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Abstract

Complex objects can often be conveniently represented by finite sets of
simpler components, such as images by sets of patches or texts by bags
of words. We study the class of positive definite (p.d.) kernels for two
such objects that can be expressed as a function of the merger of their
respective sets of components. We prove a general integral representa-
tion of such kernels and present two particular examples. One of them
leads to a kernel for sets of points living in a space endowed itself with a
positive definite kernel. We provide experimental results on a benchmark
experiment of handwritten digits image classification which illustrate the
validity of the approach.

1 Introduction

Suppose we are to deal with complex (e.g non-vectorial) objects from a setZ on which
we wish to apply existing kernel methods [1] to perform tasks such as classification or
regression. Assume furthermore that the latter objects can be meaningfully described by
small components contained in a setX . Namely, we suppose that we can define an a
priori mappingτ which maps anyz ∈ Z into a finite unordered list of elements ofX ,
τ(z) = [x1, x2, ..., xn], through a sampling process which may be exhaustive, heuristic or
random both in the quantity of sampled componentsn and in the way those components
are extracted. Comparing two such complex objects through the direct comparison of their
respective lists of components has attracted much attention recently, namely through the
definition of p.d. kernel on suchτ -lists. Most recent approaches to compare twoτ -lists
involve the estimation of two distributionspz andpz′ on X within a parametric class of
models that fit (e.g. in maximum likelihood (ML) sense) respectivelyτ(z) andτ(z′) seen
as a samples from laws onX , where each resulting law could be identified withz andz′

respectively. Such a kernel is then defined betweenpz andpz′ , as seen for example in [2]
with the Information Diffusion kernel, in [3] with the family of Mutual Information Kernels
or in [4] with the use of the Battacharyya affinity betweenpz and pz′ . An alternative
and non-parametric approach toτ -lists comparison that studies the subspaces generated by
points ofτ(z) andτ(z′) in a feature space was also proposed in [5], recalling elements
presented in Kernel-Canonical Correlation Analysis [6].

We explore in this contribution a different direction to kernel design for lists by studying the
class of kernels whose value computed on two lists is only defined through its value on their



concatenation. This approach was already used in [7], where a particular kernel for strings
that only compares two strings through their concatenation is presented. In this paper, the
approach is extended to a more general and abstract setting ofτ -lists, but the motivation
remains the same as in [7]: if twoτ -lists are similar, e.g. in terms of the distribution of
the components they describe, then their concatenation will be more “concentrated” than if
they are very different, in which case it might look more like a reunion of two disjoint sets
of points. As a result, one can expect to get a relevant measure of similarity, and hence a
kernel, by studying properties of the concatenation of two lists such as its concentration.

After an example of a valid kernel for lists seen as measures on the space of components
(Section 2), we provide a complete characterization for this class of kernels (Section 3)
by casting them in the context of semigroup kernels. This leads to the definition of a
second kernel based on exponential densities onX , which boils down after a numerical
approximation to the computation of the entropy of the maximum likelihood density (taken
in the considered exponential family) of the points numbered by lists of components. This
kernel is extended in Section 4 to points taken in a reproducing kernel Hilbert space defined
by a kernelκ onX , and is then tested on a problem of image classification, where images
are seen as bags of pixels and a non-linear kernel between pixels is used (Section 5).

2 The entropy kernel

As a warm-up, let us assume that the setX is measurable, e.g.X = R
d, and that to

any pointx ∈ X we can associate a probability measure onX with densityµx with
respect to a common measure (e.g. the Borel uniform measure), with finite entropy

h(µ)
def
= −

∫

X
µ ln µ. Consider for example a Gaussian distribution with meanx and

fixed variance. A natural way to represent an unordered listτ(z) = [x1, x2, ..., xn] ∈ Xn

is by the densityµτ = 1/n
∑n

i=1 µxi
. In that case, a p.d. kernelk between unordered lists

τ andτ ′ that only depends on their concatenationτ(z) · τ(z′) is equivalent to a p.d. kernel
between densitiesµ andµ′ that only depends onµ+µ′. Hence we are looking for a p.d. ker-
nel on the setP of probability densities of finite entropy of the formκ(µ, µ′) = ϕ(µ+µ′).
An example of such a kernel is provided in the following proposition. Recall that a neg-
ative definite (n.d.) kernel on a setX is a symmetric functiong : X2 → R that satisfies
∑n

i,j=1 cicjg(xi, xj) ≤ 0 for anyn ∈ N, (x1, . . . , xn) ∈ Xn, and(c1 . . . , cn) ∈ R
n with

∑n
i=1 ci = 0. A useful link between p.d. and n.d. kernels is thatg is n.d. if and only if

exp(−tg) is p.d. for allt > 0 [8, Theorem 3.2.2.].

