in c, \\ \gamma^{max}, & \text{otherwise,} \end{cases}$

• Very efficient α -expansion algorithm – Approximate solution

²Kohli et al., P3 & Beyond: Solving Energies with Higher Order Cliques, 2007. 900 Puneet K. Dokania 7

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} \theta_c(\mathbf{y}_c).$$

• Unary potentials: Arbitrary

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(\mathbf{y}_i) + \sum_{c \in \mathcal{C}} \theta_c(\mathbf{y}_c).$$

- Unary potentials: Arbitrary
- Clique potentials: Diversity

where, $\Gamma(\mathbf{y}_c)$ is the set of unique labels

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} \theta_c(\mathbf{y}_c).$$

- Unary potentials: Arbitrary
- Clique potentials: Diversity

where, $\Gamma(\mathbf{y}_c)$ is the set of unique labels

 $\delta_c(\{l_1,l_2,l_3\})$

ヘロト 人間 とくほ とくほとう

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in C} \theta_c(\mathbf{y}_c).$$

- Unary potentials: Arbitrary
- Clique potentials: Diversity

where, $\Gamma(\mathbf{y}_c)$ is the set of unique labels

 $\delta_c(\{l_1,l_2,l_3\})$

• Energy function for Parsimonious Labeling

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} w_c \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

 $\theta_c(\mathbf{y}_c) \propto \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$

³Bryant and Tupper, Advances in Mathematics, 2012.

$$\theta_c(\mathbf{y}_c) \propto \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

- Metric over sets $\delta : \overline{\mathcal{L}} \to \mathbb{R}, \forall \overline{\mathcal{L}} \subseteq \mathcal{L}$, satisfying
 - Non Negativity
 - Triangular Inequality
 - Monotonicity: $\mathcal{L}_1 \subseteq \mathcal{L}_2$ implies $\delta(\mathcal{L}_1) \leq \delta(\mathcal{L}_2) \rightarrow \text{Parsimony}$

³Bryant and Tupper, Advances in Mathematics, 2012. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$ Puneet K. Dokania

$$\theta_c(\mathbf{y}_c) \propto \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

- Metric over sets $\delta : \overline{\mathcal{L}} \to \mathbb{R}, \forall \overline{\mathcal{L}} \subseteq \mathcal{L}$, satisfying
 - Non Negativity
 - Triangular Inequality
 - Monotonicity: $\mathcal{L}_1 \subseteq \mathcal{L}_2$ implies $\delta(\mathcal{L}_1) \leq \delta(\mathcal{L}_2) \rightarrow \text{Parsimony}$
- Induced Metric: Every diversity induces a metric:

$$d(l_i, l_j) = \delta(\{l_i, l_j\})$$

$$\theta_c(\mathbf{y}_c) \propto \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

- Metric over sets $\delta : \overline{\mathcal{L}} \to \mathbb{R}, \forall \overline{\mathcal{L}} \subseteq \mathcal{L}$, satisfying
 - Non Negativity
 - Triangular Inequality
 - Monotonicity: $\mathcal{L}_1 \subseteq \mathcal{L}_2$ implies $\delta(\mathcal{L}_1) \leq \delta(\mathcal{L}_2) \rightarrow \text{Parsimony}$
- Induced Metric: Every diversity induces a metric:

$$d(l_i, l_j) = \delta(\{l_i, l_j\})$$

• Diameter Diversity:
$$\delta^{dia}(\mathcal{L}) = \max_{l_i, l_j \in \mathcal{L}} d(l_i, l_j)$$

Special Case 1: Metric Labeling

 $\bullet~$ If cliques are of size 2 \rightarrow diversity \rightarrow metric

⁴Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 2001. در ۹۹ Puneet K. Dokania

Special Case 1: Metric Labeling

- If cliques are of size $2 \rightarrow \text{diversity} \rightarrow \text{metric}$
- Parsimonious Labeling \rightarrow Metric Labeling⁴

• Many applications in low level vision tasks: Stereo matching, Inpainting, Denoising, Image stitching.

⁴Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 2001. Puneet K. Dokania

• Uniform Metric

$$d(l_i, l_j) = \min(|l_i - l_j|, 1), orall l_i, l_j \in \mathcal{L}$$

⁵Kohli et al., P3 "& Beyond: Solving Energies with Higher Order Cliques, 2007. Puneet K. Dokania

• Uniform Metric

$$d(l_i, l_j) = \min(|l_i - l_j|, 1), orall l_i, l_j \in \mathcal{L}$$

- Diversity \rightarrow Diameter diversity over uniform metric
- Parsimonious Labeling $\rightarrow P^n$ -Potts Model

⁵Kohli et al., P3 "& Beyond: Solving Energies with Higher Order Cliques, 2007. Puneet K. Dokania

