
RANDOM OFFSET BLOCK EMBEDDING (ROBE) FOR COMPRESSED
EMBEDDING TABLES IN DEEP LEARNING RECOMMENDATION SYSTEMS

Aditya Desai 1 Li Chou 2 Anshumali Shrivastava 1 3

ABSTRACT
Deep learning for recommendation data is one of the most pervasive and challenging AI workload in recent
times. State-of-the-art recommendation models are one of the largest models matching the likes of GPT-3 and
Switch Transformer. Challenges in deep learning recommendation models (DLRM) stem from learning dense
embeddings for each of the categorical tokens. These embedding tables in industrial scale models can be as
large as hundreds of terabytes. Such large models lead to a plethora of engineering challenges, not to mention
prohibitive communication overheads, and slower training and inference times. Of these, slower inference time
directly impacts user experience. Model compression for DLRM is gaining traction and the community has
recently shown impressive compression results. In this paper, we present Random Offset Block Embedding Array
(ROBE) as a low memory alternative to embedding tables which provide orders of magnitude reduction in memory
usage while maintaining accuracy and boosting execution speed. ROBE is a simple fundamental approach in
improving both cache performance and the variance of randomized hashing, which could be of independent
interest in itself. We demonstrate that we can successfully train DLRM models with same accuracy while using
1000× less memory. A 1000× compressed model directly results in faster inference without any engineering
effort. In particular, we show that we can train DLRM model using ROBE Array of size 100MB on a single GPU
to achieve AUC of 0.8025 or higher as required by official MLPerf CriteoTB benchmark DLRM model of 100GB
while achieving about 3.1× (209%) improvement in inference throughput.

1 INTRODUCTION

Recommendation systems are one of the top applications
of machine learning. For example, Facebook reports that
recommendation inference accounts for over 79% of AI in-
ference cycles (Gupta et al., 2020). Therefore, considerable
efforts have been and continue to be expended to develop
systems that help users make more personalized and well-
informed choices in various application domains. Recent
approaches utilize deep learning-based models to achieve
state-of-the-art performance. However, a key challenge is
the need to handle millions of categorical features that domi-
nate the recommendation data (Naumov et al., 2019; Cheng
et al., 2016). Following the work in natural language pro-
cessing (Mikolov et al., 2013; Vaswani et al., 2017), current
approaches (Naumov et al., 2019; Wang et al., 2017; Song
et al., 2019; Guo et al., 2017; Lian et al., 2018; Huang et al.,
2019) utilize a real-valued feature vector (i.e., embedding)
to represent each categorical token. These categorical rep-

1Department of Computer Science, Rice University, Hous-
ton, Texas 2College of Engineering, West Texas A&M University,
Canyon, Texas 3ThirdAI Corp. Houston, Texas. Correspondence
to: Aditya Desai <Aditya.P.Desai@rice.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

resentations are learned, end-to-end, and organized in a
memory structure called embedding tables.

Production scale models have large storage cost. If the
set of all categories is S and the embedding dimension
is d, then the embedding table size is |S|×d. With the
number of categorical tokens per feature as large as tens of
millions, embedding tables consume over 99.9% of total
model memory. Specifically, memory footprint for models
that utilize embedding tables can easily surpass hundreds of
terabytes (TB) (Mudigere et al., 2021; Naumov et al., 2019;
Ginart et al., 2019; Shi et al., 2019; Gupta et al., 2020). For
example, Facebook recently showcased training of a 50TB
sized model distributed over 128 GPUs (Mudigere et al.,
2021).

Inference with deep learning recommendation models
is memory-bound. Access of embedding tables do not
follow any recognizable pattern. Namely, the access is
highly irregular. The large size of embedding tables coupled
with irregular and sparse access causes high cache miss
rates (Gupta et al., 2020). In fact, production scale systems
spend 80% of inference cycles in embedding lookups (Gupta
et al., 2020). Hence, these models are memory bound.

Training deep learning recommendation models suffers

ROBE : Random Offset Block Embedding

from high communication cost. Purely data parallel
model training has a high communication cost equal to the
size of the model. In case of deep learning recommendation
models, data parallel training is infeasible due to large em-
bedding tables. In fact, embedding tables have to be stored
in a distributed manner across multiple nodes/GPUs. Thus
the model has to be trained in a model parallel fashion in-
troducing communication costs in both the forward and the
backward passes. This makes training as well as inference
slower for recommendation models.

