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Abstract

Autonomous vehicles garner huge importance, subject to their promise of safe driving, thereby
preventing the loss of so many lives that happen every year in road accidents. However, it is
yet a bit far in the future to be able to develop a full fledged autonomous vehicle that can
handle any complex traffic situation anywhere in the world. This is due to the many challenging
problems associated with building an autonomous car, few of them are – (i) identification and
understanding of roads, traffic signals and traffic rules; (ii) detection of agents in the scene
(vehicles, cyclists, pedestrians etc.); (iii) understanding the behavior of different agents in the
scene; and (iv) trajectory planning.

Many of the above mentioned tasks are yet to be solved properly in order to use them in
autonomous cars. One among them is behavior understanding of the agents in the scene. This
involves understanding how the agents (vehicles/pedestrians/cyclists etc) will behave short time
in the future given the current situation. Precisely understanding the near future behavior of
other agents in the scene will help the autonomous car to better plan its trajectory and also to
handle many unexpected situations. Based on these motivations, we build a model that can learn
to understand the motion characteristics of agents in the scene and thus allows us to predict their
future. The problem can be viewed as a task of relating the past to future motions conditioned
on how an agent moves subject to its own motion characteristics, scene (roads, sidewalks, etc),
and its interactions with neighboring agents.

In more detail, our model takes the past trajectory and the scene context (image of the
scene) as inputs to predict the future trajectory of the agent (vehicle/pedestrian/cyclist etc)
under consideration. It consists of following main components – (1) RNN-ED (Recurrent Neural
Network Encoder Decoder); (2) SCF (Scene context fusion); and (3) AM (Attention mechanism).

The first component, RNN-ED, is used for the time series prediction. The basic idea behind
RNN-ED is to use RNN to encode the given input series into a latent space and then use the
encoded representation to decode, using another RNN, into the future/output series. The role
of the second component, SCF, is to fuse the scene information and the interactions among the
nearby agents with the trajectory information of the agent under consideration. In more detail,
we project the input image into a feature space learned using Convolutional Neural Network
(CNN) in order to capture scene context. Similarly, the input trajectories of the agents in the
scene is mapped into another feature space to model interactions among them. Finally, these
feature vectors are used together to fuse the scene and the interaction together to obtain a richer
feature representation. The last and an important component, AM, of our model intelligently
weighs all the past summaries (hidden state vectors) w.r.t. the future scenario and attends or
weights to the past summaries depending on their resemblance to the future scenario. This helps
the model to find the important past patterns useful to decide the future trajectory.

To demonstrate the efficacy of our model, we use a highly challenging real-world traffic sce-
nario dataset, Stanford Drone Dataset. This dataset contains many highly dynamic situations
(cross-roads/roundabouts etc.) with many agents (cars/pedestrians/cyclists etc.) in many dif-
ferent dynamics (slow/fast moving, sharp maneuver, static, etc.).
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Chapter 1

Introduction

1.1 Overview

Autonomous vehicles are one of the most challenging technologies currently being worked on.
Several institutes, industries (Google, Uber, Tesla etc.) and governments all across the world are
working on it to make it a reality. Due to the loss of so many lives every year in road accidents,
the realization of this concept has become even more essential. For humans, learning to drive
is intuitive. But to develop a vehicle which could drive autonomously like humans is highly
challenging. The concept has been around for a long time, first successfully demonstrated in the
1980s [21, 22, 55]. Since then, a great deal of progress has been made in this direction. But as
rightly pointed out in [32], we still have a long way to go before we could develop autonomous
vehicles that could drive in unknown complex environments.

Driving involves many aspects such as (i) identification of roads, (ii) understanding of road
signs, traffic signals, (iii) detection of neighboring vehicles, pedestrians, cyclists etc., (iv) tracking
of objects of interest, (v) understanding their motion pattern and (vi) predicting their future
trajectories and many more. But its difficult to describe them mathematically using hand
engineered models. Thus, people have used recent state of the art ‘Deep Learning’ [10] to
address them. Similar to human brain’s neural network, deep learning involves development of
artificial neural networks using compositions of functions, whose parameters are learnt through
training on some available data. The working principle resembles how our brain learns through
experience. Thus, deep learning helps in development of models that are powerful enough to
understand the various aspects of driving.

With vision playing a crucial role in driving, the concept of autonomous vehicles has been bro-
ken down into smaller vision problems as thoroughly discussed in [32]. It presents the challenges
and recent state-of-the-art methods in these problems namely object detection [13, 15, 16, 17],
semantic segmentation [14, 20, 27, 40, 44, 47, 56, 64, 65, 66], tracking [11, 39, 60, 61, 62], future
prediction [7, 9, 31, 38], reconstruction [26, 41, 51], pose estimation [30, 52], scene understanding
[23, 59, 63] and SLAM (Simultaneous Localization and Mapping) [42, 43].

Out of the above mentioned aspects, we have focused on understanding the motion char-
acteristics of agents (vehicles, pedestrians, cyclists etc) and predicting their future motion in a
dynamic scene for this work. The problem can be viewed as a task of relating the past to future
motions conditioned on how an agent moves subject to its own motion characteristics, scene
(roads, sidewalks, etc), and its interactions with neighboring agents.
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1.2 Problem Definition

Let us imagine a traffic scenario with dynamic agents. These agents may move on straight or
curved paths, take different exits at the roundabouts or exit into some left/right cut etc. At road
junctions, some agents may allow others to exit first. Heavy vehicles such as trucks or buses may
not make sharp maneuvers compared to smaller vehicles such as cars or motorcyclists. Also, a
car may stop for a while to let the pedestrians cross the road first. Thus, it can be seen that each
agent has its own motion pattern, which is a combination of dynamics, scene and interactions
with nearby agents. Fig. 1.1 presents a traffic scenario taken from [49] in order to understand
the complexity of the problem. Note that the agents move subject to the presence of roads,
side-walks, roundabout and ensure that they don’t collide with each other. Through our model,
we aim to understand such complex relationship and predict future motion of agents.

Figure 1.1: Example of real traffic scenario of several agents moving in the scene. Taken from
[49]. Red and blue depict past and future motions respectively. Agents can be seen to be
moving subject to the scene (road, roundabout, side-walks etc) and ensuring no collisions with
each other.

During driving, we analyze the motion characteristics of nearby agents by observing them for
some time and then predict their future positions. This helps us in planning our future course
of action. We primarily use our vision to analyze this. We only look at how the agents move
with time and relate it with scene and extract motion characteristics.

Mathematically, with reference to the above description, we aim to learn a mapping, f , from
the past trajectory X to the future trajectory Y subject to the scene and interactions, as follows:

fθ : X|(scene, interactions)→ Y (1.1)

1.3 Related Work

The above relationship between the past and the future subject to scene context in Eq. 1.1
is highly complex and can’t be expressed explicitly using mathematics. An earlier attempt
has been made to understand pedestrian dynamics using ‘Social Force’ model [28]. But its
extension to a real driving scenario involving interactions between agents and scene may not
be very accurate, since behavior of agents would vary from scenario to scenario. Thus, instead
of explicitly hand designing a mathematical model, researchers have addressed this problem
by learning the parameters of a family of functions using machine learning, specifically, deep
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learning [7, 9, 31, 35, 37, 38, 57, 58]. However, these works normally do not consider a dynamic
scene with scene and interactions in entirety. A very recent work [38] considers the scene and
interactions but the interactions are not dynamic. Also, it looks only at a patch of the entire
scene and assumes that the agents outside the patch will not impact the motion of those lying
within the patch. This is a big assumption, since in future some of the agents from out of the
patch may be close enough to impact the motion of some agent in the patch. Our work is closest
to [38] and borrows many inspirations from it.

