Objectives: To study the resistance to third-generation cephalosporins in Salmonella strains isolated from humans in a 5 year period in Spain, and to identify the responsible genes and their dissemination.
Methods: Twenty-seven isolates were analysed by PCR and sequencing to identify the genes responsible for the beta-lactamase resistance phenotypes. The transferability of the phenotypes was tested by conjugation to Escherichia coli K12J53, plasmid detection with S1-PFGE, hybridization and PCRs of the transconjugants. The genetic relationship was determined by PFGE.
Results: We found bla(CTX-M-9) and bla(CTX-M-10) in Salmonella Virchow PT19. bla(CTX-M-14) was detected in Salmonella (IV) 44:z(4),z(23):-, Salmonella Enteritidis PT6a, Salmonella Typhimurium DT193 and Salmonella Typhimurium DT104B. bla(CTX-M-1) was found in Salmonella Litchfield. bla(CTX-M-15) and bla(CTX-M-32) were found in Salmonella Enteritidis PT1. bla(SHV-12) was found in Salmonella Blockley, Salmonella Hadar PT2, Salmonella Enteritidis PT21, Salmonella Enteritidis PT1 and Salmonella Bredeney. bla(SHV-2) was found in Salmonella Livingstone. bla(CMY-2) was detected in Salmonella Bredeney, Salmonella Newport, Salmonella Enteritidis PT5b and Salmonella Heidelberg. bla(DHA-1) was detected for the first time in Spain in Salmonella Newport. One strain of Salmonella Senftenberg harboured two extended-spectrum beta-lactamases, bla(SHV-12) and bla(CTX-M-9). We have found a large variety of beta-lactamase families as well as several members of major relevance, such as CTX-M-15, CTX-M-32, CMY-2 and DHA-1. XbaI-PFGE, conjugation assays and S1-PFGE hybridization showed that all these beta-lactamases were mediated by plasmids.
Conclusions: This study demonstrates the emergence of a public health risk related to resistance to beta-lactams in Salmonella. The resistance trends need to be monitored carefully.