Uniform Metric

$$d(l_i, l_j) = \min(|l_i - l_j|, 1), orall l_i, l_j \in \mathcal{L}$$

- Diversity \rightarrow Diameter diversity over uniform metric
- Parsimonious Labeling $\rightarrow P^n$ -Potts Model

Labels	l_1	l_2	l_3
l_1	0	1	1
l_2	1	0	1
l_3	1	1	0

Table: Uniform Metric

⁵Kohli et al., P3 "& Beyond: Solving Energies with Higher Order Cliques, 2007. Puneet K. Dokania

Uniform Metric

$$d(l_i, l_j) = \min(|l_i - l_j|, 1), orall l_i, l_j \in \mathcal{L}$$

- Diversity \rightarrow Diameter diversity over uniform metric
- Parsimonious Labeling $\rightarrow P^n$ -Potts Model

Labels	l_1	l_2	l_3
l_1	0	1	1
l_2	1	0	1
l_3	1	1	0

Table: Uniform Metric

$$\begin{aligned} \theta_c(\{l_1, l_2, l_3\}) &= \max(d(l_1, l_2), d(l_1, l_3), d(l_2, l_3)) \\ &= 1 \\ \theta_c(\mathbf{y}_c) \propto \begin{cases} 0, & \text{if } y_i = l_k, \forall i \in c, \\ 1, & \text{otherwise,} \end{cases} \end{aligned}$$

⁵Kohli et al., P3 "& Beyond: Solving Energies with Higher Order Cliques, 2007. Puneet K. Dokania

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} w_c \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

Puneet K. Dokania

12

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

• Given tree metric

• Given tree metric

• $d^t(l_1, l_2) = 14, d^t(l_1, l_3) = 4, d^t(l_1, l_1) = 0$

Puneet K. Dokania

<ロ> (四) (四) (三) (三) (三)

Given tree metric

• $d^t(l_1, l_2) = 14, d^t(l_1, l_3) = 4, d^t(l_1, l_1) = 0$

• Hierarchical P^n Potts Model \rightarrow diameter diversity over tree metric

• Given tree metric

• $d^t(l_1, l_2) = 14, d^t(l_1, l_3) = 4, d^t(l_1, l_1) = 0$

- Hierarchical P^n Potts Model \rightarrow diameter diversity over tree metric
- Diameter diversity at cluster p is $\max_{\{l_i, l_i\}} d^t(l_i, l_j) = 14$.

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

- Optimizing directly at the root node is non-trivial
- We propose divide and conquer based bottom-up approach

• Solving the problem at leaf node \rightarrow Trivial

15

- Solving the problem at leaf node → Trivial
- Fusing at non-leaf node $\rightarrow P^n$ -Potts Model

• Given any general diversity \rightarrow Get the induced metric

⁶Fakcharoenphol et al., In STOC 2003.

Puneet K. Dokania

- Given any general diversity \rightarrow Get the induced metric
- Induced Metric \rightarrow Mixture of tree metrics (r-HST)⁶

⁶Fakcharoenphol et al., In STOC 2003.

- Given any general diversity \rightarrow Get the induced metric
- Induced Metric \rightarrow Mixture of tree metrics (r-HST)⁶

 Hierarchical *Pⁿ*-Potts model over each tree metric → diameter diversity over each tree metric (r-нsт)

⁶Fakcharoenphol et al., In STOC 2003.

- Given any general diversity \rightarrow Get the induced metric
- Induced Metric \rightarrow Mixture of tree metrics (r-HST)⁶

- Hierarchical *Pⁿ*-Potts model over each tree metric → diameter diversity over each tree metric (r-нsт)
- Optimize each Hierarchical *Pⁿ*-Potts model using proposed move making algorithm

⁶Fakcharoenphol et al., In STOC 2003.

- Given any general diversity \rightarrow Get the induced metric
- Induced Metric \rightarrow Mixture of tree metrics (r-HST)⁶

- Hierarchical *Pⁿ*-Potts model over each tree metric → diameter diversity over each tree metric (r-нsт)
- Optimize each Hierarchical *Pⁿ*-Potts model using proposed move making algorithm
- Fuse solutions or choose the one with minimum energy

⁶Fakcharoenphol et al., In STOC 2003.

Comparison

- Co-oc⁷:
 - Clique potentials \rightarrow Monotonic
 - Very fast optimization algorithm
 - No theoretical guarantees

⁷Ladicky, Russell, Kohli, and Torr, ECCV 2010.
⁸Fix, Wang, and Zabih, CVPR 2014.
⁹Dokania and Kumar, ICCV 2015.

