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Abstract

We consider the stochastic multi-armed bandit problem witbrior distribution
on the reward distributions. We are interested in studyirigr{free and prior-
dependent regret bounds, very much in the same spirit tleanstiial distribution-
free and distribution-dependent bounds for the non-Bayestochastic bandit.
We first show that Thompson Sampling attains an optimal gree bound in the
sense that for any prior distribution its Bayesian regrétosnded from above by
14v/nK. This result is unimprovable in the sense that there exigisa dis-
tribution such that any algorithm has a Bayesian regret dedrirom below by
%\/nK . We also study the case of priors for the settingzof

(where the optimal mean is known as well as a lower bound osriedlest gap)
and we show that in this case the regret of Thompson Samglingact uniformly
bounded over time, thus showing that Thompson Sampling izatly take advan-
tage of the nice properties of these priors.

1 Introduction

In this paper we are interested in the Bayesian multi-arnaediiv problem which can be described
as follows. Letry be a known distribution over some d@t and letd be a random variable dis-
tributed according tory. Fori € [K], let (X; s)s>1 be identically distributed random variables
taking values in0, 1] and which are independent conditionally @énDenotey,(0) := E(X; 116).
Consider now an agent facing actions (or arms). At each time step= 1,...n, the agent pulls

an arml; € [K]. The agent receives the rewakd ; when he pulls arni for the sth time. The arm
selection is based only on past observed rewards and patemn an external source of random-
ness. More formally, letU;),>1 be an i.i.d. sequence of random variables uniformly disted

on [0,1], and letT;(s) = >.;_, 1;,—;, thenI; is a random variable measurable with respect to
oI, X11,.--, L1, X1y, (-1, U). We measure the performance of the agent through the

Bayesian regret defined as

BR, = EZ (:g[aé{] :ul(a) — M1, (0)> s
t=1

where the expectation is taken with respect to the paranfettre rewards(X; ;)s>1, and the
external source of randomneds;);>1. We will also be interested in the individual regref, (9)

which is defined similarly except thétis fixed (instead of being integrated ovey). When it is
clear from the context we drop the dependency amthe various quantities defined above.



Given a priormy the problem of finding an optimal strategy to minimize the &sgn regreBR,,

is a well defined optimization problem and as such it is meaetpmputational problem. On the
other hand the point of view initially developed fitx [ ] leads to a learning problem. In
this latter view the agent’s strategy must have a low refrg®) for anyd € ©. Both formulations

of the problem have a long history and we refer the interestader to

[ ] for a survey of the extensive recent literature on the liegrsetting. In the Bayesian setting
a major breakthrough was achieved Gn [ ] where it was shown that when the prior
distribution takes groduct forman optimal strategy is given by the Gittins indices (whick ar
relatively easy to compute). The product assumption on tioe means that the reward processes
(Xi,s)s>1 are independent across arms. In the present paper we atieefydoterested in the
situations where this assumption is not satisfied. Indeetielieve that one of the strength of the
Bayesian setting is that one can incorporate prior knowdealy the arms in very transparent way.
A prototypical example that we shall consider later on irs thaper is when one knows the dis-
tributions of the arms up to a permutation, in which caseélard processes are strongly dependent.

In general without the product assumption on the prior itsedopeless (from a computational
perspective) to look for the optimal Bayesian strategy. sThdespite being in a Bayesian setting,
it makes sense to view it as a learning problem and to evathatagent’s performance through its
Bayesian regret. In this paper we are particularly intetst studying the Thompson Sampling
strategy which was proposed in the very first paper on theivautied bandit probleni

[ ]. This strategy can be described very succinctly: Aigtbe the posterior distribution ofi
given the historyd, = (I, X11,. .- aIt—hXItfl,TIt,l(tfl)) of the algorithm up to the beginning

of roundt. Then Thompson Sampling first draws a paramétérfrom =, (independently from the
past givenr,) and it pullsl; € argmax;e g i (601).