1.4 Our Approach and Novelties

Taking motivation from Deep Learning, we developed a model that simulates dynamic scene and
interactions and predicts the future trajectory given the past trajectory. We utilized two main
concepts of Deep Learning namely CNNs (Convolutional Neural Networks) and RNNs (Recurrent
Neural Networks). The parameter vector θ in Eq. 1.1 represents the combined parameters of the
CNN and RNN used in our model and is learned using the training dataset. We used Encoder-
Decoder variant of RNN [8, 18, 38, 46] to model the mapping from X to Y as given in Eq.
1.1. The scene in Eq. 1.1 is obtained by extracting scene features through CNN as in [38] and
interactions based on ‘Social-Pooling’ concept presented in [7].

An important feature of our model is that it is implemented with an ‘Attention-Mechanism’
[8, 46]. In this, special focus is made to a past situation which most resembles the future scenario.
It is expected that an agent would exhibit a similar behavior in similar situations. Hence, it is
important to find out if a situation similar to the one in future ever happened in the past. And
since the past motion is known, it could be utilized to expect a similar behavior from the agent.
Unlike a similar architecture [38], our model has following novelties:

• It can handle variable number of agents per scene

• It is able to simulate dynamic scene i.e. scene features and interactions change with the
positions of the agents

• Agents that are far-off may indirectly impact each other’s motions by impacting the agents
lying in between them. This effect though minimal would still be captured by our model
as it focuses on the entire scene instead of a patch of it.

1.5 Experiments and Code

We carried out an end-to-end training of the model on a highly challenging real-world Stan-
ford Drone Dataset (SDD [49]). This dataset contains many highly dynamic situations (cross-
roads/roundabouts etc.) with many agents (cars/pedestrians/cyclists etc.) in many different
dynamics (slow/fast moving, sharp maneuver, static, etc.).

We develop the entire code base using the well known TensorFlow [6] library. Due to the
unavailability of the code for DESIRE [38], that works on a similar setup as ours, we developed
the baseline codes ourselves. Also, the data split is not the same as used in DESIRE; hence our
results cannot be directly compared to that quoted in DESIRE [38]. We will make our code
publicly available in due course of time.

1.6 Observations

From our experiments, we observed that the test performance of our model is comparable to
the encoder-decoder based model presented in [38], thereby justifying the usage of ‘Attention-
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Mechanism’ with fusion of dynamically changing agent’s dynamics, scene and interactions.
Please note that we do not compare with the final model of DESIRE [38] as it is based on
a generative model, thus, depends on a family of potential future trajectories. Hence, it can
not be directly compared. However, the results, if not better, are very close to the final model
of [38].

1.7 Layout

This thesis is laid out in the form of relevant literature, methodology used, experiments, results,
conclusions and future scope of work. Chapter 2 explains the architecture and functionalities
of Neural Networks, CNNs and RNNs. Chapter 3 discusses the neural network architecture
developed for future trajectory prediction using CNN and RNN in detail. Chapter 4 presents
the experimental setup, datasets used, learning criteria and results obtained. The concluding
remarks and future scope of work are presented in Chapter 5.
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Chapter 2

Background

In this chapter, we present a background of the Neural Networks, Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), which we have utilized in Chapter 3 to build
our model for trajectory prediction of agents conditioned on scene and interactions.

2.1 Neural Network

Neural network, a universal function approximator [12], takes its inspiration from the functioning
of the human brain. As shown in Fig. 2.1a, our brain is a highly complex network of neurons
where each neuron communicates with others in order to process data that we normally perceive
through our sense organs. Similarly, a neural network as shown in Fig. 2.2 is a collection of
artificial neurons (a simple mathematical function) where each artificial neuron is connected
to another in a pre-specified pattern so that the final mathematical function realized using
this collection is able to mimic large class of complex functions, and is easier to analyze and
understand at the same time.

(a) (b)

Figure 2.1: Representation of biological neuron and its mathematical form. Taken from [3, 1]

A neural network has several layers of neurons viz. input, hidden and output layers. The
acquired data is fed to the input layer of the neural network. The input layer processes the
data and passes the processed information to the hidden layers. These layers further process
and pass onto the output layer which generate the outputs corresponding to the inputs to the
neural network. These layers can be very easily related to how we use our vision. For example,
when we look at a car in the environment, we are able to quickly identify it as a car instead of
identifying it as an animal or a human being. The image that we capture is fed to the input
layer of our brain. And then instantly we get a decision from the output layer of our brain that
the object we are looking at is a car. But, we don’t make any explicit effort to carry out this
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Figure 2.2: Neural Network

analysis. This is done internally by our brain through the hidden layers.

2.1.1 Neuron

The functioning of a neuron is mathematically expressed by Eq. 2.1 and shown in Fig. 2.1b. It
can be interpreted as computing a weighted sum over all the inputs and then passing it through
some non-linear activation function. The weighted sum is computed using the weights W and
the biases b. The activation function is given by f.

y = f(Wx+ b) (2.1)

2.1.2 Activation Function

Following are the activation functions generally considered.

• Sigmoid Sigmoid function (σ) given by Eq. 2.2 is used to map the input x to y ∈ [0,1].
It is shown in Fig. 2.3a.

y = σ(x) =
1

1 + e−x
(2.2)

• Hyperbolic Tangent (tanh) Hyperbolic tangent (tanh) function is used to map the
input x to y ∈ [-1,1] using Eq. 2.3. It is represented in Fig. 2.3b.

y = tanh(x) =
ex − e−x

ex + e−x
(2.3)

• Rectified Linear Unit (ReLU) ReLU outputs the maximum between the input x and
zero. It is given by Eq. 2.4, where x and y are respectively the inputs and outputs of
ReLU activation. The ReLU function is shown in Fig. 2.3c.

y = max(0, x) (2.4)

2.1.3 Training

The objective of the network is to tune its parameters to achieve the given target Y . A forward
propagation of the network is carried out over the given inputs X to get an output Ŷ . The
output Ŷ is then compared with the given target Y and the error between them is computed
through loss function Lp-norm given by Eq. 2.5. Usually, L1 or L2 losses are used, wherein
p = 1, 2 respectively. The loss is back-propagated [48] to get the gradients at each neuron, which
are then used to tune the parameters of the model.

Lp = ||Y − Ŷ ||p (2.5)

6



(a) Sigmoid (b) tanh (c) ReLU

Figure 2.3: Activation functions

2.2 Convolutional Neural Network (CNN)

CNNs are neural networks that are highly utilized in tasks such as classification [36, 50], object
detection [13, 15, 16, 17, 33], segmentation [14, 20, 27, 40, 44, 47, 56, 64, 65, 66], hand writing
recognition [45] etc. They have high representational capacity and are able to extract relevant
features/ information in the inputs.

CNNs use a convolution of filters as a neuron. A neuron in CNN looks at a region of inputs
and performs convolutions on them. CNNs usually have multiple layers with each layer consisting
of convolution filters and pooling operations. At the end, there are usually fully-connected layers
that map to the number of classes of objects or outputs under consideration. Normally, the
number of depth channels increase and the cross-sectional size of the image decrease with the
layers.