Puneet K. Dokania

イロト イロト イヨト イヨト 一日

Comparison

- Co-oc⁷:
 - Clique potentials \rightarrow Monotonic
 - Very fast optimization algorithm
 - No theoretical guarantees
- SoSPD⁸:
 - Clique potentials \rightarrow Arbitrary \rightarrow Upperbound as SoS functions
 - Slow. Practically, can not go beyond the clique of size 9
 - Loose multiplicative bound

⁷Ladicky, Russell, Kohli, and Torr, ECCV 2010.
 ⁸Fix, Wang, and Zabih, CVPR 2014.
 ⁹Dokania and Kumar, ICCV 2015.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Comparison

- Co-oc⁷:
 - Clique potentials \rightarrow Monotonic
 - Very fast optimization algorithm
 - No theoretical guarantees
- SoSPD⁸:
 - Clique potentials \rightarrow Arbitrary \rightarrow Upperbound as SoS functions
 - Slow. Practically, can not go beyond the clique of size 9
 - Loose multiplicative bound
- Parsimonious Labeling⁹:
 - Clique potentials \rightarrow Diversities
 - Very fast. We experimented with cliques of size \approx 1200.
 - Can be parallelized over the trees and over the levels.
 - Very tight multiplicative bound.

⁷Ladicky, Russell, Kohli, and Torr, ECCV 2010.
 ⁸Fix, Wang, and Zabih, CVPR 2014.
 ⁹Dokania and Kumar, ICCV 2015.

イロト イロト イヨト イヨト 一日

Experimental Setting

Energy Function:

$$E(\mathbf{y}) = \sum_{i \in V} \theta_i(y_i) + \sum_{c \in \mathcal{C}} w_c \underbrace{\delta(\Gamma(\mathbf{y}_c))}_{\text{Diversity}}$$

• Clique Potential: Diameter diversity over truncated Linear Metric:

$$\theta_{i,j}(l_a, l_b) = \lambda \min(|l_a - l_b|, M), \forall l_a, l_b \in \mathcal{L}$$

- Cliques: Superpixels generate using Mean Shift.
- Clique Weights:

$$w_c = exp\Big(rac{-
ho(\mathbf{y}_c)}{\sigma^2}\Big)$$

where, $\rho(\mathbf{y}_c)$ is the variance of intensities of pixels in clique \mathbf{y}_c .

Puneet K. Dokania

(3)

Stereo Matching Results – Visually

(a) Ground Truth

(d) $\underset{\square \rightarrow \square}{\text{Co-oc}}$

Stereo Matching Results - Energy and Time

(a) Our
(
$$E = 1.4 \times 10^{6},773 \ sec$$
)

(b) Co-oc ($E = 2.1 \times 10^6$, **306** sec)

▲□▶ ▲圖▶ ▲≧▶

э

Image denoising and Inpainting Results - Visually

(a) Original

(c) α -Exp

Image denoising and Inpainting Results - Energy and Time

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Presentation Outline

Thesis Overview

2 Parsimonious Labeling

3 Learning to Rank Using High-Order Information

4 Regularization Path for SSVM

5 Future Work

O Publications

イロト イポト イヨト イヨト

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣

イロト イロト イヨト イヨト

- Get the feature vector $\phi(x_i)$
- Learn w
- Sort using $s_i(\mathbf{w}) = \mathbf{w}^\top \phi(x_i)$

э

イロト イロト イモト イモト

- Get the feature vector $\phi(x_i)$
- Learn w
- Sort using $s_i(\mathbf{w}) = \mathbf{w}^\top \phi(x_i)$
- SVM → Optimizes accuracy
- Accuracy \neq Average Precision

AP-SVM¹⁰: Problem Formulation

¹⁰Yue et al., A support vector method for optimizing average precision, 2007 Puneet K. Dokania 25

AP-SVM¹⁰: Problem Formulation

 $\bullet~$ Single input ${\bf x},$ Positive Set ${\cal P},$ Negative Set ${\cal N}$

•
$$\phi(x_i), \forall i \in \mathcal{P}, \phi(x_j), \forall j \in \mathcal{N}$$

¹⁰Yue et al., A support vector method for optimizing average precision, 2007 Puneet K. Dokania 25

AP-SVM¹⁰: Problem Formulation

- $\bullet\,$ Single input ${\bf x},$ Positive Set ${\cal P},$ Negative Set ${\cal N}$
- $\phi(x_i), \forall i \in \mathcal{P}, \phi(x_j), \forall j \in \mathcal{N}$
- Rank Matrix

 $\mathbf{R}_{ij} = \begin{cases} +1, & \text{if i is better ranked than j} \\ -1, & \text{if j is better ranked than i} \end{cases}$

• Define Joint Score:

$$S(\mathbf{x}, \mathbf{R}; \mathbf{w}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{N}} \mathbf{R}_{ij}(s_i(\mathbf{w}) - s_j(\mathbf{w}))$$

Encodes Ranking

¹⁰Yue et al., A support vector method for optimizing average precision, 2007 - Puneet K. Dokania