Recently there has been a surge of interest for this simpieypmainly because of its flexibility to
incorporate prior knowledge on the arms, see for examplg ] ]. For alongtime the
theoretical properties of Thompson Sampling remainedwdud he specific case of binary rewards
with a Beta prior is now very well understood thanks to thegrap [ ],

[ 1 [ ]. However as we pointed out above here we
are interested in proving regret bounds for the more réakstenario where one runs Thompson
Sampling with a hand-tuned prior distribution, possiblyyvdifferent from a Beta prior. The first
result in that spirit was obtained very recently ky [ ] who showed that for any
prior distributionmy, Thompson Sampling always satisfiB®,, < 5v/nK logn. A similar bound
was proved in [ ] for the specific case of Beta priorOur first contribution
is to show in Sectior? that the extraneous logarithmic factor in these bounds earefmoved by
using ideas reminiscent of the MOSS algorithmof k ].

Our second contribution is to show that Thompson Samplimga&ke advantage of the properties of
some non-trivial priors to attain much better regret gua@s More precisely in Sectidand3 we
consider the setting Gf [ ] (which we call the BPR setting) wheye ande > 0 are
known values such that for alye ©, first there is a unique best afi(0) } = argmax;¢ () pi(0),
and furthermore

Mz*(@)(e) = ,u*7 andAi(G) = /Ll*(g)(e) - /,Ll(tg) >e, Vi 7’5 z*(@)
In other words the value of the best arm is known as well as atrivial lower bound on the gap
between the values of the best and second best arms. Fordblem a new algorithm was proposed

in [ ] (which we call the BPR policy), and it was shown that the BRIRqy satisfies
log(Ai(0) /)
R.(0) =0 | Z Tw)loglog(l/a) V0 € ©,Yn > 1.
i#£i*(0)

Thus the BPR policy attains a regret uniformly bounded owee tin the BPR setting, a feature that
standard bandit algorithms such as UCBof [ ] cannot achieve. It is natural to view
!Note however that the result ¢f [ ] applies to the individual regreR,, (6) while

the result of [ ] only applies to the integrated Bayesian red3&., .



the assumptions of the BPR setting as a prior over the rewiatdbditions and to ask what regret
guarantees attain Thompson Sampling in that situationeMogcisely we consider Thompson Sam-
pling with Gaussian reward distributions and uniform preer the possible range of parameters.
We then prove individual regret bounds for any sub-Gaugdigtributions (similarly td

[ ]). We obtain that Thompson Sampling uses optimally therpriftormation in the sense that
it also attains uniformly bounded over time regret. Funthere as an added bonus we remove the
extraneous log-log factor of the BPR policy’s regret bound.

The results presented in Sectipand3 can be viewed as a first step towards a better understanding
of prior-dependent regret bounds for Thompson Samplingne@sizing these results to arbitrary
priors is a challenging open problem which is beyond the sadur current techniques.

2 Optimal prior-free regret bound for Thompson Sampling

In this section we prove the following result.

Theorem 1 For any prior distributionmy over reward distributions irf0, 1], Thompson Sampling
satisfies

BR, < 14vnK.

Remark that the above result is unimprovable in the senséhtbig exist prior distributions, such

that for any algorithm one haR,, > 2—10\/71[( (see e.g. [Theorem 3.5

[ 1). This theorem also implies an optimal rate of identifioat for the best arm, see
[ ] for more details on this.

Proof We decompose the proof into three steps. We denitf) € argmax;cxpi(0), in
particular one hag, = i*(6,).

Step 1: rewriting of the Bayesian regret in terms of upper cofidence bounds.This step is given
by [Proposition 1/ [ 11 which we reprove for sake of completeness. B}, be a

random variable measurable with respect tél,). Note that by definitiod® andd are identically
distributed conditionally ori;. This implies by the tower rule:

]EB’L'*(H)J = EBi*(é’m),t = EBIt,t'
Thus we obtain:
E (ni-(0)(0) — p1, (0)) = E (tti=(0)(0) — Bi(0),¢) + E (Br,.¢ — pur, (0)) -
Inspired by the MOSS strategy 6f [ ] we will now take

log ;. (‘KT»ZA))
Bit = pi -1+ \J Wv

whereji; s = %Zle X+, andlog,, (z) = log(x)1,>;. In the following we denoté, = 2\/%
From now on we work conditionally oftand thus we drop all the dependencyfon