Figure 2.4: CNN for image classification. Taken from [4]

For example, a CNN pipeline for image classification task is shown in Fig. 2.4. Four classes
of objects –dog, cat, boat and bird– are considered. The figure shows the usage of layers of
convolutions and pooling operations. In the end, fully-connected layers are employed. Also it
can be seen that the image size is decreasing and the number of channels is increasing as the
flow moves further into the CNN pipeline. This gradual decrease in size of the image can be
interpreted as attempting to extract relationship between far-off pixels in the original image. If
the image size is suddenly reduced, there would be a loss of information. So to preserve it, a
gradual reduction is preferred. The pooling operation represents usage of the most prevalent/
average information in a region. The increase in number of channels can be attributed to the
fact that they try to capture maximum features in the image. Due to the depth (number of
layers) of the network, a long chain between the inputs and the outputs is formed. And there
exists a link between how the weights in the first layer affect the end output through a series of
layers. The aim of the CNN is to tune its parameters in all the layers subject to the training
objectives.

The input image in Fig. 2.4 is a boat. Hence, the CNN should learn to predict that the
image corresponds to a boat. The image has 3 channels namely RGB (Red, Green and Blue).

7



The CNN takes as inputs these 3 channels and in the end outputs a score to each class. The
score represents the probability of the image belonging to that class. This CNN is trained using
a cross-entropy loss which compares the predicted probability and the actual probabibility of
the image being a boat.

The CNN in the above example is able to capture the features present in the image through
its deep network. It is able to find a relationship between the pixels and then predict the class
of the image. Hence, due to its depth, it has high representational capacity.

CNN is initially trained on a set of images. Then it is tested on a set of similar images and
test performance is evaluated.

2.3 Recurrent Neural Network (RNN)

As discussed above, CNNs are powerful enough to identify the features in an image. From their
implementation, it is evident that they can only be used on individual images. They cannot be
used to find a relationship between a sequence of inputs. Sequential inputs such as sentences,
time series data etc cannot be represented using CNNs. For sequential data, we use Recurrent
Neural Networks (RNNs) which have the capacity to learn the relationship between sequentially
changing data [24, 25, 53].

Figure 2.5: Recurrent Neural Network. Taken from Colah’s wonderful blog [5]

RNNs are neural networks that have a sequence of neurons, with each neuron looking into
data at different time steps. All these neurons are sequentially connected. RNN is pictorially
represented in Fig. 2.5. It takes a series of inputs (X0, X1, X2, X3, · · · , Xt) and learns the features
at each time step namely (h0, h1, h2, · · · , ht). The box named as A in Fig. 2.5 that links the
input to the feature is known as cell. The cell has a bunch of neurons which are able to capture
the relationship between the inputs upto the current time step and accordingly output a feature
representation. The cells at all time steps share the parameters. Usually, cells are selected to
be LSTM (Long Short Term Memory [29]) or GRU (Gated Recurrent Unit [18]) as these have
been shown to be powerful enough to retain long term memory. They are able to relate to some
information that was seen a long time back. Hence, they are utilized for time series predictions
[38, 46], long term sequence translations [8, 18, 54] etc.

LSTM and GRU cells are shown in Fig. 2.6. The LSTM (Fig. 2.6a) has 3 neurons namely
input gate, forget gate and output gate. The input gate is used to determine how much to update
the cell based on the current inputs. The forget gate decides how much of the cell information
to be dropped. And the output gate corresponds to how much content of the cell should be used
to represent the features at the current time step. Thus, there are two types of states in LSTM
–cell state and output state.

On the other hand, GRU (Fig. 2.6b) has 2 neurons namely update and reset gates. The
update gate z decides how much to update the hidden state. And the reset gate decides how
much of the states to be reset subject to the current inputs. It uses only one set of hidden states
unlike LSTM that has two sets of states.
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(a) LSTM (b) GRU

Figure 2.6: RNN Cells - LSTM and GRU. Taken from [2, 18]

From the above, it can be seen that GRU has easier implementation (2 gates, 1 state) in
comparison to LSTM (3 gates, 2 states). Also, their performances are shown to be equivalent
[19]. Thus, owing to their simplicity and no degraded performance, we have used GRU cells for
our RNN, as discussed in Chapter 3.

The mathematical implementation of GRU cell is given in Eq. 2.6. xt and ht−1 are the
current inputs and previous cell state. The update and reset gates are represented by zt and
rt respectively. The GRU cell has weights W , U , Wr, Ur, Wz and Uz. Please note that like
the neurons in Sec. 2.1.1, the neurons in GRU cell also have bias terms, which we have ignored
in here to make equations comprehensible. However, the bias terms are considered during the
implementation.

ht = ztht−1 + (1− zt)h̃t
h̃t = tanh

(
Wxt + U(rt � ht−1)

)
rt = σ

(
Wrxt + Urht−1

)
zt = σ

(
Wzxt + Uzht−1

)
(2.6)
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Chapter 3

Methodology

3.1 Overview

In this chapter, we talk about our model that we developed to handle the task of future trajec-
tory prediction in dynamic scene. Briefly, our model takes the past trajectory and the scene
context (image of the scene) as inputs to predict the future trajectory of the agent (vehi-
cle/pedestrian/cyclist etc) under consideration. Our model consists of following main com-
ponents – (1) RNN-ED (RNN Encoder Decoder); (2) SCF (Scene context fusion); and (3) AM
(Attention mechanism). Let us first briefly talk about these components to get an intuition of
the underlying working of the model, and then discuss each of them in detail in the remaining
part of the chapter.

The first component, RNN-ED, is used for the time series prediction. The basic idea behind
Encoder-Decoder to use RNN (Recurrent Neural Network, explained in Chapter 2) is to encode
the given input series into a latent space and then use the encoded representation to decode, using
another RNN, into the output series. RNN-ED has been widely used in sequence prediction tasks
such as language translation [8, 18, 54], behavior prediction [7, 31, 38], time series prediction
[31, 38, 46].

As mentioned earlier, the inputs to our model are past trajectory and scene (image). In-
tuitively, the role of SCF is to fuse the scene information and interactions with the trajectory
information. To get the scene information, we employ CNN. Briefly, a CNN is used to map the
input image into a feature space. Similarly, the input trajectory is mapped to another feature
space of velocity features. And the interactions are obtained by mapping the velocity features of
neighbouring agents to another feature space representing the concentration of nearby agents.
Finally these feature vectors are concatenated. The hope is that this common feature space will
have more information than any one of them individually. The SCF is motivated by the recent
work [38].

The last component, Attention Mechanism (AM), computes a weighted sum of all the past
summaries wrt the decoder’s hidden state. The model learns to attend more to that summary
in the past that relates the most to the situation in future. This can be interpreted as that the
agent would exhibit a motion pattern similar to what it did in a past situation that resembled
the most to the future scenario. The use of AM is motivated by the use of attention in [8, 46].

One of the major insights that we use in the following is that velocity is a representation of
agent motion characteristics, as presented in [7, 38]. During driving, we only look at the motion
of the agents nearby and underrstand its motion characteristics. We build on this intuition to
consider velocity as a representation of motion context.

In the following, we first present the inputs, outputs and the training objective of our model.

10



Next, we have detailed the model architecture and its several modules namely CNN, RNN-
Encoder, RNN-Decoder, Scene Context Fusion (SCF) and Attention-Mechanism (AM).

3.2 Inputs, Outputs and Training Objective

Let the scene under consideration be represented by image I0 with size imH × imW × 3. For
consistency among the examples, we scale I0 into image I of size H ×W × 3 using bilinear-
interpolation. I is considered as the image of the scene and used as input to the CNN as shown
in Fig. 3.1.

