
Verifying Software Traces Against a Formal Specification
with TLA+ and TLC

December 2018

A question that often comes up with regards to TLA+, especially among beginners, is how to verify
that the implemented software conforms to the TLA+ specification. We’d like to mechanically
verify that our code is a refinement of a high-level specification.

While this is possible – at least in the lab – by compiling the code into TLA+ and checking
refinement,[1] it greatly suffers from scalability limitations and can only work for very small pro-
grams. This scalability problem is not unique to TLA+ (or to TLC); formally verifying low-level
code against a high-level specification (often called end-to-end verification, although sometimes
the term refers only to cases when even the machine code is verified) is extremely difficult regard-
less of tool or technique used, and has only been accomplished for small programs, and even then
at great cost.

Experienced TLA+ users would recognize that this is hardly a big issue. Not only is end-to-end
verification too cost prohibitive to be all but completely infeasible for all but small, niche software,
it is hardly ever a requirement. In practice, we use formal verification to help us write more correct
software, and the costliest bugs occur at the algorithm or system design level, and not at the code
level, particularly as we can specify at low-enough a level to ensure that any translation errors
would be easy to find and fix (possibly with the aid of code-level verification of simple, local

properties).

Nevertheless, the more we can verify affordably the better, and, as it turns out, there is a relatively
cheap way to verify that a running software system conforms with a specification, although not
with the sound guarantees that would have been afforded by end-to-end verification. Instead
of verifying that our code is a refinement of the specification – which amounts to checking that
all possible behaviors of the program are allowed by the spec – we check that some observed
behaviors are. We do that by capturing execution traces of the system in logs, and checking them
against the high-level specification with the aid of a model-checker. This works even when the log
is collated from multiple machines in a distributed system, each running a program written in a
different programming language.

If we obtain a trace with a visible bug, this can help us pinpoint where and how the bug originates.
But even the trace does not lead to an observable bug, the approach might detect disallowed
behavior that indicates a bug. Faulty behaviors are not evenly distributed, hence the unsoundness
of the approach, which only examines a sample of behaviors, but the larger the sample, the higher
the chances of catching a bug early.

This approach is called “model-based trace-checking” (https://arxiv.org/pdf/1111.2825.pdf),
and it is particularly easy with TLA+ and TLC. All it takes – regardless of how complex your
specification or how partial the log (although a richer log yields more confidence in the verification)

– is adding a few lines to your spec and writing a TLC plugin to ingest the log files.

But to get there, we need to understand TLC’s capabilities (and how to exploit them) and limi-

tations (and how to work around them).

Note: In order to write this as a single document, I introduced a number of inner modules to

avoid naming clashes. Real specifications will not require this extra complication.

—————————————————

[1] For example, see https://cedric.cnam.fr/fichiers/art_3439.pdf and
http://tla2014.loria.fr/slides/methni.pdf for C, and
https://www.researchgate.net/publication/224262035_Java_goes_TLA for Java.

1

module Trace
Suppose we had the following high-level system specification:

extends Naturals, Sequences

module System
variables x , y , z , tickTock
vars

∆
= 〈x , y , z , tickTock〉

TypeOK
∆
= ∧ x ∈ Nat
∧ y ∈ Nat
∧ z ∈ Nat
∧ tickTock ∈ {“tick”, “tock”}

Init
∆
= ∧ x ∈ 0 . . 9
∧ y ∈ 0 . . 9
∧ z = 0
∧ tickTock = “tick”

Next
∆
= ∨ ∧ tickTock = “tick”

∧ tickTock ′ = “tock”
∧ z ′ = x + y
∧ unchanged 〈x , y〉

∨ ∧ tickTock = “tock”
∧ tickTock ′ = “tick”
∧ x ′ ∈ 0 . . 9
∧ y ′ ∈ 0 . . 9
∧ unchanged z

Safety
∆
= Init ∧2[Next]vars Just the safety part of the spec

Spec
∆
= Safety ∧WFvars(Next)

2

Then, suppose we implement the specification and obtain an execution trace in a log file. We

would like to know whether the trace is consistent with our specification.

module Trace1
We could inline the trace in the specification and “read” it as follows, or we could write a TLC
intrinsic in Java that would read the trace directly from a log file. Writing such a log analysis
module for TLC is a nice weekend project.