Step 2: control of E (1;(9)(6) — By~ () +|0). By a simple integration of the deviations one has
1
E(,ui* — Bi*,t) < dg —|—/ ]P(/Lj,* — Bjsy > u)du
do
Next we extract the following inequality from [ ] (see p2683-2684), for
anyi € [K],

4K n 1
P(ui — Biy > u) < -1 D)y
(h "t_u)_mﬂ 0g< Ku>+nu2/K—1

3



Now an elementary integration gives

1
4K n 4K n 4K n K
—1 — = |——1 — < —1 — = 2(1+log2)y\/ —

/50 — 3 log (,/Ku> du [ ——log (e,/Kuﬂéo o og( ’/K(SO) (1+log 2)4/ —

and
[ e[ o (R Fun () b0

Thus we provedE (p;-g)(0) — Bi-(9),:/0) < (2 +2(1+log2) + 1"%3) \/% < 6\/%.

Step 3: control of ;" | E (By, + — pr, (6)|6). We start again by integrating the deviations:

+oo M

EY (Bt — pr,) < don +/ > P(Br,. — pur, > u)du.
t=1 t=1

do

Next we use the following simple inequality:

- 1
> 1{By,. ,u1t>u}<ZZ]l flis + L()_mgu ,
t=1

s=1i=1

which implies
- L ~ log (%)
ZP(BIt,t —pr, > u) < ZZP Tis + % — i >u
t=1 i=1 s=1

Now for u > d¢ let s(u) = [3log (%) /u*] where[z] is the smallest integer large than Let
c=1-— % Itis is easy to see that one has:

31 )
ZP Mzs"" 10g+( )—MiZU = Og( + Z Mz,s—uiZCU)-

s=s(u)

Using an integration already done in Step 2 we have

[ GO e s
do

Next using Hoeffding’s inequality and the fact that the redgaare in[0, 1] one has for > §y

- ~ = 9 9 exp(—12c%log2)
Now using thafl — exp(—xz) > x — 22 /2 for z > 0 one obtains
1/C 1 1/(20) 1 1/0 1
du = / du+/ du
/50 1 — exp(—2c?u?) 5o 1 — exp(—2c2u?) 1/(2¢) 1 — exp(—2c?u?)

1/(2¢) 1 1
< ——d
- /50 2c%u2 — 2chyd + 2¢(1 — exp(—1/2))

1/(20) 2 1
< d
- /50 3c2u2 " + 2¢(1 — exp(—1/2))
2 4 n 1
3c28p 3¢ 2¢(l —exp(—1/2))

In
1.9,/ —.
9 K
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Putting the pieces together we proved
EY (Br.—pr,) < 7.6VnK
t=1

which concludes the proof together with the results of Stapd Step 2. |

3 Thompson Sampling in the two-armed BPR setting

Following [Section 2, [ ]] we consider here the two-armed bandit problem with
sub-Gaussian reward distributions (that is they safigf{X—#) < ¢*’/2 for all A € R) and such
that one reward distribution has meah and the other one has meah — A wherey* andA are
known values.

In order to derive the Thompson Sampling strategy for thiabjgm we further assume that the
reward distributions are in fact Gaussian with variahctn other words l1e® = {61,602}, mo(01) =
mo(02) = 1/2, and undep; one hasX; ; ~ N (p*, 1) and X, ~ N (p* — A, 1) while underos
one hasX, ; ~ N(p*, 1) andX; s ~ N (u* — A,1). Then a straightforward computation (using
Bayes rule and induction) shows that one has for some narimgiconstant > 0:

1 Ty (t—1) 1 T (t—1)

m(61) = cexp —3 2 (/,L*—X17S)2—§ ; (u*—A—X2,8)2 ,
L T L T2l

m(02) = cexp 3 2 (H*—A—X1,3)2—§ ; (1" — Xa5)

Recall that Thompson Sampling dra@® from 7, and then pulls the best arm for the environment
6(). Observe that undek, the best arm is arrh and undep, the best arm is arm. In other words
Thompson Sampling drawfs at random with the probabilities given by the posteripr This leads

to a general algorithm for the two-armed BPR setting with-&#ussian reward distributions that
we summarize in Figuré. The next result shows that it attains optimal performaimtdisis setting

up to a numerical constant (see [ ] for lower bounds), for any sub-Gaussian reward
distribution (not necessarily Gaussian) with largest mgaand gapA.