Proposition 1. The functiong : µ, µ′ 7→ h(µ+µ′

2 ) is negative definite onP, making

kh(µ, µ′)
def
= e−th( µ+µ′

2 ) a p.d. kernel onP for any t > 0. We callkh the entropy kernel
between two measures.

The entropy kernel is already a satisfactory answer to our initial motivation to look at
merger of points. Observe that ifµx is a probability density aroundx, thenµτ can often
be thought of as an estimate of the distribution of the points inτ , and(µτ + µτ ′)/2 is an
estimate of the distribution of the points enumerated inτ · τ ′. If the latter estimate has a
small entropy we can guess that the points inτ andτ ′ are likely to have similar distributions
which is exactly the similarity that is quantified by the entropy kernel.

Proof of Proposition 1.It is known that the real-valued functionr : y 7→ −y ln y is n.d.
on R+ as a semigroup endowed with addition [8, Example 6.5.16]. As a consequence the
functionf 7→ r ◦ f is n.d. onP as a pointwise application ofr, and so is its summation on
X . For any real-valued n.d. kernelk and any real-valued functiong, we have trivially that
(y, y′) 7→ k(y, y′) + g(y) + g(y′) remains negative definite, henceh( f+f ′

2 ) is n.d. through

h( f+f ′

2 ) = 1
2h(f + f ′) + ln 2

2 (|f | + |f ′|), yielding positive definiteness ofkh. ¤



3 Semigroups and integral representations of p.d. kernels on finite
Radon measures

In order to generalize the example presented in the previous section, let us briefly recall
the concept of p.d. kernels on semigroups [8]. A nonempty setS is called an Abelian
(autoinvolutive) semigroup if it is equipped with anAbelian associative composition◦
admitting a neutral element inS. A function ϕ : S 7→ R is called apositive definite
(resp.negative definite)functionon the semigroup(S, ◦) if (s, t) 7→ ϕ(s◦ t) is a p.d. (resp.
n. d.) kernel onS × S.

The entropy kernel defined in Proposition 1 is therefore a p.d. kernel on the semigroup
of measures with finite entropy endowed with usual addition. This can be generalized by
assuming thatX is a Hausdorff space, which suffices to consider the set of finite Radon
measuresM b

+(X ) [8]. For µ ∈ M b
+(X ), we note|µ| = µ(X ) < +∞. For a Borel

measurable functionf ∈ R
X , we noteµ[f ] =

∫

X
fdµ. Endowed with the usual Abelian

addition between measures,(M b
+(X ),+) is an Abelian semigroup. The reason to consider

this semigroup is that there is a natural semigroup homomorphism between finite lists of
points and elements ofM b

+(X ) given by τ = [x1, ..., xn] 7→ µτ =
∑n

i=1 µxi
, where

µx ∈ M b
+(X ) is an arbitrary finite measure associated with eachx ∈ X . We discussed in

section 2 the case whereµx has a density, but more general measures are allowed, such as
µx = δx, the Dirac measure. Observe that when we talk about lists, it should be understood
that some objects might appear with some multiplicity which should be taken into account
(specially whenX is finite), making us consider weighted measuresµ =

∑n
i=1 ciµxi

in
the general case. We now state the main result of this section which characterizes bounded
p.d. functions on the semigroupM b

+(X ),

Theorem 1. A bounded real-valued functionϕ on M b
+(X ) such thatϕ(0) = 1 is p.d. if

and only if it has an integral representation:

ϕ(µ) =

∫

C+(X )

e−µ[f ]dν(f),

whereν is a uniquely determined positive radon measure onC+(X ), the space of non-
negative-valued continuous functions ofR

X endowed with the topology of pointwise con-
vergence.