Tuples are: 〈x , y, z , tickTock〉

Trace
∆
= 〈〈1, 0, 0, “tick”〉, 〈1, 0, 1, “tock”〉, 〈1, 1, 1, “tick”〉, 〈1, 1, 2, “tock”〉,
〈0, 3, 2, “tick”〉, 〈0, 3, 3, “tock”〉, 〈2, 2, 3, “tick”〉, 〈2, 2, 4, “tock”〉,
〈3, 2, 4, “tick”〉, 〈3, 2, 5, “tock”〉, 〈2, 4, 5, “tick”〉, 〈2, 4, 6, “tock”〉,
〈5, 2, 6, “tick”〉, 〈5, 2, 7, “tock”〉, 〈4, 4, 7, “tick”〉, 〈4, 4, 8, “tock”〉,
〈2, 7, 8, “tick”〉, 〈2, 7, 9, “tock”〉, 〈6, 4, 9, “tick”〉, 〈6, 4, 10, “tock”〉〉

variables x , y , z , tickTock
Model

∆
= instance System

vars
∆
= 〈x , y , z , tickTock〉 If we write Model !vars, TLC complains.

variable i the trace index

“Reading” a record is just vars = Trace[i], but unfortunately TLC isn’t happy with that, so:

Read
∆
= let Rec

∆
= Trace[i] in x = Rec[1] ∧ y = Rec[2] ∧ z = Rec[3] ∧ tickTock = Rec[4]

Unfortunately, TLC also isn’t happy with just Read ′ – which is equivalent to:

ReadNext
∆
= let Rec

∆
= Trace[i ′]in x ′ = Rec[1] ∧ y ′ = Rec[2] ∧ z ′ = Rec[3] ∧ tickTock ′ = Rec[4]

Init
∆
= i = 1 ∧ Read

Next
∆
= i < Len(Trace) ∧ i ′ = i + 1 ∧ ReadNext

TraceBehavior
∆
= Init ∧2[Next]〈vars, i〉

Because we’re dealing with a finite trace, we only care about safety properties, as liveness concerns

only infinite behaviors. We also need to turn off deadlock checking in TLC .

theorem TraceBehavior ⇒ Model !Safety

To verify, we check the spec TraceBehavior in TLC , with Model !Safety as a temporal property.

As we’re always wary of success, we modify the above trace to ensure that TLC finds an error.

Because I split this document into modules (for ease of writing this as a post), and because TLC
doesn’t support checking a specification inside an inner module so, to check, we add the following,
outside of the inner module:

variables x , y, z , tickTock , i

instance Trace1

3

If we wish to use trace-checking not to analyze an error trace, but to gain confidence that our
system implements our specification, it is important to check many traces. We can use the same
technique to check multiple traces at once:

module Trace2

Traces
∆
= [log1 7→
〈〈1, 0, 0, “tick”〉, 〈1, 0, 1, “tock”〉, 〈1, 1, 1, “tick”〉, 〈1, 1, 2, “tock”〉,
〈0, 3, 2, “tick”〉, 〈0, 3, 3, “tock”〉, 〈2, 2, 3, “tick”〉, 〈2, 2, 4, “tock”〉,
〈3, 2, 4, “tick”〉, 〈3, 2, 5, “tock”〉, 〈2, 4, 5, “tick”〉, 〈2, 4, 6, “tock”〉〉,
log2 7→
〈〈5, 2, 0, “tick”〉, 〈5, 2, 7, “tock”〉, 〈4, 4, 7, “tick”〉, 〈4, 4, 8, “tock”〉,
〈2, 7, 8, “tick”〉, 〈2, 7, 9, “tock”〉, 〈6, 4, 9, “tick”〉, 〈6, 4, 10, “tock”〉〉,
log3 7→
〈〈3, 4, 0, “tick”〉, 〈3, 4, 7, “tock”〉, 〈0, 9, 7, “tick”〉, 〈0, 9, 9, “tock”〉,
〈2, 2, 9, “tick”〉, 〈2, 2, 4, “tock”〉, 〈2, 6, 4, “tick”〉, 〈2, 6, 8, “tock”〉〉]

variables x , y , z , tickTock
Model

∆
= instance System

vars
∆
= 〈x , y , z , tickTock〉

variable log , the log file

i the trace index

Trace
∆
= Traces[log]