AP-SVM: Objective Function

- Loss function $\Delta(\mathbf{R}, \mathbf{R}^*) = 1 AP(\mathbf{R}, \mathbf{R}^*)$
- Objective Function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \xi$$
(4)
s.t. $S(\mathbf{x}, \mathbf{R}^*; \mathbf{w}) \ge S(\mathbf{x}, \mathbf{R}; \mathbf{w}) + \Delta(\mathbf{R}, \mathbf{R}^*) - \xi, \quad \forall \mathbf{R}.$ (5)

AP-SVM: Joint Score

• Joint Score:

$$S(\mathbf{x}, \mathbf{R}; \mathbf{w}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{N}} \mathbf{R}_{ij}(s_i(\mathbf{w}) - s_j(\mathbf{w}))$$

Encodes Ranking

• Sample Score:

$$s_i(\mathbf{w}) = \mathbf{w}^\top \phi(x_i)$$

No High-Order Information

Why High-Order Information?

Why High-Order Information?

Why High-Order Information?

• Define Joint Feature Map (encodes the structure)

$$\Phi(\mathbf{x},\mathbf{y}) = \left(\begin{array}{c} \sum_{i} \Phi_1(x_i, y_i) \\ \sum_{i,j} \Phi_2(x_i, y_i, x_j, y_j) \end{array}\right)$$

• • • • • • • • • • • •

- Φ₁ first-order information
- Φ_2 high-order information
- Joint labeling: $\mathbf{y} \in \{-1, +1\}^n$

• Define Joint Feature Map (encodes the structure)

$$\Phi(\mathbf{x},\mathbf{y}) = \left(\begin{array}{c} \sum_{i} \Phi_1(x_i, y_i) \\ \sum_{i,j} \Phi_2(x_i, y_i, x_j, y_j) \end{array}\right)$$

- Φ₁ first-order information
- Φ_2 high-order information
- Joint labeling: $\mathbf{y} \in \{-1, +1\}^n$
- Define Score $S(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y})$

イロト イポト イヨト イヨト

Joint Score: Closer look

$$\mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{pmatrix}^{\top} \begin{pmatrix} \sum_i \Phi_1(x_i, y_i) \\ \sum_{i,j} \Phi_2(x_i, y_i, x_j, y_j) \end{pmatrix}$$
$$= \underbrace{\sum_i \mathbf{w}_1^{\top} \Phi_1(x_i, y_i) + \sum_{i,j} \mathbf{w}_2^{\top} \Phi_2(x_i, y_i, x_j, y_j)}_{Freeder High Order Information}$$
(6)

Encodes High-Order Information

イロト イロト イヨト イヨト 一日

Joint Score: Closer look

$$\mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{pmatrix}^{\top} \begin{pmatrix} \sum_i \Phi_1(x_i, y_i) \\ \sum_{i,j} \Phi_2(x_i, y_i, x_j, y_j) \end{pmatrix}$$
$$= \underbrace{\sum_i \mathbf{w}_1^{\top} \Phi_1(x_i, y_i) + \sum_{i,j} \mathbf{w}_2^{\top} \Phi_2(x_i, y_i, x_j, y_j)}_{Encodes High-Order Information}$$
(6)

• Single score for the entire dataset \rightarrow Ranking?

イロト イロト イヨト イヨト 一日
Ranking Using Max-Marginals

• We propose to use difference of max-marginals

¹¹Kohli et al., In PAMI 2007.

Puneet K. Dokania

Ranking Using Max-Marginals

- We propose to use difference of max-marginals
- $s(x_i; \mathbf{w}) = m_i^+(\mathbf{w}) m_i^-(\mathbf{w})$, where, $m_i^+(\mathbf{w})$ is the max-marginal score such that sample x_i takes label of +1.

$$m_i^+(\mathbf{w}) = argmax_{\mathbf{y},y_i=+1}\mathbf{w}^{\top}\Phi(\mathbf{x},\mathbf{y})$$

¹¹Kohli et al., In PAMI 2007.

Puneet K. Dokania

HOAP-SVM: Score

Score that can encode ranking and high-order information

HOAP-SVM: Score

Score that can encode ranking and high-order information

• Joint Score for the given ranking

$$S(\mathbf{x}, \mathbf{R}; \mathbf{w}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{N}} \mathbf{R}_{ij}(s_i(\mathbf{w}) - s_j(\mathbf{w}))$$

Encodes Ranking

HOAP-SVM: Score

Score that can encode ranking and high-order information

• Joint Score for the given ranking

$$S(\mathbf{x}, \mathbf{R}; \mathbf{w}) = \frac{1}{|\mathcal{P}||\mathcal{N}|} \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{N}} \mathbf{R}_{ij}(s_i(\mathbf{w}) - s_j(\mathbf{w}))$$