Training of deep learning recommendation models is
not accessible to a general user. Training models with
large number of parameters, and on terabytes of data, comes
with significant engineering challenges. In addition, such
a task requires expensive hardware. Deep learning recom-
mendation models have to be trained in a mixed model and
data parallel setting on clusters of nodes or GPUs, which
is cost prohibitive. Thus, these models are out of the reach
for machine learning users without such access. This also
severely restricts the possibility of fast research in this area.

The deep learning recommendation model (DLRM) architec-
ture (Naumov et al., 2019) gave rise to an increased interest
in constructing more memory-efficient embeddings. Recent
state-of-the-art efforts in this direction include increasing
expressive power of embeddings by using additional com-
puting over smaller memory such as compositional embed-
ding (Shi et al., 2019); learning different sized embeddings
for different values to leverage the inherent power law in
frequencies (Ginart et al., 2019; Joglekar et al., 2020; Liu
et al., 2020; 2021; Cheng et al., 2020; Zhao et al., 2020),
low rank decomposition of embedding tables (Yin et al.,
2021). These approaches show a single (≈ 10×, (Shi et al.,
2019; Ginart et al., 2019)) or double order (≈ 100×, (Yin
et al., 2021)) of magnitude reduction in embedding table
size with no (or minimal) loss of accuracy. In our empiri-
cal evaluation, we show that with ROBE Array for DLRM
model, we can obtain as much as 1000× compression with
similar (or even improved) accuracy, at the same time giv-
ing a multi-fold increase in the inference throughput per-
formance. Specifically, we can train 1000× compressed
DLRM MLPerf model for CriteoTB dataset which reaches
the same MLPerf AUC value 0.8025 or higher with a infer-
ence throughput boost of 3.1× . Also, similar observations
can be made on Criteo Kaggle dataset where 1000× com-
pressed model can achieve similar or better accuracy as
original model over variety of state of the art deep learning
recommendation models.

What are the implications of 1000××× compression of em-
bedding tables?

(1) Eliminate the need of model parallel training. For
models as large as 50TBs, a 1000× compression can reduce
the model size to 50 gigabytes (GB), which can easily fit on

a single high-end GPU (e.g., Nvidia A100). Hence, we can
simply run a pure data-parallel model optimization.

(2) 1000× lower communication cost. With pure data-
parallel model optimization, we would achieve a 1000× re-
duction in communication cost at each step of model update.
Therefore, this leads to significant savings in communica-
tion cost.

(3) Lower memory latency. In their paper, (Gupta et al.,
2020), authors reveal that their production scale recommen-
dation show cache miss rate of 8 MPKI (misses per 1000-
instructions) as compared to 0.5 MPKI in RNN, 0.2 MPKI
in FC and 0.06 MPKI in CNN. This high cache miss rate
is the main cause of higher memory latency. With smaller
memory footprint, we can potentially store the embedding
tables or large parts of them on chip memory thus thwarting
the problem at its root. In our experiments, we show a 3.1×
speedup in inference with 1000× compression.

(4) Faster inference times and potentially faster training
time Overall, we have the potential to construct compact
models that have faster inference and training time. In our
experiments, we will show 3.1× improvement in inference
throughput. Our proof-of-concept code does not show any
improvement in training time per iteration. We leave opti-
mizing training time for future work.

(5) Faster refresh cycle for industrial models. With
changing interests, recommendation data suffers from fre-
quent concept shift (Gama et al., 2014). Faster training
would imply a better refresh rate for models and thus better
service to users of recommendation system.

Our approach: Weight sharing is a widely used idea in
machine learning to reduce memory required for the model.
Some examples include feature hashing (Weinberger et al.,
2009) to reduce input dimension, HashedNet (Chen et al.,
2015) to compress fully connected multi-layered neural net-
works, usage of filters in convolution neural networks, and
recently demonstrated some success with LSH based weight
sharing in recommendation models (Desai et al., 2021).
In this paper, we introduce a memory sharing technique –
Random Offset Block Embedding Array (ROBE). We use
universal hash functions on chunks/blocks of the embed-
dings in the embedding table to locate it in a small circular
array of memory. We refer to this form of hashing as ROBE
hashing. In a standard feature hashing scenario, where we
project a vector in higher dimension to lower dimension,
ROBE hashing outperforms the usual feature hashing as de-
fined in (Weinberger et al., 2009). We discuss the theoretical
results in Section 4. In addition to being theoretically supe-
rior, ROBE also leads to better cache performance due to
coalesced array access (3.1× boost in inference throughput).
Our results shed new light on how to make randomized
hashing algorithms cache friendly, and at the same time,