For rounds € {1,2}, select arni; = t.
For each round = 3,4, ... play I; at random fronp, where

1T1(t71)
p(l) = cexp|—5 ;

1 Tg(t 1)
* 2 * 2
1% _Xl,s) - 5 ; (/’L _A_X27s) B

Ti(t—1) Ty(t—1)

(
1 *
cexp | —5 Z w* —A—X1,5)2—§ Z (" — X292,

s=1 s=1

pe(2)

andc > 0 is such thap, (1) + p(2) = 1.

Figure 1: Policy inspired by Thompson Sampling for the two-armed BPR setting.

Theorem 2 The policy of Figurel has regret bounded aB,, < A + %, uniformly inn.
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Figure 2: Empirical comparison of the policy of Figuteand Policy 1 ofl [ ] on Gaussian

reward distributions with variance

Note that we did not try to optimize the numerical constanthi@ above bound. Figurg shows
an empirical comparison of the policy of Figutewith Policy 1 of [ ]. Note in
particular that a regret bound of ord&s/A was proved for the latter algorithm and the (limited)
numerical simulation presented here suggests that Thanfpsmpling outperforms this strategy.

Proof Without loss of generality we assume that atrs the optimal arm, that is; = p* and

po = p* — A Letfiys = 1307 Xip, J1,s = i1 — fi,s anddz s = fia s — po. Note that large
(positive) values ofy; ; or 7, s might mislead the algorithm into bad decisions, and we vekd to
control what happens in various regimes for theseefficients. We decompose the proof into three
steps.

Step 1. This first step will be useful in the rest of the analysis, ibwh how the probability ratio of
a bad pull over a good pull evolves as a function oftheoefficients introduced above. One has:

Ty (t—1) Ty(t—1)
ZE?; = exp (; ; [(#2 - X1,6)% = (b1 — Xl,s)Q] - % ; [(#1 — X2,6)% — (2 — Xz,s)ﬂ)
= exp ( w [M — pf = 2(p2 — p1)Ba, 7y (o 1)} TQ(tz_ ) [ 22 —2(p — Mz)ﬁz,TQ(f,—l)]>

= exp (*% {A2 —2A(p1 — ﬂl,Tl(t—l))] - y [A2 = 2A(fi2, ry (t—1) — Hﬂ})

tA? ~ ~
= exp (*T + Th(t — 1)AF 1y (1—1) + To(t — I)A'Y?,Tz(t—l)) .

Step 2.We decompose the regrat, as follows:

Ry, -
= = 1+EZ]1{1}:2}

1+EZI|.{72T2(15 1) > — It—2}+EZ {’sz2(f 1 < 4771T1(t 1y < — It_Z}
t=3

n
A A
+E21{72T2(t 1y < 47'YlT1(t > It—Q}
—3

We use Hoeffding’s inequality to control the first term:

A S sA? 32
Ezﬂ{%n(t n> It—2}<EZ {725>}<ZGXP<—32><A2~
1

t=3



For the second term, using the rewriting of Step 1 as an uppeardonp;(2), one obtains:

i A A i A A
E> 1 {’Yz To(t—1) < " ATy -1y < Z1lt = 2} = E E (Pt(2)]1 {72 To(t—1) < 1 ATy -1y S 1 })
t=3 3
tA2 4
E exp| —— | < Az

The third term is more difficult to control, and we further dertpose the corresponding event as
follows:

{:7\27T2(t1) <

IN

A A
7o - > Zalt = 2}
~ A N A
CIMNTi-1) > Z»Tl(t_ 1) >t/40 U A1) < Z’It =2,Ti(t—-1)<t/4;.