We consider N number of agents moving in the scene, where N varies from scene to scene.
The ground truth for the past and future positions are represented by X and Y respectively,
where X = [X1, X2, · · · , XN ] and Y = [Y1, Y2, · · · , YN ]. With reference to the current time instant
‘t’, the past and the future trajectories of ith agent are represented by Xi = [xi,t−ν+1, · · · , xi,t]
and Yi = [yi,t+1, yi,t+2, · · · , yi,t+δ], respectively. Please note that ν and δ represent the number
of past and future time steps considered in the model. We have focused on traffic scenario,
hence each xi,t and yi,t is a vector in R2. Similarly the ith agent’s past velocity is represented
by Ẋi = [ẋi,t−ν+1, · · · , ẋi,t]. We compute the velocity through temporal convolution layer over 3
successive positions with fixed parameters. We use Ẋ = [Ẋ1, X2, · · · , ẊN ], instead of X , as one
of the input to our model (refer to Fig. 3.1).

The objective is to learn the mapping function that allows us to predict future positions
represented by Ŷ. The predicted future position should be as close as possible to the ground
truth of the future positions i.e. the error between Ŷ and Y should be minimum. Hence, we use
L1 loss function, averaged over the training sequences, as given in Eq. 3.1. It directly measures
the absolute error between the prediction Ŷ and the ground truth Y. Thus, the objective is to
learn the parameters of the model such that the regularized loss is minimized. We use back-
propagation [48] algorithm to optimize our model so that the mean absolute error is reduced.

L =
1

N

i=N∑
i=1

||Yi − Ŷi||1 (3.1)

3.3 Model Architecture

Figure 3.1: Model architecture

We now talk about all the components of the architecture of our model as shown in Fig.
3.1. Briefly, we use the image I and get its feature through the CNN pipeline (shown in detail
in Fig. 3.3). We feed the past velocity Ẋ into RNN-Encoder to get the summary of motion
at all past time steps. All these summaries are then fed into RNN-Decoder. At each future
time step, the decoder attends to them wrt its state through the ‘AM’ module and then uses
their weighted sum. We obtain the scene context features (agent motion context, scene and
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interactions) through the ‘SCF’ module. The decoder cell takes the weighted summary, the
scene context and previous cell state as inputs and then predicts the position Ŷi,t at time step
‘t’. Ŷi is compared to Yi to get the loss using Eq. 3.1. This loss is back-propagated [48] to get
the gradients at every neuron in the model and accordingly tune the model parameters. Let us
now understand all these components in detail.

Please note that, in order to avoid clutter in equations, we omit i wherever necessary. For
example, in situations, where we do not talk about interactions, Xt implies Xi,t, which is the
position of the i-th agent under consideration at t-th time step. Similarly for other variables.

3.3.1 RNN-Encoder

We develop the Encoder using GRU (see Chapter 2) based RNN as in [18]. We prefer GRU over
LSTM [29] for its simplicity and equivalent performance [19]. The input to the encoder is the
past velocity Ẋt and the output is a vector ht in the latent embedding space. Intuitively, ht
represents the summary of the past trajectory at t-th time step.

As stated in Sec. 3.1, velocity is a dense representation of agent motion context. Due to its
compactness, if we use it directly in the encoder, we may lose some characteristics of agent’s
motion, which may be significant later on. It would, thus, be better to use the high-dimensional
representation of velocity as inputs. Hence, we use velocity’s high-dimensional representation
Ft obtained using Eq. 3.2 as input to the GRU cell. This mapping is represented by the
fully-connected (fc) block in Fig. 3.1.

Ft = max(0, wvẊt + bv) (3.2)

The GRU cell takes Ft and previous cell-state ht−1 as inputs. Similar to as described in
Chapter 2, the cell state is updated to ht using Eq. 3.3. The reset and the update gates,
represented by rt and zt, decide on how much of the encoder state should be updated or reset
subject to the current inputs and the previous state.

ht = ztht−1 + (1− zt)h̃t
h̃t = tanh

(
WFt + U(rt � ht−1)

)
rt = σ

(
WrFt + Urht−1

)
zt = σ

(
WzFt + Uzht−1

)
(3.3)

Parameters and initialization We initialize the encoder with zeros since we do not have any
information about the agent’s motion prior to this time instant. From Eqs. 3.2 and 3.3, it can
be seen that the parameters to be learnt in the encoder are wv, bv, W , U , Wr, Ur, Wz and Uz.
Please note that we have intentionally omitted the bias terms in Eq. 3.3 for easy comprehension.
They are however considered in the code.

3.3.2 RNN-Decoder

Similar to the encoder, we use GRU based RNN as the decoder. Let us consider the cell at the
future time step ‘t’. The decoder’s task is to predict Ŷt conditioned on the past summary and
the scene context features at ‘t’. Thus, the decoder’s GRU cell takes as inputs (refer to Fig 3.1)–
(i) the scene context fusion feature F

′

t (combination of agent motion context, scene feature, and
interaction feature); (ii) weighted past summary ct obtained using attention mechanism (AM);
and (ii) previous cell state h

′

t−1. The scene context features F
′

t given by Eq. 3.4 comprises of
agent motion context f

′

˙̂
Y t−1

, image features scf
′

t−1 and interactions among agents aif
′

t−1. The
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details of of scene context fusion feature and weighted summary determination (AM) is given in
Secs. 3.3.3 and 3.3.4, respectively.

F
′

t =
[
f
′

˙̂
Y t−1

, scf
′

t−1, aif
′

t−1

]T
(3.4)

We update the GRU cell to state h
′

t using Eq. 3.5. r
′

t and z
′

t are the reset and update gates
for the decoder that decide on how much to reset/ update the cell state h

′

t−1 conditioned on the
summary ct and the inputs F

′

t .

h
′

t = z
′

th
′

t−1 + (1− z
′

t)h̃
′
t

h̃
′
t = tanh

(
W
′
F
′

t + U
′
(r
′

t � h
′

t−1) + V
′
ct

)
z
′

t = σ
(
W
′

zF
′

t + U
′

zh
′

t−1 + V
′

z ct

)
r
′

t = σ
(
W
′

rF
′

t + U
′

rh
′

t−1 + V
′

r ct

)
(3.5)

Note that, h
′

t can be interpreted as high dimensional motion characteristics at future time
instant ‘t’. Instead of directly mapping from h

′

t to velocity [38], we again condition it with
summary ct (obtained using AM) and the input features F

′

t to get the agent motion features g
′

˙̂
Y t

through Eq. 3.6. Similar approach has been followed in [18, 54, 46]. This can be interpreted as
recovering relevant information in the inputs and the summary that may have been lost when
obtaining the decoder state h

′

t through Eq. 3.5.

g
′

˙̂
Y t

=W
′

gF
′

t + U
′

gh
′

t + V
′

g ct (3.6)

Now that we have the agent motion features g
′

˙̂
Y t

, we map it back to get the velocity at t-th
time. We implement this using a fully-connected layer given by Eq. 3.7.

˙̂
Y t = w

′

vg
′

˙̂
Y t

+ b
′

v (3.7)

The predicted position Ŷt is next obtained using predicted velocity ˙̂
Y t and previous predicted

position Ŷt−1 through Eq. 3.8. We also know that the agents under consideration would lie within
the image boundaries. We, thus, use this information to limit the predicted position Ŷt to lie
within the image boundary.