Encodes Ranking

• Sample score *s_i* as difference of max-marginals

$$s_i(\mathbf{w}) = m_i^+(\mathbf{w}) - m_i^-(\mathbf{w})$$

Encodes High-Order Information

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

HOAP-SVM: Objective Function

• Objective Function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \xi$$
(7)
s.t. $S(\mathbf{x}, \mathbf{R}^*; \mathbf{w}) \ge S(\mathbf{x}, \mathbf{R}; \mathbf{w}) + \Delta(\mathbf{R}, \mathbf{R}^*) - \xi, \quad \forall \mathbf{R},$ (8)
 $\mathbf{w}_2 \le 0, \xi \ge 0.$ (7)

イロト イロト イヨト イヨト 一日

HOAP-SVM: Objective Function

Objective Function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \xi$$
(7)
s.t. $S(\mathbf{x}, \mathbf{R}^*; \mathbf{w}) \ge S(\mathbf{x}, \mathbf{R}; \mathbf{w}) + \Delta(\mathbf{R}, \mathbf{R}^*) - \xi, \quad \forall \mathbf{R},$ (8)
 $\mathbf{w}_2 \le 0, \xi \ge 0.$ (8)

• Each max-marginal is a convex function (max over affine functions)

$$m_i^+(\mathbf{w}) = argmax_{\mathbf{y},y_i=+1}\mathbf{w}^{\top}\Phi(\mathbf{x},\mathbf{y})$$

イロト イロト イヨト イヨト 一日

HOAP-SVM: Objective Function

Objective Function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \xi$$
(7)
s.t. $S(\mathbf{x}, \mathbf{R}^*; \mathbf{w}) \ge S(\mathbf{x}, \mathbf{R}; \mathbf{w}) + \Delta(\mathbf{R}, \mathbf{R}^*) - \xi, \quad \forall \mathbf{R},$ (8)
 $\mathbf{w}_2 \le 0, \xi \ge 0.$ (8)

• Each max-marginal is a convex function (max over affine functions)

$$m_i^+(\mathbf{w}) = argmax_{\mathbf{y},\mathbf{y}_i=+1}\mathbf{w}^{\top}\Phi(\mathbf{x},\mathbf{y})$$

• The objective function is a difference of convex program

Puneet K. Dokania

<ロト < 同ト < 回ト < 回ト = 三日

Difference of convex functions can be optimized using CCCP algorithm

Difference of convex functions can be optimized using CCCP algorithm

Difference of convex functions can be optimized using CCCP algorithm

Difference of convex functions can be optimized using CCCP algorithm

Action Recognition

- PASCAL VOC 2011 Dataset
- 10 Action Classes
- Unary Feature POSELET and GIST concatenated
- High-Order Feature -POSELET
- High-Order Information
 - Hypothesis: Persons in the same image are more likely to perform same action
 - Connected bounding boxes coming from the same image

PASCAL VOC Results - Average AP over all 10 action classes

Method	Trainval	Test
SVM	54.7/ +4.2	48.82/+4.93
AP-SVM	56.2/+ <mark>2.7</mark>	51.42/+2.33
HOAP-SVM	58.9	53.75

Visualization - Reading top 4

Presentation Outline

- Thesis Overview
- 2 Parsimonious Labeling
- 3 Learning to Rank Using High-Order Information
- 4 Regularization Path for SSVM

Future Work

O Publications

イロト イポト イヨト イヨト

• Optimize SSVM objective function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

s.t. set of constraints

- $\lambda \rightarrow$ important for good generalization \rightarrow cross validate
- $\lambda \in [0,\infty] \rightarrow \text{cross validation over subset} \rightarrow \text{poor generalization}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

• Optimize SSVM objective function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

s.t. set of constraints

- $\lambda \rightarrow \text{important for good generalization} \rightarrow \text{cross validate}$
- $\lambda \in [0, \infty] \rightarrow \text{cross validation over subset} \rightarrow \text{poor generalization}$
- ϵ -optimal regularization path algorithm

Algorithm

<ロト < 同ト < 回ト < 回ト = 三日

• Optimize SSVM objective function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

s.t. set of constraints

- $\lambda \rightarrow \text{important for good generalization} \rightarrow \text{cross validate}$
- $\lambda \in [0, \infty] \rightarrow \text{cross validation over subset} \rightarrow \text{poor generalization}$
- ϵ -optimal regularization path algorithm

$$\xrightarrow{\lambda \in [0,\infty]} Algorithm$$

<ロト < 同ト < 回ト < ヨト = 三日

• Optimize SSVM objective function

$$\min_{\mathbf{w},\xi} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

- $\lambda \rightarrow \text{important for good generalization} \rightarrow \text{cross validate}$
- $\lambda \in [0, \infty] \rightarrow \text{cross validation over subset} \rightarrow \text{poor generalization}$
- ϵ -optimal regularization path algorithm

$$\begin{array}{c} \lambda \in [0,\infty] \\ \hline \\ Algorithm \\ dual \ gap \leq \epsilon \end{array}$$

<ロト < 同ト < 回ト < ヨト = 三日

Dual Objective and Duality Gap

• SSVM dual objective function

$$\begin{split} \min_{\alpha} & f(\alpha) \to \textit{smooth convex} \\ s.t. & \sum_{\mathbf{y} \in \mathcal{Y}_i} \alpha_i(\mathbf{y}) = 1, \forall i \in [n], \\ & \alpha_i(\mathbf{y}) \ge 0, \forall i \in [n], \forall \mathbf{y} \in \mathcal{Y}_i. \end{split}$$

where, $\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbb{R}^{|\mathcal{Y}_1|} \times \cdots \mathbb{R}^{|\mathcal{Y}_n|}$.