ROBE : Random Offset Block Embedding

Figure 1. ROBE-D : Working of ROBE-D (A) Forward pass: em-
bedding for a token x is extracted from the location specified by
the hash function, h(x). The ROBE array is circular, so the embed-
dings that overflow are continued from beginning. (B) Backward
Pass: the gradients of each of the embeddings are mapped back
into the array and aggregated (via sum) into the ROBE array.

have superior variance. We also provide precise quantifica-
tion of various trade-offs involved. The results could be of
independent interest to algorithms community working on
randomized hashing algorithms.

Caveat: The caveat while using our compression technique
in recommendation models is that while training the model,
we require more iterations than those required for training
the original model. For example, the original CriteoTB
MLPerf model (100GB) takes 1 epoch to reach the target
AUC of 0.8025, while the same model using 1000× less
memory with ROBE Array (100MB) takes 2 epochs to
reach the same AUC. We see similar trend in our experi-
ments with the Criteo Kaggle dataset. While we see a clear
improvement of inference throughput (3.1×), our current
proof-of-concept code does not show training time benefits.

We believe that this 2x epochs might still be cheaper in terms
of time, if we consider the post-processing efforts invested
in model reduction techniques to make these models leaner.
Even if we ignore post-processing costs, with memory opti-
mizations leveraging on 1000× less memory footprint, we
believe we should be able to get faster end-to-end training
times even while requiring more number of iterations. We
leave this aspect for future work.

2 RELATED WORK

The related lines of research in model compression can
be broadly classified into two groups: (i) learning a com-
pressed representation (or compression-aware training), and
(ii) compressing the learned model via post processing.
ROBE-Z extends the former line of research, which has
been widely applied to compressing DLRMs. Here, for
models, we are referring to recommendation models. In ad-
dition, we focus our discussions on compressing embedding

tables for these models.

2.1 Learning compressed representations

(1) Low rank decomposition: Low rank decomposition of
large matrices is a well known technique to reduce the mem-
ory footprint of the model. This entails representing the
matrix under consideration, say A ∈ RD1×D2 , as product
of two low rank matrices, B ∈ RD1×d and C ∈ Rd×D2

where d � D1, D2. In previous research on compressing
DLRMs, low rank decomposition was applied in MD Em-
beddings (Ginart et al., 2019) and TT-Rec (Yin et al., 2021).
In both works, embedding tables are first split by group-
ing together tokens based on their frequency in the dataset.
Next, different rank-decompositions are applied to matrices
representing parts of the embedding tables belonging to a
particular group. The key idea is to use lower rank for tokens
that appear sparsely in the dataset and hence leads to more
memory saving. TT-Rec uses tensor train decomposition
instead of the standard low rank decomposition to optimize
for GPU computations. MD Embeddings has sparked a lot
of related research for automatically partitioning the table
and choosing the ranks of low-rank decomposition for op-
timal performance (Joglekar et al., 2020; Liu et al., 2020;
2021; Cheng et al., 2020; Zhao et al., 2020). While MD
Embeddings show compression of 16× without loss of qual-
ity, TT-Rec shows compression of 112× on Criteo Kaggle
dataset.

(2) Feature hashing and compositional techniques : An
embedding table that is a tall matrix creates the problem
of a high dimension input space. This problem has been
traditionally solved in machine learning by feature hashing
(Weinberger et al., 2009; Shi et al., 2009) where each input
value is hashed to a smaller range using a hash function.
This is quite similar to low rank decomposition where the
first matrix is a fixed sparse matrix defined by the hash
function. The authors of QR-Trick (Shi et al., 2019) show
that feature hashing does not work well for compressing
embedding tables in recommendation systems. The reason
is feature hashing forces the embedding of different tokens
to be exactly same, thus causing a loss in the quality of
model. QR-Trick ensures that each token gets a unique
embedding by combining embeddings from multiple smaller
embedding tables into a single embedding. The combining
operation can be element-wise multiplication/ addition or
even concatenation. QR-Trick gives 4× compression with a
slight loss in model quality.