Ŷt = Ŷt−1 +
˙̂
Y t (3.8)

Parameters and initialization The Encoder-Decoder represents a continuous sequence of
GRU cells that aim to extract the motion characteristics at each time step. The output of the
encoder’s 1st cell is used as input to the encoder’s 2nd cell and so on. Similarly the output
of decoder’s 1st cell is used as input to the deocder’s 2nd cell. Following this relationship, we
initialize the decoder’s first cell with the encoder’s last cell state, as shown in Fig. 3.1. This
process is similar to that used in [18, 54].

It is important to note that as in Eq. 3.3, we have here as well skipped the bias terms in
Eqs. 3.5 and 3.6 for easy understanding. And the parameters to be learnt in the decoder are
W
′
, U

′
, V

′
, W

′

z, U
′

z, V
′

z , W
′

r , U
′

r, V
′

r , W
′

g, U
′

g, V
′

g , w
′

v and b
′

v.

3.3.3 Scene Context Fusion (SCF) and Interactions

As discussed in Sec. 3.1, we humans analyze the scene context and understand the relationship
between the agent motion context, scene and interactions. We use this understanding to predict
the future position of the agents. Inspired by this, we try to mimic the same process using Scene
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Figure 3.2: Scene Context Fusion

Context Fusion (SCF) module as shown in detail in Fig. 3.2. It fuses the agent motion context,
image features and interactions among the agents into a common feature space. Its a compact
representation of the agent’s motion subject to its interactions with the scene and nearby agents.
Without loss of generality, let us focus on agent ‘i’ at time step ‘t’. The SCF takes as inputs
– (i) the predicted position Ŷi,t−1 & velocity ˙̂

Y i,t−1 of the ith agent at previous time step; (ii)
image feature ρ(I) obtained using CNN; and (iii) position Ŷj\i,t−1 & velocity ˙̂

Y j\i,t−1 of all other
agents in the scene at previous time step.

An important point to note here is that these features vary with time. Hence, we are able
to model the dynamic scene environment. Another major aspect of the SCF is that it uses
predicted position and velocity instead of using their ground truth values. We have done this
due to the following intuitions:

• The usage of predicted values instead of ground truth would provide the network with
higher gradients that would help improve the learning process and thereby yield better
performance.

• If we use the ground truth values, perhaps the network would converge quickly due to
availability of correct information from the beginning itself. But a drawback of this would
be that it would never understand how an error in those parameters may propagate and
corrupt the results. During test performance evaluation, the ground truth will not be
available for these parameters. Hence, the network would have to depend on their predicted
values only. And since it would not be trained that way, the control in the propagation of
error with time will be difficult. As a result, its test performance would degrade.

Thus, it is evident that the SCF takes into account the dynamic scene features and would
also yield a higher test performance. The different aspects of SCF viz. agent motion context,
scene features and interactions are presented next.
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Agent Motion Context

As done in Sec. 3.3.1, we here as well use velocity features as representation of agent’s motion.
Thus, predicted velocity ˙̂

Y t−1 is mapped to a high-dimensional representation f
′

˙̂
Y t−1

using Eq.

3.9. This mapping is represented by the ‘fc’ block after ˙̂
Y t−1 in Fig. 3.2. The relationship

between the velocity and motion context should be consistent throughout the model. Hence, we
have used the same weights and biases (wv and bv from Eq. 3.2) in Eq. 3.9.

f
′

˙̂
Y t−1

= max(0, wv
˙̂
Y t−1 + bv) (3.9)

Scene Features and Pooling

To understand the effect of scene on the agent’s motion, we need to identify the image features,
such as presence of roads, crosswalks, buildings etc. And we know that CNNs are powerful
enough to identify such features. So, we first obtain the image features using CNN pipeline as
given in Fig. 3.3. The resized image I is passed through a series of convolution layers to yield
ρ(I) which represents image features and has dimensions of HCNN ×WCNN ×DCNN . These are
used subject to the position of the agent for scene-feature pooling, explained below. The CNN
is built with 2 layers. The weights and biases for these layers are represented by (wk1 , bk1) and
(wk2 , bk2) respectively. We use ReLU activation function (see Chapter 2) for both the layers.

Figure 3.3: CNN for image features determination

The features in I0 would be contained in ρ(I), the output of our CNN pipeline. Its, thus,
important to note that we do not explicitly provide the image features to our model, rather it
learns them on its own. However, I0 has size imH × imW × 3, whereas ρ(I) has size HCNN ×
WCNN ×DCNN . This means that the features at position Ŷt−1 in I0 would correspond to the
features at its corresponding scaled position Ŷt−1,scaled in ρ(I). With reference to the size of
image features and the image, the scale factor is intuitively obtained through Eq. 3.10, where
� represents element-wise multiplication. Using this philosophy, the image features at Ŷt−1 are
obtained by pooling features from ρ(I) at Ŷt−1,scaled. We represent these pooled features by
scf

′

t−1. And since we use the predicted position while pooling, we get scene features that change
with motion of the agent. This pooling operation is pictorially represented by ‘Scene Feature
Pooling ’ block in Fig. 3.2.

Ŷt−1,scaled = Ŷt−1 �
[WCNN

imW
,
HCNN

imH

]
(3.10)

Interactions among agents

From Sec. 3.1, we know that the interactions among the agents play an important role in their
motion characteristics and also that velocity compactly represents the motion context. Hence,
we build on this intuition and use the velocity features to get the interaction features.

Let us focus on the motion of agent ‘i’. It is intuitive to say that its motion would be impacted
more by those agents ‘j \ i’ that are closer to it. Its motion may also be significantly impacted
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by a far-off agent if that has say high relative velocity. So it can be seen that we could get the
interaction features by using the velocity features and the positions of the agents.

Figure 3.4: Interaction features pooling using Social-Pooling. Taken from [7]. Black dot signifies
the position of ith agent. The velocity features of neighboring agents are placed at their corre-
sponding positions in the N0 ×N0 grid. h1, h2 and h3 represent the velocity features of agents
1, 2 and 3 respectively.

We use the Social-Pooling concept introduced in [7] to get the interaction features. An agent’s
motion would be impacted only by those agents that lie within some distance. Hence, we focus
on the velocity features of only those agents that lie in some neighborhood around the agent
under consideration, as aptly shown in Fig. 3.4. Usually I0 would have a large size. Due to
this, the agents j \ i impacting the motion of ith agent maybe situated at quite a distance from
i. To include them for the interaction feature pooling, we would have to construct a large grid,
which would be computationally heavy. So, we first scale down I0 to size N1×N1 and place the
velocity features of all the agents at their corresponding scaled down positions in this N1 ×N1

grid. We now consider a region N0 ×N0 around the agent ‘i’ as shown in Fig. 3.4. This region
signifies that the agents beyond it do not impact the motion of agent ‘i’. We hence, pool the
velocity features of all those agents that lie in this region. This pooling, represented by Hi

t−1 is
done through Eq. 3.11 and represented by ‘Social Pooling ’ block in Fig. 3.2. Due to the scaling,
it can be seen from Fig. 3.4 that the velocity features are summed up for the agents that lie in
the same grid location. This can be interpreted as a higher concentration of interaction features
at such locations in the grid.