イロト イロト イヨト イヨト 三日

Dual Objective and Duality Gap

SSVM dual objective function

$$\min_{\alpha} \quad f(\alpha) \to smooth \ convex \\ s.t. \quad \sum_{\mathbf{y} \in \mathcal{Y}_i} \alpha_i(\mathbf{y}) = 1, \forall i \in [n], \\ \alpha_i(\mathbf{y}) \ge 0, \forall i \in [n], \forall \mathbf{y} \in \mathcal{Y}_i.$$

where, $\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbb{R}^{|\mathcal{Y}_1|} \times \cdots \mathbb{R}^{|\mathcal{Y}_n|}$. • Duality Gap

$$g(\alpha; \lambda) = \frac{1}{n} \sum_{i} \left(\max_{\mathbf{y} \in \mathcal{Y}_i} H_i(\mathbf{y}; \mathbf{w}) - \sum_{\mathbf{y} \in \mathcal{Y}_i} \alpha_i(\mathbf{y}) H_i(\mathbf{y}; \mathbf{w}) \right)$$

where, $H_i(\mathbf{y}; \mathbf{w})$ is the hinge loss.

Puneet K. Dokania

$$\lambda = \infty$$

$$\lambda_k, \mathbf{w}_k \to (\epsilon_1)_{opt}$$

$$\epsilon_1 < \epsilon$$

$$\lambda = \infty$$

$$\mathbf{w}_{k} \rightarrow fixed$$

$$\lambda_{k}, \mathbf{w}_{k} \rightarrow (\epsilon_{1})_{opt}$$

$$\epsilon_{1} < \epsilon$$

$$\mathbf{w}_{k} \rightarrow fixed$$

$$\mathbf{w}_{k} \rightarrow \mathbf{e}_{opt}, \forall \lambda \in [\lambda_{k+1}, \lambda_{k}]$$

$$\mathbf{w}_{k} \rightarrow \mathbf{e}_{opt}, \forall \lambda \in [\lambda_{k+1}, \lambda_{k}]$$

$$\lambda_{k+1}$$

$$optimize: \mathbf{w}_{k+1} \rightarrow (\epsilon_{1})_{opt}$$

$$\lambda = \infty$$

$$\mathbf{w}_k \to (\epsilon_1)_{opt}, \forall \lambda \ge \lambda_k$$

$$\lambda_k, \mathbf{w}_k \to (\epsilon_1)_{opt}$$

$$\lambda = \infty$$

$$\mathbf{w}_k \to (\epsilon_1)_{opt}, \forall \lambda \ge \lambda_k$$

$$\lambda_k, \mathbf{w}_k \to (\epsilon_1)_{opt}$$

• Let $\tilde{\mathcal{Y}}_i = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}_i} \Delta(\mathbf{y}, \mathbf{y}_i)$ be the loss-maximizer and $\tilde{\mathbf{y}}_i \in \tilde{\mathcal{Y}}_i, \forall i$.

$$\lambda = \infty$$

$$\mathbf{w}_k \to (\epsilon_1)_{opt}, \forall \lambda \ge \lambda_k$$

$$\lambda_k, \mathbf{w}_k \to (\epsilon_1)_{opt}$$

- Let $\tilde{\mathcal{Y}}_i = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}_i} \Delta(\mathbf{y}, \mathbf{y}_i)$ be the loss-maximizer and $\tilde{\mathbf{y}}_i \in \tilde{\mathcal{Y}}_i, \forall i$.
- Let $\tilde{\Psi} = \frac{1}{n} \sum_{i} \Psi_i(\tilde{\mathbf{y}}_i)$, where $\Psi_i(\mathbf{y}) = \Phi(\mathbf{x}_i, \mathbf{y}_i) \Phi(\mathbf{x}_i, \mathbf{y})$.