(3) HashedNet In their paper (Chen et al., 2015), authors
introduced a technique to reduce memory usage of matrices
in MLP networks. The weights of matrix are grouped ran-
domly using a xxHash function and all the weights grouped
together only use a single value from the underlying mem-
ory. This reduces the total memory foot print of the model.

ROBE : Random Offset Block Embedding

While this scheme is good to compress memory and reduce
its footprint, it has some serious issues when it comes to ef-
ficiency. HashedNet randomly distributes the elements of a
matrix to varied locations. So, in order to access a vector of
size, say d, we have to potentially fetch d cache lines utiliz-
ing only 1/B fraction of bandwidth B. This large wastage
of bandwidth can be one of the reasons why the commu-
nity has not evaluated HashedNet style compression with
latency critical application such as recommendation. In this
paper, we evaluate HashedNet style compression and pro-
pose ROBE-Z scheme which is better than HashedNet both
in terms of quality and performance. Essentially, ROBE-Z
achieve better quality of approximation than HashedNet
while maintaining fraction of bandwidth usage of 1.

(4) Quantization for training (low precision models) :
Research in reduced precision models for deep architec-
tures has gained momentum recently (Courbariaux et al.,
2016; Gupta et al., 2015; Han et al., 2015; Judd et al., 2016;
Reagen et al., 2016). However, the challenges in recom-
mendation models under consideration are unique and these
techniques, developed primarily for CNN and RNN cannot
naturally extend to recommendation. Recently, Facebook
published their effort on using low precision models for
DLRM in (Zhang et al., 2018) and shows up to 2× memory
savings and 1.2× speed up.

2.2 Compressing learned models

These approaches require us to first train the baseline model
and then compress them. Thus, making these approaches
less attractive to compression in recommendation models.

(1) Quantization for inference: Quantization can be per-
formed post model training with the goal of reducing the
inference time. The idea behind this quantization is to con-
vert the floating point values to smaller representations, (e.g.,
int16 and int8), and replace floating point operations to inte-
ger operations, which are known to be faster. This approach
can be applied in conjunction with the earlier approaches
(learning compressed representation based) and ROBE to
improve performance further.

(2) Pruning: Pruning (Liu et al., 2018) compresses the
model by removing edges from the computational graph
of the model. It enables faster inference for models by
reducing the computation. There is no straight forward way
to apply pruning to compression of embedding tables and
has not been explored in literature.

(3) Knowledge distillation: Knowledge distillation as pro-
posed by (Hinton et al., 2015), is a way of training a smaller
model (called student) from a larger model (called teacher).
Generally, the student model trained in this way outper-
forms the same model when trained standalone. One can
imagine training a smaller dimensional embedding table

from a larger embedding table. This approach has not been
evaluated in the literature and can be explored further in an
independent manner.

3 RANDOM OFFSET BLOCK EMBEDDING
ARRAY

The memory footprint of the model is determined by the
memory used to store the parameters of the model. In the
case when the number of parameters far exceed the total
amount of memory we intend to use, there are approaches
such as mixed-precision learning (Zhang et al., 2018), low
rank decomposition (Yin et al., 2021; Ginart et al., 2019)
or specialized methods (Shi et al., 2019) used to fit the pa-
rameters in the memory. To achieve order of magnitude
more reduction in memory footprint of the model, we share
memory among the elements of embeddings. Weight shar-
ing scheme to compress MLP networks was proposed in
HashedNet (Chen et al., 2015) but was never evaluated on
embedding tables. We evaluate HashedNet in our experi-
ments and propose a weight sharing scheme that is provably
better than standard weight sharing defined by HashedNet,
both in terms of quality and performance.

Instead of storing an embedding table, we maintain a single
array for learned parameters which is a compressed repre-
sentation of embedding table. All embedding tables share
the same array of learned parameters. The embeddings are
accessed in a blocked manner from the embedding array
using GPU-friendly universal hashing. We call this scheme
of embedding compression as Random Offset Block Em-
bedding Array (ROBE). As we will see in Section 4, in
learning a shared memory array via ROBE, we can expect
to get good quality models even with very high compres-
sion. This is further supported by our experiments in Section
5. What’s more, ROBE surmounts the memory bandwidth
issues created by HashedNet style hashing by making coa-
lesced access.