Hi
t−1(m,n, :) =

∑
j∈N

1mn

[
x
j\i
t−1 − xit−1, y

j\i
t−1 − yit−1

]
f
′

˙̂
Y j\i,t−1

Ŷi,t−1 = [xit−1, y
i
t−1]

Ŷj\i,t−1 = [x
j\i
t−1, y

j\i
t−1]

(3.11)

In Eq. 3.11, 1mn is an indicator function about the presence of j at (m,n) position in the
N0×N0 grid around Ŷi,t−1. It is thus, equal to 1 if j is present, else it is 0. We next obtain a dense
representation of interaction features by mapping Hi

t−1(m,n, :) to aif
′

t−1 using a fully-connected
layer as given by Eq. 3.12 and aptly shown by the ‘fc’ block after ‘Social Pooling ’.

aif
′

t−1 = wiH
i
t−1 + bi (3.12)

Following are the important aspects of the way we have implemented interaction feature
pooling:

• Unlike [7] which uses hidden states for interaction feature pooling, we have used velocity
features. We have done this with regards to the following reasons:

– Due to the attention mechanism, we condition the hidden states h
′

t with the summary
ct and the previous states h

′

t−1 and map it to g
′

˙̂
Y t

to get the motion context features,
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as discussed in Sec. 3.3.2. Thus, for us, its g
′

˙̂
Y t

that actually represents the velocity

features instead of h
′

t−1.

– We have constrained the predicted position to lie within the image boundary as dis-
cussed in Sec. 3.3.2. Due to this, if the position is truncated, it would mean a change
in predicted velocity too. Hence, it should be better to accordingly correct the earlier
steps as well. But it would then make the model too complicated. Further, we also
know that the agent motion is better represented by the velocity features. Thus,
moving ahead with our intuition and keeping the model simple, we have used the
velocity features for pooling of interaction features.

• Since, we consider all the agents in the scene, we are able to model the interactions due
to change in positions of all agents simultaneously. Hence, the interaction feature pooling
is completely dynamic. Due to this, agents that may not be interacting at some time may
become interactive at some later time in the future.

• A similar implementation of Social-Pooling has been carried out in [38]. A cropped region
around the agent i is taken under consideration. It is assumed that no other agent outside
this region affects the motion of any of the agents lying inside it. But there could be
situations wherein an agent k \ i lying right outside the region would be impacting some
agent j \ (i, k) inside the region. Situation could be worse when there would be a high
concentration of such agents. Hence, such agents k would be directly impacting j and
thereby indirectly impacting i. Thus, we can see that the usage of cropped region from
the beginning itself is not good. We have overcome this problem by looking at the entire
image scene and then pooling wrt dynamic movements of all the agents. Hence, our model
is able to capture those indirect relationships as well.

From the above salient points, it is evident that our model closely resembles a real-life dy-
namically changing traffic scenario. Parameters to be learnt in the SCF module are wi and
bi.

3.3.4 Attention Mechanism (AM)

When we humans drive, we expect that in future, the agents would exhibit a behavior similar
to what they did in a similar past situation. For example, if an agent attempted to change lanes
in a busy traffic scenario in the past, we expect them to do the same in future. Hence, when
we predict the future motion of agents, we intelligently recall their behavior from a similar past.
This makes sense since for the short duration of past and future that we consider, we don’t
expect the motion pattern to be very different in similar situations. Thus, while driving, we
attend more to similar past situations and less to the others.

Similar concept has been implemented in [8, 46] for neural language translations and finance
stock predictions. We have taken inspiration from these works and implemented an attention-
based summary for our case as against the naive usage of constant summary in [38] for a traffic
scenario model similar to ours. We call it as Attention-Mechanism and have incorporated it into
our model through the ‘AM ’ block in Fig. 3.1. Its detailed architecture is presented in Fig. 3.5.

We know that the hidden states of the encoder represent the summary of motion at all time
steps in the past. We use this information to build upon the above discussed concept. If we
compare all the states of the encoder to the current decoder state, we could find out which past
situation resembles the most to the future situation. Accordingly, we could weigh them all and
use their weighted sum as the summary. We achieve this through Eq. 3.13 to get the weighted
summary ct. It can be seen in Eq. 3.13 that hidden states (at all time steps in the past) hm are
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used with the decoder state h
′

t−1 to get their corresponding weights αt,m. These weights αt,m
are then used with hm to get the weighted summary ct. Please note that ν in Eq. 3.13 is the
number of past time steps as mentioned in Sec. 3.2.

Figure 3.5: Attention Mechanism

ct =

m=ν∑
m=1

αt,mhm

αt,m =
et,m∑m=ν
m=1 et,m

et,m = V Ta tanh
(
U
′

ah
′

t−1 +Wahm

)
· · · ∀m ∈ (1, ν) (3.13)

Parameters With reference to Eq. 3.13, the parameters to be learnt in ‘Attention-Mechanism’
are U

′

a, Wa and Va. We have intentionally skipped the bias terms in Eq. 3.13 for easy under-
standing. However, we have considered them in the code.
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Chapter 4

Experiments and Results

In this chapter, we first present the experimental setup viz. the dataset used, dimensions/ values
of the model parameters, evaluation metrics, baselines for comparison and learning criteria. Later
on we present the results and the observations. In the end, we also perform some of the ablation
studies that we carried out in order to better understand our final model.

4.1 Experimental Setup

4.1.1 Dataset

Since our focus is to understand behavior of agents in traffic situation, we use Stanford Drone
Dataset (SDD) [49] for our experimental and model evaluation purposes. SDD is a highly
challenging real-world dataset that has been used in many state-of-the-art methods such as the
most recent one called DESIRE [38]. Please note that though we have trained our model on a
traffic scenario dataset, it could be extended to model 3-D motion scenario (for aerial agents) or
some other time prediction series tasks.

SDD is a collection of videos captured from aerial drones at several locations of the Stan-
ford university campus and named – bookstore, coupa, deathCircle, gates, hyang, little, nexus,
quad – with 7, 4, 5, 9, 15, 4, 12 and 4 videos at these locations respectively. The videos have
several agents (bicyclist, pedestrian, skateboarder, cart, car and bus) moving in highly dynamic
situations (cross-roads/roundabouts etc.) with variable motion characteristics (slow/fast mov-
ing, sharp maneuver, static, etc.). The SDD also provides an annotation file for each of the
videos. The annotation file contains tracking ids of the agents, their corresponding bounding
box co-ordinates and labels of lost, occluded or generated across the time frames. The videos
are recorded at 30 fps and vary in lengths from around 1 to 10 minutes.

Preprocessing

We considered the past and future motions for 2 and 4 seconds respectively at 10 fps, as done in
[38]. So, we extract the images (or frames) of the scene across the videos in SDD by preprocessing
it as follows:

• We ignored the unstable camera videos (deathCircle: video3; nexus: video3, video4,
video5), the lost labels data (bookstore: video1) and hyang: video3 (due to problem in
extraction of frames). Thus, we have a total of 54 videos left with us.

• We determine the position of all the agents by considering it at the centre of the bounding
box.
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• We build examples by (i) extracting the frames at 10 fps and (ii) determining the current,
past (2 seconds) and future (4 seconds) positions. Please note that there are examples,
where an agent is lying very close to the image boundaries. For such cases, either the agent
would be entering into the frame or exiting it. In those situations, the past or future may
not be available for total of 2 or 4 seconds respectively. We handle these cases by zero
padding for the time steps, where agent is not present.

To give you an insight of the complexity of the SDD regarding agents’ motion subject to the
scene and interactions, we present two such examples extracted from SDD in Fig. 4.1. Several
agents are seen to be moving subject to the scene (roads, roundabout etc) such that they avoid
collisions with each other.

Please note that we use the pixel location as the position, since position is not explicitly
provided in standard terms of meters.