Read
∆
= let Rec

∆
= Trace[i] in x = Rec[1] ∧ y = Rec[2] ∧ z = Rec[3] ∧ tickTock = Rec[4]

ReadNext
∆
= let Rec

∆
= Trace[i ′] in x ′ = Rec[1] ∧ y ′ = Rec[2] ∧ z ′ = Rec[3] ∧ tickTock ′ = Rec[4]

Init
∆
= log ∈ domain Traces ∧ i = 1 ∧ Read

Next
∆
= ∧ i < Len(Trace) ∧ i ′ = i + 1 ∧ ReadNext
∧ unchanged log Each trace follows a single log

TraceBehavior
∆
= Init ∧2[Next]〈log, i, vars〉

theorem TraceBehavior ⇒ Model !Safety

variables x , y, z , tickTock , i , log

instance Trace2

4

While that is the best way to verify traces against a formal specification because it allows checking
many traces at a time, it may be the case that we don’t log all of the real system’s internal state
that corresponds to all the variables in our specification. Suppose our real system only logs the
value of z :

Trace
∆
= 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

variables z , i
tvars

∆
= 〈z , i〉

Read
∆
= let Rec

∆
= Trace[i] in z = Rec

ReadNext
∆
= let Rec

∆
= Trace[i ′] in z ′ = Rec

InitTrace
∆
= i = 1 ∧ Read

NextTrace
∆
= i < Len(Trace) ∧ i ′ = i + 1 ∧ ReadNext

Ideally, we would like to check the following proposition:

TraceBehavior ⇒ ∃∃∃∃∃∃ x , y, tickTock : Model !Safety

But TLC cannot check such a theorem. Unlike the previous limitations, this is not a minor
implementation detail. Checking a specification with temporal quantifiers may require a time-
complexity exponential in the number of states . To check that proposition, we need to come up
with a refinement mapping from TraceBehavior , which requires adding auxiliary variables to it:

module Trace3
We need a variable that introduces stuttering into the trace behavior to allow for internal state

changes in the model.

variable tt

Init
∆
= InitTrace ∧ tt = 0

Next
∆
= ∧ i < Len(Trace)
∧ tt ′ = 1− tt
∧ ∨ tt = 0 ∧NextTrace
∨ tt = 1 ∧ unchanged tvars

TraceBehavior
∆
= Init ∧2[Next]〈tt, z , i〉

Model
∆
= instance System with tickTock ← if tt = 0 then “tick” else “tock”,

x ← if tt = 0 then z else z − 1,
y ← 1

theorem TraceBehavior ⇒ Model !Safety As before, this is what we check

variables tt

instance Trace3

5

But creating a refinement mapping is not only work that has to be tailored to every specific system
specification rather than being completely automatic – it can be difficult. Not only did we have to
introduce an auxiliary variable to introduce stuttering into the trace behavior, we had to compute
legal values for the specification’s internal variables x and y. This is not very hard in this case,
but it could get tricky. Luckily, we can make the model-checker work for us.

TraceBehavior
∆
= InitTrace ∧2[NextTrace]tvars

We want to check a proposition of the sort B ⇒ A (where A is Model !Safety and B is
TraceBehavior), but as we’ve seen, this is only possible with a manually written refinement
mapping. However, in our case, B , the trace behavior, is not an arbitrary specification but a
single behavior (well, up to stuttering and all unmentioned variables), and we can make use of
that. But because we will be exploiting that feature, unlike the previous techniques, this one can
only work on a single trace at a time. Because of that, it may be appropriate as a tool to help
understand what has gone wrong in an error trace.

What we really need is to find out whether the trace is a possible behavior of the system’s
specifation. In other words, we want to verify that Model !Safety ⇒ ¬TraceBehavior (i .e. that
no behavior is the trace behavior) is not a theorem. But TLC is limited in what temporal
properties it can check, and ¬TraceBehavior is not one of them, and neither, I believe, is any
other equivalent formula. But we can still do what we want; in fact, we can do it in a way that is
better, as it (may) make the model checker run much, much faster, by not trying all behaviors.