The cumulative probability of the first event in the aboveataposition is easy to control thanks to
Hoeffding’s maximal inequalitywhich states that for any. > 1 andz > 0 one has

2
]P)(E 1<s SmS.t.sfy\ls > {E) < exp (.T) .
’ 2m
Indeed this implies

~ A R At tA?
= — < <s<tsit s> — | < —T15 |
P(’Yl,Tl(t—l) > 4,T1(t 1) >t/4> ]P’(Ellststsyl, > 16) exp< 512)

and thus
512

A
EZ {mlt n> T(t—1)>t/4} R
It only remains to control the term

. R i N
2 1 {fanen < Th=2ne-n<yal = SE(n@1{famey < T H0-D <))
t=3

t=3

n tA2
ZEeXp ——— 4+ A max sy1,s |,
= 4 1<s<t/4

where the last inequality follows from Step 1. The last ste@évoted to bounding from above this
last term.

IN

Step 3.By integrating the deviations and using again Hoeffding&ximal inequality one obtains

Heo log Foo 2(log x)?
E exp (AKI{:%(/ s, S) < 1Jr/1 P <1r<nsa<xt S, > A dx < 1Jr/1 exp (fTQt) dx.

Now, straightforward computation gives

2 o )2 2 T 2
Gor () (o (5) ) + G ()
- /+°° /wA% exp( tAZ) it
< S+ “M/ Vi exp(—u) du
< 30
< =

which concludes the proof by putting this together with thsuits of the previous step.
[ |

%It is an easy exercise to verify that Azuma-Hoeffding holds for maatieglifferences with sub-Gaussian
increments, which implies Hoeffding’s maximal inequality for sub-Gausdistributions.



4 Optimal strategy for the BPR setting inspired by Thompson Samling

In this section we consider the general BPR setting. Thagisdward distributions are sub-Gaussian
(they satisfyEe*X—1) < ¢X*/2 forall A € R), one reward distribution has meah, and all the other
means are smaller tharf — ¢ wherep* ande are known values.

Similarly to the previous section we assume that the rewsstdlolitions are Gaussian with variance
1 for the derivation of the Thompson Sampling strategy (butiw@ot make this assumption for the
analysis of the resulting algorithm). Then the set of pdegtlarameters is described as follows:

0 = UK 0, where®, = {0 ¢ R s.t.0;, = p* andd; < p* — e forall j # i}.

Assuming a uniform prior over the index of the best arm, anda p over the mean of a suboptimal
arm one obtains by Bayes rule that the probability densitgfion of the posterior is given by:

1 K T;(t-1) K
dmy(0) o< exp —52 > (X —05)° [T .
j=1 s=1 j=1,j#i* (0)

Now remark that with Thompson Sampling afiis played at time if and only if 6*) € ©;. In other
words]I; is played at random from probabilip where

1 T;(t—1) L —e 1 T (t—1)
@) =m(©) o e |y > (Ko - ]] / exp (=3 Y (Xu—0)? | @)
s=1 J#i —o0 o—1
exp (7% Zf;(f_”(Xi,s i /i*)2)
JE T exp (<5 STV (Xa — 0)?) dAw)

Taking inspiration from the above calculation we consider following policy, where\ is the
Lebesgue measure and we assume a slightly larger valuegfmatiance (this is necessary for the
proof).

X

For rounds € [K], select arny; = ¢.
Foreachround = K + 1, K + 2,... play I, at random fronp; where

IR 1 G Doic G ey
Pe(t) = C—/— — s
P e (320D (K~ 02) o

andc > 0 is such thab> " pi(i) = 1.

Figure 3: Policy inspired by Thompson Sampling for the BPR setting.

The following theorem shows that this policy attains the keswn performance for the BPR setting,
shaving off a log-log term in the regret bound of the BPR polic

Theorem 3 The policy of Figure3 has regret bounded a&, < >, A <o (Ai + %M),
uniformly inn.

The proof of this result is fairly technical and it is defatt® the supplementary material.
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