$$\lambda = \infty$$

$$\mathbf{w}_k \to (\epsilon_1)_{opt}, \forall \lambda \ge \lambda_k$$

$$\lambda_k, \mathbf{w}_k \to (\epsilon_1)_{opt}$$

- Let $\tilde{\mathcal{Y}}_i = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}_i} \Delta(\mathbf{y}, \mathbf{y}_i)$ be the loss-maximizer and $\tilde{\mathbf{y}}_i \in \tilde{\mathcal{Y}}_i, \forall i$.
- Let $\tilde{\Psi} = \frac{1}{n} \sum_{i} \Psi_i(\tilde{\mathbf{y}}_i)$, where $\Psi_i(\mathbf{y}) = \Phi(\mathbf{x}_i, \mathbf{y}_i) \Phi(\mathbf{x}_i, \mathbf{y})$.
- Then, w_k = ^ψ/_λ is guaranteed to be ε₁ optimal for any λ satisfying the condition:

$$\lambda \geq \frac{\left\|\tilde{\Psi}\right\|^{2} + \frac{1}{n} \sum_{i} \max_{\substack{\mathbf{y} \in \mathcal{Y}_{i} \\ i \neq j \neq j}} \left(-\tilde{\Psi}^{\top} \Psi(\mathbf{y})\right)}{\epsilon_{1}} \tag{9}$$

Challenge 2: How to find the breakpoints?

$$\begin{array}{c} \mathbf{w}_{k} \rightarrow fixed \\ \lambda_{k} \downarrow \\ duality \ gap \uparrow \end{array} \qquad \begin{array}{c} \lambda_{k}, \mathbf{w}_{k} \rightarrow (\epsilon_{1})_{opt} \\ \epsilon_{1} < \epsilon \\ \mathbf{w}_{k} \rightarrow \epsilon_{opt}, \forall \lambda \in [\lambda_{k+1}, \lambda_{k}] \end{array}$$

Challenge 2: How to find the breakpoints?

$$\mathbf{w}_{k} \rightarrow fixed$$

$$\lambda_{k} \downarrow$$

$$duality gap \uparrow$$

$$\lambda_{k}, \mathbf{w}_{k} \rightarrow (\epsilon_{1})_{opt}$$

$$\epsilon_{1} < \epsilon$$

$$\mathbf{w}_{k} \rightarrow \epsilon_{opt}, \forall \lambda \in [\lambda_{k+1}, \lambda_{k}]$$

$$\lambda_{k+1}$$

• Let $\lambda_{k+1} = \eta \lambda_k$, $0 \le \eta \le 1$.

Challenge 2: How to find the breakpoints?

$$\mathbf{w}_{k} \rightarrow fixed$$

$$\mathbf{w}_{k} \rightarrow fixed$$

$$\mathbf{w}_{k} \downarrow$$
duality gap \uparrow

$$\mathbf{w}_{k} \rightarrow \epsilon_{opt}, \forall \lambda \in [\lambda_{k+1}, \lambda_{k}]$$

$$\lambda_{k+1}$$

• Let
$$\lambda_{k+1} = \eta \lambda_k$$
, $0 \le \eta \le 1$.

• $\mathbf{w}_k \rightarrow \epsilon_{opt}$, for all λ_{k+1} obtained using η satisfying the condition:.

$$1 - \frac{\epsilon - g(\alpha^k; \lambda_k)}{\Omega(\alpha^k, \lambda_k)} \le \eta \le 1$$
(10)

(日)、(四)、(三)、(三)、(三)

where,
$$\Omega(lpha^k,\lambda_k):=\ell^{lpha^k}-\lambda^k \mathbf{w}_k^{ op}\mathbf{w}_k$$

Puneet K. Dokania

Challenge 2: Proof Sketch

Challenge 2: Proof Sketch

• Keeping \mathbf{w}_k constant – from $\kappa\kappa\tau$ condition

$$\mathbf{w}_k = \frac{1}{n} \sum_{i \in [n], \mathbf{y} \in \mathcal{Y}_i} \frac{\alpha_i^k(\mathbf{y})}{\lambda_k} \Psi(\mathbf{x}_i, \mathbf{y}).$$
Challenge 2: Proof Sketch

• Keeping \mathbf{w}_k constant – from $\kappa\kappa\tau$ condition

$$\mathbf{w}_k = \frac{1}{n} \sum_{i \in [n], \mathbf{y} \in \mathcal{Y}_i} \frac{\alpha_i^k(\mathbf{y})}{\lambda_k} \Psi(\mathbf{x}_i, \mathbf{y}).$$

• Therefore, using

$$\frac{\alpha_i^{k+1}(\mathbf{y})}{\lambda_{k+1}} = \frac{\alpha_i^k(\mathbf{y})}{\lambda_k}, \forall \mathbf{y} \neq \mathbf{y}_i; \quad \sum_{\mathbf{y} \in \mathcal{Y}_i} \alpha_i(\mathbf{y}) = 1, \forall i \in [n]; \quad \lambda_{k+1} = \eta \lambda_k$$

• New duality gap

$$g(\alpha^{k+1};\lambda_{k+1}) = \underbrace{g(\alpha^k;\lambda_k)}_{Old \ gap} + (1-\eta)\Omega(\alpha^k,\lambda_k)$$

$$\leq \epsilon$$

Puneet K. Dokania

3

ヘロト ヘ週ト ヘヨト ヘヨト

Challenge 3: How to optimize efficiently?