The section is organized as follows. We first describe the
most useful form of ROBE i.e. ROBE-D where D is the
dimension of the embedding in embedding table. We then
generalize the approach to consider ROBE-Z for Z ∈ N. In
the next subsection, we contrast ROBE-Z with HashedNet
style weight sharing. We end this section with a discussion
on advantages of ROBE-Z.

3.1 ROBE-D : ROBE with block size equal to
embedding size.

Consider that we are looking to build an embedding table of
size |S|×D with embedding size D. We use a circular array
M to store the learned parameters. Let h : N→ {0, ..,m−
1} be a hash function drawn uniformly randomly from a
universal hash family. Similarly let g : N×N→ {−1, 1}

ROBE : Random Offset Block Embedding

be an independent hash function drawn from a different hash
family with range 2. The working of ROBE-D is illustrated
in the figure 1.

Forward Pass: The embedding for a given token x as a
whole is located in the ROBE array using a universal hash-
ing function, h. In case, the h(x) +D ≥ |M|, the embed-
ding is continued in the first part of the ROBE array. The
embedding can, optionally, be multiplied element-wise with
a value from {+1,−1} as obtained via the hash function
g(x, i). Let vector G(x) = {g(x, 1), g(x, 2), ..., g(x,D)}.
If P(x) is a primary embedding obtained from the ROBE
array. Then the final embedding can be considered as
E(x) = G(x) ◦ P(x) where ◦ is element wise multipli-
cation. Thus, we can write
P(x) =M[h(x) : h(x) +D] if h(x) +D < |M|
P(x) = p1.p2 if h(x) +D ≥ |M|

where

p1 =M[h(x) : |M|]
p2 =M[0 : (D − (|M| − h(x)))]

E(x) = G(x) ◦P(x)

(1)
where "." denotes concatenation.

Multiple embedding tables: As discussed earlier, all em-
bedding tables in the system, even with varying embedding
dimensions, will share the ROBE array. In order to achieve
independent locations for embeddings in each table, the
hash function h and g is modified to include embedding
table id as a parameter h : N × N → {0, ...,m − 1},
g : N ×N ×N → {+1,−1}

Hashing functions h, g and idx mapping. We use univer-
sal hash function families to choose h and g. The significant
aspect of universal hash functions is that they are cheap to
compute, GPU-implementation friendly and provide decent
guarantee-bound on collision probability. With universal
hash functions for h and g the mapping, idx, for element i
of the embedding for a token x from embedding table e can
be written as,
h(e, x) = ((Ahe+Bhx+ Ch) mod P mod |M|
idx(e, x, i) = (h(e, x) + i) mod |M|
g(e, x, i) = 2(

((Age+Bgx+ Cgi+Dg) mod P mod 2

)− 1

(2)
where P is a large prime and Ah, Bh ∈ {1, ...P − 1}, Ch ∈
{0, ..., P − 1} are randomly chosen values. Thus, ith ele-
ment of the embedding of x from embedding table e can be
written asM[idx(e, x, i)] ∗ g(x, i)

Backward Pass: The backward pass can also be illustrated
with the same figure 1. Essentially, the gradients of the

Figure 2. ROBE-Z : Working of ROBE-Z (A) Forward pass: em-
bedding for a token x is assembled by extracting chunks of memory
from the locations specified by the hash function, h(x, cid). The
ROBE array is circular, so the embeddings that overflow are contin-
ued from beginning. (B) Backward Pass: the gradients of each
of the embeddings are mapped back into the array and aggregated
(via sum) into the ROBE array.

embeddings are mapped into the ROBE array according to
the idx and undergo a signed aggregation.

∆(M[j]) =
∑

idx(e,x,i)=j

g(e, x, i)∆(Ee(x)[i]) (3)

where Ee represents the embedding table with table id e and
∆(p) is the gradient of the loss function w.r.t the parameter
p.