We note that B ⇒ A iff B ∧A ≡ B . This does not help us in general because the model checker
can only check implication, not equivalence. Checking B ∧ A ≡ B is the same as checking both
B ∧A⇒ B (which is trivially true), and B ⇒ B ∧A , and the latter is hard for the same reason

I mentioned above, as it requires temporal quantification.

However, in our case, because B is a single behavior (sort-of), checking B ∧A ≡ B is the same as
checking that B ∧ A is not empty. To get there, some work still needs to be done, but it’s easy,
mechanical, and always the same.

First, if A and B are temporal formulas, TLC can’t even check the specification A∧B as it’s not
in the canonical (or “normal”) form. This is easily resolved with some formal manipulation:

We notice that if A
∆
= InitA ∧ 2[NextA]varsA and B

∆
= InitB ∧ 2[NextB] varsB then A ∧ B ≡

(InitA ∧ InitB) ∧ (2[NextA] varsA ∧ 2[NextB]varsB)

InitA and InitB are fine, but (2[NextA] varsA ∧ 2[NextB]varsB) is still not in canonical form.

But we notice that (the calculation below includes steps that are ill-formed in TLA):

2[NextA]varsA ∧ 2[NextB]varsB
(by TLA) ≡ 2(NextA ∨ unchanged varsA) ∧ 2(NextB ∨ unchanged varsB)

(by PTL) ≡ 2((NextA ∨ unchanged varsA) ∧ (NextB ∨ unchanged varsB))

(by PL) ≡ 2(∨NextA ∧NextB

∨NextA ∧ unchanged varsB

∨ unchanged varsA ∧NextB

∨ unchanged varsA ∧ unchanged varsB)

(by TLA) ≡ 2[∨NextA ∧NextB

∨NextA ∧ unchanged varsB

∨NextB ∧ unchanged varsA]〈varsA,varsB〉

Now we could write a composition operator,

Compose(NextA, varsA, NextB , varsB)
∆
= ∨NextA ∧NextB

∨NextA ∧ unchanged varsB

∨ unchanged varsA ∧NextB

6

and get:

A ∧ B ≡ InitA ∧ InitB ∧ Compose(NextA, varsA, NextB , varsB)

(I have used the exact same transformation when I wrote about specifying in the behavioral

programming style: https://pron.github.io/files/TicTacToe.pdf)

Another complication is that in our case, A ∧ B can never be empty, because it admits various
stuttering behaviors. Instead, by being a bit clever, we’ll ask TLC whether the composed spec-
ification contains our trace; this will be possible because it will not require checking a complex
temporal formula.

module Trace4

Compose(NextA, varsA, NextB , varsB)
∆
=

∨NextA ∧NextB
∨ unchanged varsA ∧NextB unchanged must come first due to TLC evaluation limitations

∨ unchanged varsB ∧NextA ditto

variables x , y , tickTock

vars
∆
= 〈x , y , z , tickTock〉

Model
∆
= instance System

ComposedSpec
∆
= Model !Safety ∧ TraceBehavior ≡

∧Model !Init ∧ InitTrace
∧2[Compose(Model !Next , vars, NextTrace, tvars)]〈vars, tvars〉

TraceFinished
∆
= i ≥ Len(Trace) Our secret weapon is this definition, which is true when

the trace has finished.

Finally, to check if ComposedSpec contains the trace behavior, all that’s required is to check that
the following is not a theorem. This is done by letting TLC check ComposedSpec, and adding
¬TraceFinished as an invariant, essentially asserting that the trace never finishes, and challenging
TLC to prove us wrong. We also need to turn deadlock checking off.

Check
∆
= ComposedSpec ⇒ 2(¬TraceFinished)

If (and only if) our trace conforms to the spec, TLC will report a violation of the invariant, along
with a trace that contains the inner states TLC has computed for us. However, if the trace does
not conform, there is no trace emitted that can help us pinpoint the issue. What we can do is
change the definition of TraceFinished to become true after a short prefix of the trace, and so
find which state is in violation, e.g., to say i ≥ 7 rather than i ≥ Len(Trace) .

variables x , y , tickTock
instance Trace4

7