Proof. (sketch) Endowed with the topology of weak convergence,M b
+(X ) is a Hausdorff

space [8, Proposition 2.3.2]. The general result of integral representation of bounded p.d.
function [8, Theorem 4.2.8] therefore applies. It can be shown that bounded semicharacters
on M b

+(X ) are exactly the functions of the formµ 7→ exp(−µ[f ]) wheref ∈ C+(X ) by
using the characterization of semicharacters on(R+,+) [8, Theorem 6.5.8] and the fact
that atomic measures is a dense subset ofM b

+(X ) [8, Theorem 2.3.5].

As a constructive application to this general representation theorem, let us consider the
caseµx = δx and consider, as a subspace ofC+(X ), the linear span ofN non-constant,
continuous, real-valued and linearly independent functionsf1, ..., fN onX . As we will see
below, this is equivalent to considering a set of densities defined by an exponential model,
namely of the formpθ(x) = exp(

∑N
j=1 θjfj(x)−ψ(θ)) whereθ = (θj)j=1..N ∈ Θ ⊂ R

N

is variable andψ is a real-valued function defined onΘ to ensure normalization of the
densitiespθ. Considering a priorω on the parameter spaceΘ is equivalent to defining
a Radon measure taking positive values on the subset ofC+(X ) spanned by functions
f1, ..., fN . We now have ( see [9] for a geometric point of view) that:



Theorem 2. θ̂µ ∈ Θ being the ML parameter associated withµ and notingpµ = p
θ̂µ

,

ϕω(µ) = e−|µ|h(pµ)

∫

Θ

e−|µ|d(pµ||pθ)ω(dθ),

is a p.d. kernel on the semigroup of measures, whered(p||q) =
∫

supp(q)
p ln p

q
is the

Kullback-Leibler divergence betweenp andq.

Although an exact calculation of the latter equation is feasible in certain cases (see [10, 7]),
an approximation can be computed using Laplace’s approximation. If for example the prior
on the densities is taken to be Jeffrey’s prior [9, p.44] then the following approximation
holds:

ϕ(µ) ∼
|µ|→∞

ϕ̃(µ) := e−|µ|h(pµ)

(

2π

|µ|

)
N
2

. (1)

The ML estimator being unaffected by the total weight|µ|, we haveϕ̃(2µ) = ϕ̃(µ)2( |µ|4π
)

N
2

which we use to renormalize our kernel on its diagonal:

k(µ, µ′) =
e−(|µ+µ′|)h(pµ+µ′ )

e−|µ|h(pµ)−|µ′|h(pµ′ )

(

2
√

|µ||µ′|
|µ| + |µ′|

)
N
2

Two problems call now for a proper renormalization: First, if|µ′| ≪ |µ| (which would
be the case ifτ describes far more elements thanτ ′), the entropyh(pµ+µ′) will not take
into account the elements enumerated inµ′. Second, the value taken by our p.d functionϕ̃
decreases exponentially with|µ| as can be seen in equation (1). This inconvenient scaling
behavior leads in practice to bad SVM classification results due to diagonal dominance of
the Gram matrices produced by such kernels (see [11] for instance). Recall however that
the Laplace approximation can be accurate only when|µ| ≫ 0. To take into account this
tradeoff on the ideal range of|µ|, we rewrite the previous expression using a common width
parameterβ after having applied a renormalization onµ andµ′:

kβ(µ, µ′) = k(
β

|µ|µ,
β

|µ′|µ
′) = e

−2β

(

h(pµ′′ )−
h(pµ)+h(p

µ′ )

2

)

, (2)

whereµ′′ = µ
|µ| +

µ′

|µ′| . β should hence be big enough in practical applications to ensure the
consistency of Laplace’s approximation and thus positive definiteness, while small enough
to avoid diagonal dominance. We will now always suppose that our atomic measures are
normalized, meaning that their total weight

∑n
i=1 ci always sums up to 1.