Figure 4.1: Examples extracted from SDD [49] after preprocessing. Red and blue depict past
and future motions respectively. Agents can be seen to be moving subject to the scene (road,
roundabout, side-walks etc) and ensuring no collisions with each other.

Following the above preprocessing steps, we extracted around 15000 frames at 10 fps and
considered them as our examples. Each frame contains the image of the frame and past (2
seconds), current and future (4 seconds) positions of the agents.

Data split

We next randomly split the set of 54 videos into 5 folds, and randomly select one of the folds
as our test set and the remaining as train set. Please note that we did not carry out 5 fold
cross-validation. Finally, we obtained around 11500 and 3500 examples (frames) for train and
test datasets, respectively.

4.1.2 Code

We develop the entire code base using the well known TensorFlow [6] library. Note that because
of the unavailability of the code for DESIRE [38], we had to develop the baseline codes ourselves.
Since, we did not carry out 5-fold cross validation and that the data split is also not the same as
used in DESIRE; hence our results presented in Table 4.2 cannot be directly compared to that
quoted in DESIRE.
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We will make our code publicly available in due course of time, when we are done with further
work/experiments, as presented in Sec. 4.3 and Chapter 5.

4.1.3 Model Parameters

As we consider past and future for 2 and 4 seconds respectively at 10 fps (Sec. 4.1.1), thus, the
number of GRU cells in RNN-Encoder and RNN-Decoder are 20 and 40 respectively. Our model
handles the case of past or future less than 2 and 4 seconds as follows:

• Only those hidden states of RNN-Encoder are considered in attention-mechanism, where
agent is present. This is necessary since it would be wrong to consider hidden states where
agent is absent.

• During training, we consider only those time steps in future for loss (Eq. 3.1) determination
where agent is present.

We have implemented the RNN-Encoder and RNN-Decoder with 48-dimensional cell state
size and single-layered GRUs. We pool the scene features (Sec. 3.3.3) and interaction features
(Sec. 3.3.3) over 1× 1 and 5× 5 regions respectively. The dimensions/ values of the parameters
that we have used in the model are given in Table 4.1. As mentioned in Sec. 3.3, we would like
to reiterate about the parameter sharing as follows:

• wv, bv that are used to map from velocity to velocity features are shared in RNN-Encoder
and SCF at all time steps.

• The GRUs of the RNN-Encoder share the parameters (W , U , Wr, Ur, Wz and Uz).

• The GRUs of the RNN-Decoder share the parameters (W
′
, U

′
, V

′
, W

′

z, U
′

z, V
′

z , W
′

r , U
′

r,
V
′

r , W
′

g, U
′

g, V
′

g , w
′

v and b
′

v).

• The parameters wi and bi in interaction feature pooling are shared at all time steps in
RNN-Decoder.

• The Attention-Mechanism (AM) module shares the parameters U
′

a, Wa and Va at all time
steps in the RNN-Decoder.

4.1.4 Evaluation Metrics

We used L2 distance error (scaled down by 5) between Y and Ŷ at different time steps as test
performance evaluation metrics, same as that used in [38]. We preferred L2 since its normally
used across related works and gives the direct distance error between the ground truth and the
prediction.

Please note during performance evaluation, we consider only those time steps in future,
where agent is present. Since we quote the mean error, hence the lower the error, the better
the accuracy. Thus, we expect the mean error to reduce as we increase the complexity from
RNN-ED to our final model (RNN-ED-VSI-A).

4.1.5 Baselines for comparison

We developed the following variants of our model and evaluated them for comparison.

• RNN-ED-DESIRE: This is an RNN-Encoder-Decoder as implemented in [38] without
the Scene Context Fusion module. In this, the decoder’s 1st cell is initialized with zeros with
its input being the encoder’s last cell’s hidden state. The inputs to the remaining decoder
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Table 4.1: Model Parameters

Model Parameters Dimensions/Values
CNN H, W 1024

HCNN , WCNN 256
wk1 5× 5× 3× 16

wk2 5× 5× 16× 32

bk1 16

bk2 32

Encoder wv 16× 2

bv 16

W , Wr, Wz 48× 16

U , Ur, Uz 48× 48

Attention U
′

a, Wa 48× 48

Mechanism Va 1× 48

SCF wi 16× (5× 5× 16)
bi 16

N0 5

N1 32

Decoder W
′
, W

′

z, W
′

r , W
′

g 48× 64

U
′
, U

′

z, U
′

r, U
′

g 48× 48

V
′
, V

′

z , V
′

r , V
′

g 48× 48

w
′

v 2× 48

b
′

v 2

cells are zeros. This is quite an unusual setup since it does not express the continuity
between the Encoder and Decoder as explained in Sec. 3.3.2.

• RNN-ED: RNN-Encoder-Decoder variant of our model i.e. our model without the at-
tention mechanism (AM) and scene context fusion (SCF) modules. Inputs to the decoder
are considered to be zeros. Since it does not have any attention-mechanism, we map the
hidden state h

′

t directly to ˙̂
Y t instead of going through g

′

˙̂
Y t

as in Eq. 3.6. This is our

standard baseline. We progressively add different components (SCF/Interaction and AM)
to this baseline and show the effects of each of them.

• RNN-ED-VSI: RNN-ED with entire SCF module i.e. F
′

t as inputs to decoder. Please
note that this model is different from our final model in the only sense that it does not
have ‘Attention-Mechanism’ model. Hence the comparison of this model to our final model
would show us the overall impact of the attention-mechanism.

• RNN-ED-A: RNN-ED with attention-mechanism. Inputs to decoder are zeros. Hidden
state h

′

t is used with ct to map to g
′

˙̂
Y t

and then to ˙̂
Y t. We use this model to show how the

‘Attention-Mechanism’ helps our most basic model RNN-ED.

• Our Model (RNN-ED-VSI-A): Our final model that uses RNN-Encoder-Decoder with
attention-mechanism (AM) and scene context fusion (SCF) modules, as given in Fig. 3.1.
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4.1.6 Learning Criteria

We use Adam Optimizer [34] with a learning rate of 0.001 for training our model. RNNs have
problem of vanishing or exploding gradients. To avoid exploding gradients, we clip the gradient
with L2-norm of 1.0. Dataset is split into train and test data ensuring no overlapping videos.

We have implemented our code in TensorFlow 1.0 and experimented on NVIDIA GeForce
GTX TITAN Black. Training has been carried out for 30 epochs for all the baselines (Sec.
4.1.5). We used a batch of 32 frames for RNN-ED-DESIRE, RNN-ED and RNN-ED-A. But
we could use a batch size of only 4 frames for RNN-ED-VSI and RNN-ED-VSI-A due to the
increase in size of inputs in lieu of scene context fusion. We continued with usage of 32 frames for
RNN-ED-DESIRE, RNN-ED and RNN-ED-A since higher batch size generally helps in better
training and generalization. Thus, if the models with 4 frame batch size perform better than
others, it would mean that their performance would be even better if they could be implemented
with a higher batch size. It takes around 1 day for training RNN-ED-VSI and RNN-ED-VSI-A
and the others are trained in around 3 hours.

4.2 Results

We present a comprehensive summary of the test performance we obtained across all the baselines
(Sec. 4.1.5) in Table 4.2. Let us pick the baseline RNN-ED in Table 4.2. The value 1.75 at 1.0
sec means that the mean L2 error (scaled down by 5) for the test set at 1 seconds is 1.75 pixels.

Table 4.2: Test Error (pixel error scaled down by 5). Different columns represent different
prediction horizons.