- Notice that, \mathbf{w}_k is already ϵ -optimal at λ_{k+1}
- Warm starting with \mathbf{w}_k requires us to reduce the duality gap only by $(\epsilon \epsilon_1) \rightarrow$ very fast convergence
- We use Block-Coordinate Frank-Wolfe algorithm¹³ for the optimization.
 - Lagrange duality gap is the by product

¹³Lacoste-Julien et al., In ICML 2013.

Effects of ϵ_1

Effects of ϵ_1

• Decrease ϵ_1 :

- $(\epsilon \epsilon_1)$ increases More passes through the data to get $(\epsilon_1)_{opt}$ solution.
- η decreases big jumps number of breakpoints decreases (see below)

$$\lambda_{k+1} = \eta \lambda_k; \qquad 1 - rac{\epsilon - g(lpha^k; \lambda_k)}{\Omega(lpha^k, \lambda_k)} \leq \eta \leq 1$$

• Increase
$$\epsilon_1$$
 — Similar arguments

Puneet K. Dokania

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 - のんの

Dataset and BCFW Variants

- OCR dataset¹⁴ with 6251 train and 626 test samples.
- *ϵ* = 0.1
- 20 different values of λ equally spaced between $[10^{-4}, 10^3]$

¹⁴Taskar et al., Max-margin Markov networks, NIPS 2003.

Dataset and BCFW Variants

- OCR dataset¹⁴ with 6251 train and 626 test samples.
- *ϵ* = 0.1
- 20 different values of λ equally spaced between $[10^{-4}, 10^3]$
- BCFW variants
 - BCFW-HEU-G: Heuristic convergence with gap based sampling
 - BCFW-STD-G: Exact convergence with gap based sampling

Dataset and BCFW Variants

- OCR dataset¹⁴ with 6251 train and 626 test samples.
- *ϵ* = 0.1
- 20 different values of λ equally spaced between $[10^{-4}, 10^3]$
- BCFW variants
 - BCFW-HEU-G: Heuristic convergence with gap based sampling
 - BCFW-STD-G: Exact convergence with gap based sampling
- RP-BCFW-HEU-G: Regularization Path with BCFW-HEU-G.

Effect of ϵ_1 for $\epsilon = 0.1$

Number of breakpoints in the regularization path

ϵ_1	RP-BCFW-HEU-G	RP-BCFW-STD-G	
0.01	142	133	
0.05	225	153	
0.09	1060	349	

イロト イ理ト イヨト イヨト

Effect of ϵ_1 for $\epsilon = 0.1$

Number of breakpoints in the regularization path

ϵ_1	RP-BCFW-HEU-G	RP-BCFW-STD-G	
0.01	142	133	
0.05	225	153	
0.09	1060	349	

Number of passes through the data for optimization

ϵ_1	RP-BCFW-HEU-G	RP-BCFW-STD-G	BCFW-STD-G
0.01	2711.946	4405.881	1138.872
0.05	1301.869	2120.969	1138.872
0.09	1076.005	2100.304	1138.872

Duality gap for $\epsilon_1 = 0.01$

Puneet K. Dokania

Duality gap for $\epsilon_1 = 0.09$

Puneet K. Dokania

Experiments and Analysis

Test loss for $\epsilon_1 = 0.01$

Puneet K. Dokania

Test loss for $\epsilon_1 = 0.09$

Puneet K. Dokania

Presentation Outline

- 1 Thesis Overview
- 2 Parsimonious Labeling
- 3 Learning to Rank Using High-Order Information
- 4 Regularization Path for SSVM

5) Future Work

O Publications

Possible future directions...

- High-Order
 - Parsimonious labeling for semantic labels
- SSVM
 - Latent HOAP-SVM
 - Discovering label dependence structure
 - Latent SSVM: Interaction between latent variables?
- Regularization path

$$\min_{\mathbf{w}} \quad \frac{\lambda}{2} \|\mathbf{w}\|^2 + L(\mathbf{x}, \mathbf{y}; \mathbf{w})$$

<ロ> (四) (四) (三) (三) (三)

Presentation Outline

- Thesis Overview
- 2 Parsimonious Labeling
- 3 Learning to Rank Using High-Order Information
- 4 Regularization Path for SSVM

Future Work

List of publications

- Discriminative parameter estimation for random walks segmentation, In MICCAI 2013.
- 2 Learning to Rank using High-Order Information, In ECCV 2014.
- Parsimonious Labeling, In ICCV 2015.
- Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVM, In ICML 2016.
- Sounding-based Combinatorial Algorithms for Metric Labeling, In JMLR 2016.
- Deformable Registration through Learning of Context-Specific Metric Aggregation, Under submission, ECCV 2016.
- Partial Linearization based Optimization for Multi-class SVM, Under submission, ECCV 2016.