Let us now review a practical case whenX is R
k, and that some kind of gaussianity among

points makes sense. We can usek-dimensional normal distributionspm,Σ ∼ N (m,Σ)
(whereΣ is ak × k p.d. matrix) to define our densities. The ML parameters of a measure
µ are in that case :̄µ =

∑n
i=1 cixi andΣµ =

∑n
i=1 ci(xi − µ̄)(xi − µ̄)⊤. Supposing

that the span of then vectorsxi coversR
k yields non-degenerated covariance matrices.

This ensures the existence of the entropy of the ML estimates through the formula [12]:
h(pm,Σ) = 1

2 ln ((2πe)n|Σ|). The value of the normalized kernel in (2) is then:

kβ(µ, µ′) =

(

√

|Σµ||Σµ′ |
|Σµ′′ |

)2β

.

This framework is however limited to vectorial data for which the use of Gaussian laws
makes any sense. An approach designed to bypass this double restriction is presented in
the next section, taking advantage of a prior knowledge on the components space through
the use of a kernelκ.



4 A kernel defined through regularized covariance operators

EndowingX (now also considered 2-separable) with a p.d. kernelκ bounded on the di-
agonal, we make use in this section of its corresponding reproducing kernel Hilbert space
(RKHS, see [13] for a complete survey). This RKHS is denoted byΞ, and its feature map
by ξ : x 7→ κ(x, ·). Ξ is infinite dimensional in the general case, preventing any sys-
tematical use of exponential densities on that feature space. We bypass this issue through
a generalization of the previous section by still assuming some “gaussianity” among the
elements numbered by atomic measuresµ, µ′ andµ′′ which, once mapped in the feature
space, are now functions. More precisely, our aim when dealing with Euclidean spaces
was to estimate finite dimensional covariance matricesΣµ,Σµ′ ,Σµ′′ and compare them in
terms of their spectrum or more precisely through their determinant. In this section we
use such finite samples to estimate, diagonalize and regularize three covariance operators
Sµ, Sµ′ , Sµ′′ associated with each measure onΞ, and compare them by measuring their re-
spective dispersion in a similar way. We note forξ ∈ Ξ its dualξ∗ (namely the linear form
Ξ → R s.t. ζ 7→ ξ∗ζ = 〈ξ, ζ〉Ξ) and||ξ||2 = ξ∗ξ. Let (ei)i∈N be a complete orthonormal
base ofΞ (i.e. such thatspan(ei)i∈N = Ξ ande∗i ej = δij). Given a family of positive real
numbers(ti)i∈N, we noteSt,e the bilinear symmetric operator which mapsξ, ζ 7→ ξ∗St,eζ
whereSt,e =

∑

i∈N
tieie

∗
i .

For an atomic measureµ and notingξ̃i
def
= (ξi − µ[ξ]) its n centered points inΞ, the

empirical covariance operatorSµ =
∑n

i=1 ciξiξ
∗
i on Ξ can be described through such a

diagonal representation by finding its principal eigenfunctions, namely orthogonal func-
tions inΞ which maximize the expected (w.r.t toµ) variance of the normalized dot-product

hv(ξ)
def
= v∗ξ

||v|| here defined for anyv of Ξ. Such functions can be obtained through the
following recursive maximizations:

vj = argmax
v∈Ξ,v⊥{v1,...,vj−1}

varµ(hv(ξ)) = argmax
v∈Ξ,v⊥{v1,...,vj−1}

1

||vj ||2
n

∑

i=1

civ
∗
j ξ̃i.

As in the framework of Kernel PCA [1] (from which this calculus only differs by consider-
ing weighted points in the feature space) we have by the representer theorem [1] that all the
solutions of these successive maximizations lie inspan({ξ̃i}i=1..n). Thus for eachvj there
exists a vectorαj of R

n such thatvj =
∑d

i=1 αj,iξ̃i with ||vj ||2 = α⊤
j K̃µαj whereK̃µ =

(In −1n,n∆c)Kµ(In −∆c1n,n) is the centered Gram matrixKµ = [κ(xi, xj)]1≤i,j≤n of
the points taken in the support ofµ, with 1n,n being then × n matrix composed of ones
and∆c the n × n diagonal matrix ofci coefficients. Our latter formulation is however
ill-defined, since anyαj is determined up to the addition of any element ofker K̃µ. We

thus restrict our parametersα to lie in E
def
= ker K̃⊥

µ ⊂ R
n to consider functions of positive

squared norm, having now:

αj = argmax
α∈E:∀k<j,α⊤K̃αk=0

α⊤K̃µ∆cK̃µα

α⊤K̃µα

(

= varµ(hvj
(ξ))

)

Both endomorphism̃Kµ∆cK̃µ andK̃µ being symmetricpositivedefinite onE (one can
easily prove thatker K̃µ = ker K̃µ∆cK̃µ), the right-hand argument of the previous equa-
tion, known as the Rayleigh quotient of̃Kµ∆cK̃µ by K̃µ, can be maximized through a
Hermitian generalized eigenvalue decomposition. This computation yields a basisαj of E

such thatα⊤
j K̃µαi = 0 for i < j ≤ dim(E), and with corresponding positive eigenvalues

in decreasing orderλ1, ..., λdim(E). Throughvj =
∑d

i=1 αj,iξ̃i and writingr = dim(E),
this also yields an orthogonal basis(vj)i≤r of span{(ξ̃i)i≤n}, which can be completed
to spanΞ through a Gram-Schmidt orthonormalization process using the original basis



(ei)i∈N. The orthonormal base corresponding toSµ is thus(vi)i∈N, where ther first vec-
tors are the original eigenvectors obtained through the previous maximization. Such a
diagonal representation ofSµ takes the formSµ = Sλ,v whereλ = (λ1, ..., λr, 0, ...). This
bilinear form is however degenerated onΞ and facing the same problem encountered in
[4, 6] we also propose to solve this issue through a regularization by adding a component
η on every vector of the base, i.e. definingλη = (λ1 + η, ..., λr + η, η, ...) with η > 0, to
propose a regularization ofSµ as:

Sλη,v =

r
∑

i=1

(λi + η)viv
∗
i +

∑

i>r

η viv
∗
i .

The entropy of a covariance operatorSt,e not being defined, we bypass this issue by consid-
ering the entropy of its marginal distribution on its firstd eigenfunctions, namely introduc-
ing the quantity|St,e|d = d

2 ln(2πe)+ 1
2

∑d
i=1 ln ti. Let us sum up ideas now and consider

three normalized measuresµ, µ′ andµ′′ = µ+µ′

2 , which yield three different orthonormal
basesvi, v

′
i andv′′

i of Ξ and three different families of weightsλη = (λi≤r+η, η, ...), λ′
η =

(λ′
i≤r′ + η, η, ...) andλ′′

η = (λ′′
i≤r′′ + η, η, ...). Though working on different bases, those

respectived first directions allow us to express an approached form of kernel (2) limited to
different subspaces ofΞ of arbitrary sized ≫ r′′ ≥ max(r, r′):

kd,β(µ, µ′) = exp

(

−2β

(

|Sλ′′
η ,v′′ |d −

|Sλη,v|d + |Sλ′
η,v′ |d

2

))

=





√

∏r
i=1 1 + λi

η

∏r′

i=1 1 +
λ′

i

η

∏r′′

i=1 1 +
λ′′

i

η





2β

,

(3)

The latter expression is independent ofd, while lettingd go to infinity lets every base on
which are computed our entropies span the entire spaceΞ. Though the latter hint does not
establish a valid theoretical proof of the positive definiteness of this kernel, we use this final
formula for the following classification experiments.

5 Experiments

Following the previous work of [4], we have conducted experiments on an extraction of
500 images (28× 28 pixels) taken in the MNIST database of handwritten digits, with 50
images for each digit. To each imagez we randomly associate a setτ(z) of 25 to 30
pixels among black points (intensity superior to 191 on a 0 to 255 scale ) in the image,
whereX is {1, .., 28} × {1, .., 28} in this case. In all our experiments we setβ to be 1

2
which always yielded positive definite Gram matrices in practice. To define our RKHS
Ξ we used both the linear kernel,κa((x1, y1), (x2, y2)) = (x1x2 + y1y2)/272 and the

Gaussian kernel of widthσ, namelyκb((x1, y1), (x2, y2)) = e− (x1−x2)
2+(y1−y2)