Baseline 1.0 sec 2.0 sec 3.0 sec 4.0 sec
RNN-ED-DESIRE [38] 1.76 3.98 6.51 9.31

RNN-ED 1.75 3.94 6.47 9.26
RNN-ED-VSI 1.78 3.91 6.41 9.22
RNN-ED-A 1.70 3.84 6.32 9.08

RNN-ED-VSI-A (Our Final Model) 1.70 3.79 6.22 8.92

We have drawn following important observations from Table 4.2.

• RNN-ED performs better than RNN-ED-DESIRE. This shows that it is better to use
encoder’s last cell’s state to initialize the decoder’s first cell than use it as an input.

• RNN-ED-VSI performs marginally better than RNN-ED. This shows that fusion of scene
context and interaction is helping to some extent.

• RNN-ED-A’s performance is much better than RNN-ED. This shows that the Attention-
Mechanism is significantly improving the prediction.

• On comparing our final model (RNN-ED-VSI-A) with other baselines, it is observed that
the attention-mechanism with the scene context yields much better performance, thereby
justifying itself.

In order to better understand the behavior of the algorithms, we visually show the predicted
trajectories of the baselines RNN-ED and our final model (RNN-ED-VSI-A) in Figs. 4.2-4.12.
In all these examples, it is evident that our model outperforms RNN-ED by capturing the scene

23



context and interactions quite accurately. We have detailed the observations specific to the
examples along with the figures.

We present analysis of one of the figures to bring forth the effectiveness of our model. Please
refer to the fourth row in Fig. 4.2. It can be seen that our model (RNN-ED-VSI-A) is quite ac-
curately able to capture the scene context and interactions among agents. The agent is predicted
to be changing its path along the road direction and also ensuring that it does not collide with
neighboring agents. This is how agents move in a real scenario. Hence, our model is efficiently
able to predict future motion from past motion conditioned on dynamic scene.

4.3 Ablation Studies

Before coming up with our final model, we carried out following experiments:

• Effect of loss functions: We trained our model with L2, exponential L1, and exponential
L2 loss functions, as in [31]. But we found that usage of these losses predicted linear
trajectories almost everytime even though the data has many agents that take curved future
trajectories. When we changed to L1 loss-function, we could see curved future trajectories
more often, which is much more realistic and also improved the test performance.

• Fusion of scene features into encoder: As done in the decoder, we fused scene context
and interaction features with velocity features in the encoder as well, but found its test
performance to be lower than when using fusion of velocity (predicted) features and image
features only in decoder. We thus, fused the scene context and interactions only in the
decoder. We are still working in this direction to understand why this happened as it does
not make much sense. We intend to address this issue carefully by carrying out further
experiments.

24



(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.2: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A is able to capture the interactions and predicts such that the two agents under consideration
don’t collide. Second row RNN-ED-VSI-A well captures the scene and predicts the trajectory
to be curved along the road. Third row RNN-ED-VSI-A captures the scene and interactions.
The agent path is predicted to be along the road and also such that it avoids collisions with other
agents. Fourth row RNN-ED-VSI-A is able to capture both interactions and scene context.

25



(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.3: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A is able to capture the interactions and predicts such that the agents don’t collide. Second
row RNN-ED-VSI-A is well able to capture the scene context. The predicted path is along the
road direction instead of moving into the sidewalk as by RNN-ED. Third row RNN-ED-VSI-A
very accurately captures the interactions and scene context. The agents are predicted to move
with the road direction and ensuring that they don’t collide. Fourth row RNN-ED-VSI-A is
again able to capture the scene context very well. The predicted paths curve along with the
roads.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.4: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A is able to capture the sudden changes in curves due to the ‘attention-mechanism’. Second
row RNN-ED-VSI-A is well able to capture the scene context. The predicted path curves along
the circular junction. Third row RNN-ED-VSI-A very accurately captures the scene context.
The predicted path curves along the circular junction. Fourth row RNN-ED-VSI-A is again
able to capture the scene context and interactions. The model is able to predict that the agent
would move towards its right. The predicted path curves along with the road avoiding collisions
as well.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.5: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A predicts trajectory that curves with the circular junction. Second row RNN-ED-VSI-A is
well able to capture the scene context. The predicted path curves along the circular junction.
Third row RNN-ED-VSI-A very accurately captures the scene context. The predicted path
curves along the circular junction. Fourth row RNN-ED-VSI-A is again able to capture the
scene context and predicts that the agent would turn to follow the driveable area.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.6: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A very well captures the scene context and interactions. The agents are predicted to move along
the road direction and also without collisions. Second row RNN-ED-VSI-A predicts trajectory
that curves along the circular junction. Third row RNN-ED-VSI-A is again able to capture
the scene context and predicts that the agent would follow the curve along the circular junction.
Fourth row RNN-ED-VSI-A again captures the scene context very well and predicts that the
agent would move along the straight road after it has moved through the circular junction’s
curve.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.7: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First, Second and Third
rows RNN-ED-VSI-A very well captures the scene context. The predicted paths curve with the
road. Fourth row RNN-ED-VSI-A very well captures the scene conext and interactions. The
predicted paths are along the road directions and also such that the agents don’t collide.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.8: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First, Second and
Third rows RNN-ED-VSI-A very well captures the dynamic scene context. The predicted
paths curve with the road.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.9: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A very well captures the scene context. The predicted path curves along the walkable area.
Second row RNN-ED-VSI-A is able to capture the interactions. It predicts such that the agent
moves away from the neighboring agent, thus, avoiding collision. Third row RNN-ED-VSI-A
captures the scene context and interactions. The predicted trajectory is such that the agent
moves along the driveable road and also avoids collision with neighboring agents.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.10: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A very well captures the scene context and interactions. The agents are predicted to move along
the driveable area avoiding collisions with each other. Second row RNN-ED-VSI-A is able to
capture the scene context. The agent is predicted to move along the walkable area. Third row
RNN-ED-VSI-A captures the scene context. The agent is accurately predicted to move along
the curving road.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.11: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First row RNN-ED-VSI-
A very well captures the scene context. The agent is predicted to move along the direction of
the road after exiting through the roundabout. Second row RNN-ED-VSI-A is able to capture
the scene context. The agent is accurately predicted to take the curved road along the sidewalk.
Third row RNN-ED-VSI-A again accurately captures the scene context. The agent is predicted
to move along the sidewalk.
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(a) RNN-ED (b) RNN-ED-VSI-A

Figure 4.12: Red: 2 seconds past, Blue: 4 seconds future (ground truth), Green: 4 seconds
predicted future. Agent(s) under consideration represented by circle. First and Second rows
RNN-ED-VSI-A very well captures the scene context. The agents are predicted to move along
the walkable/ driveable areas. Third row RNN-ED-VSI-A accurately captures the interactions.
All the agents are predicted to be moving in a non-colliding manner.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

With reference to experiments and results presented in Chapter 4, following conclusions are
drawn:

• The model is quite accurately able to capture scene context and interactions. The agents
are predicted to move along the road directions without colliding with each other.

• The model also yields highly promising performance in comparison to the most recent
state-of-the-art model [38].

• Variable number of agents can be handled by our model.

• Dynamic scene is taken care of by the model.

5.2 Future Work

As future work, we would like to embed our model with generative models in order to be able
to generate a family of possible future trajectories. This is necessary, since in reality we cannot
be completely sure which direction an agent would move into. For example, an agent may move
out into any of the exits at a roundabout. So just like humans are able to anticipate different
possible trajectories with their corresponding confidence levels, the model should also be able to
do the same to produce more realistic solutions.
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