2

272·2σ2 . The
linear case boils down to the simple application presented in the end of section 3 where we
fit Gaussian bivariate-laws on our three measures and define similarity through variance
analysis. The resulting diagonal variances(Σ1,1,Σ2,2),(Σ′

1,1,Σ
′
2,2) and(Σ′′

1,1,Σ
′′
2,2) mea-

sure the dispersion of our data for each of the three measures, yielding a kernel value of√
Σ1,1Σ2,2 Σ′

1,1Σ
′
2,2

Σ′′
1,1Σ

′′
2,2

equal to0.382 in the case shown in figure 1. The linear kernel man-

ages a good discrimination between clearly defined digits such as1 and 0 but fails at
doing so when considering numbers whose pixels’ distribution cannot be properly char-
acterized by ellipsoid-like shapes. Using instead the Gaussian kernel brings forward a
non-linear perspective to the previous approach since it maps now all pixels into Gaus-
sian bells, providing thus a much richer function class forΞ. In this case two parameters



(a)
Σ1,1 = 0.0552 Σ′

1,1 = 0.0441 Σ′′
1,1 = 0.0497

Σ2,2 = 0.0013 Σ′
2,2 = 0.0237 Σ′′

2,2 = 0.0139

(b)
λ1 = 0.276 λ′

1 = 0.168 λ′′
1 = 0.184

Figure 1: First Eigenfunction of three empirical measuresµ1, µ0 andµ1+µ0

2 using the linear
(a) and the Gaussian (b, withη = 0.01, σ = 0.1) kernel. Below each image are the cor-
responding eigenvalues which correspond to the variance captured by each eigenfunction,
the second eigenvalue being also displayed in the linear case (a).

require explicit tuning:σ (the width ofκ) controls the range of the typical eigenvalues
found in the spectrum of our regularized operators whereasη acts as a scaling parame-
ter for the latter values as can be seen in equation (3). An efficient choice can thus only
be defined on pairs of parameter, which made us use two ranges of values forη andσ
based on preliminary attempts:η ∈ 10−2 × {0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8, 10, 20} and
σ ∈ 10−1×{0.5, 1, 1.2, 1.5, 1.8, 2, 2.5, 3}. For each kernel computed on the base of a (σ, η)
couple, we used a balanced training fold of our dataset to train 10 binary SVM classifiers,
namely one for each digit versus all other 9 digits. The class of the remaining images of the
test fold was then predicted to be the one with highest SVM score among the the 10 pre-
viously trained binary SVMs. Splitting our data into test and training sets was led through
a 3-fold cross validation (roughly 332 training images and 168 for testing), averaging the
test error on 5 random fold splits of the original data. Those results were obtained using
the spider toolbox1 and graphically displayed in figure (2). Note that the best testing errors
were reached using aσ value of0.12 with anη parameter within0.008 and0.02, this error
being roughly19.5% with a standard deviation inferior to1% in all the region correspond-
ing to an error lower than22%. To illustrate the sensibility of our method to the number of
sampled points inτ we show in the same figure the decrease of this error when the number
of sampled points ranges from 10 to 30 with independently chosen random points for each
computation. As in [4], we also compared our results to the standard RBF kernel on images
seen as vectors of{0, 1}27·27, using a fixed number of30 sampled points and the formula

k(z, z′) = e−
||z−z′||

30·2σ2 . We obtained similar results with an optimal error rate of roughly
44.5% for σ ∈ {0.12, 0.15, 0.18}. Our results didn’t improve by choosing different soft
marginC parameters, which we hence just set to beC = ∞ as is chosen by default by the
spider toolbox.

1seehttp://www.kyb.tuebingen.mpg.de/bs/people/spider/
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Figure 2: (a) Average test error (displayed as a grey level) of different SVM handwritten
character recognition experiments using 500 images from the MNIST database (each seen
as a set of 25 to 30 randomly selected black pixels), carried out with 3-fold (2 for training, 1
for test) cross validations with 5 repeats, where parametersη (regularization) andσ (width
of the Gaussian kernel) have been tuned to different values. (b) Curve of the same error
(with η = 0.01, σ = 0.12 fixed) depending now on the size of the sets of randomly selected
black pixels for each image, this size varying between 10 and 30.
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