3.2 ROBE-Z : ROBE with arbitrary block size
Z ≤ D

We generalize ROBE-D to ROBE-Z with arbitrary block
size. In this case, the embedding of a particular token is
split into chunks of size Z. These chunks are independently
mapped into the ROBE array using universal hash functions
similar to ROBE-D. The procedure is illustrated in figure 2.
Borrowing notation from the previous section,
Pc(x) =M[h(x, c) : h(x, c) + Z] if h(x, c) + Z < |M|
Pc(x) = p1.p2 if h(x) + Z ≥ |M|

where

p1 =M[h(x) : |M|]
p2 =M[0 : (Z + h(x)− |M|)]

P(x) = Pc1 .Pc2 .Pc3 ...PcD/Z

E(x) = G(x) ◦P(x)

(4)
where "." denotes concatenation. The idx mapping for a
multiple table ROBE-Z can be written as,
Zid(i) = bi/Zc Oid(i) = i mod Z

h(e, x, c) = ((Ahe+Bhx+ Chc+D) mod P mod |M|
idx(e, x, i) = (h(e, x,Zid(i) +Oid(i))) mod |M|

(5)

ROBE : Random Offset Block Embedding

Table 1. Number of memory fetches on varying sizes of Z, where D is the embedding size, B is the bus size and Z is the block size.
B|D denotes B divides D.

Condition Max number of memory fetches Comment
Original B|D D/B + 1
HashedNet/ROBE-1 D
ROBE-Z Z < B < D Z|B|D 2×D/Z With high probability as |M | � d > Z
ROBE-Z B < Z < D B|Z|D D/B +D/Z With high probability as |M | � d > Z
ROBE-Z Z ≥ D D|Z D/B + 2

where P is a large prime and Ah, Bh, Ch ∈
{1, ...P−1}, Dh ∈ {0, ..., P−1} are randomly cho-
sen values. In the equations above, Zid(i) represents the
chunk id of the index i and Oid(i) computes the offset
within the chunk of i.

The expression for g(x, e, i) is same as in ROBE-D. Also,
the backward pass functions similarly to ROBE-D according
to equation 3

3.3 ROBE-1 vs HashedNet

ROBE-1 hashing scheme is similar to the hashing scheme
proposed by HashedNet (Chen et al., 2015) for compress-
ing matrices in MLP network. There are some differences
though. ROBE-1 uses light weight universal hashing as op-
posed to xxHash used by HashedNet. Thus, ROBE-1 com-
promises the collision guarantees for better performance.
Using universal hashing makes implementing the compu-
tation on GPU very convenient and efficient. Additionally,
HashedNet, demonstrated on MLP networks, keeps sepa-
rate arrays for separate matrices, whereas ROBE-1 use a
single array to map all the elements from all the embedding
tables. What is most exciting about ROBE approach is its
ROBE-Z (or ROBE-D) which is theoretically superior to
hashing proposed by HashedNet and is cache efficient due
to appropriate usage of cache-lines via coalesced access.

The setup can also be extended to Z > D by clubbing
multiple embeddings together in a chunk. The formulation
follows the same scheme as shown in sections 3.1 and 3.2
This actually leads to better feature hashing quality as shown
in section 4.

3.4 Advantages of ROBE-ZZZ

Memory Latency and Issue of Irregular memory access
As mentioned in (Gupta et al., 2020), recommendation mod-
els suffer a very high cache-miss rate due to large embedding
tables and irregular access as compared to other architec-
tures. ROBE-Z can partially solve this problem by poten-
tially storing large part of the embedding table (or even
entire embedding table) in a compressed format in LLC
. For example, embedding tables with a collective size of
100GB, when allocated a memory of 100MB (i.e. 1000×

reduction), can be stored on last level cache. The original
model, in this case, without any memory sharing has to be
stored on RAM, or even worse on disk.

Better compute intensity In their paper, (Gupta et al.,
2020), authors highlight low compute intensity as one of
the unique challenges in embedding tables. With reusing a
lot of memory locations, ROBE-Z improves the compute
intensity of the embedding tables.

Memory Fetches: The number of memory fetches can po-
tentially increase when using a ROBE-Z allocation scheme,
especially worse during ROBE-1 (or HashedNet). The rea-
son is wasting band-width of cache line. We present the
number of cache-line fetches while using ROBE-Z and
compare it against the memory fetches with using original
embedding and HashedNet, which is shown in Table 1.

Consider the original embedding of size D (generally kept
in multiples of cache-line size). Let the cache-line size
be B. Thus, in order to fetch a single embedding from
original embedding table, we would require a maximum of
(D/B + 1) (+1 for non-aligned access) memory fetches.
As we can see from Table 1, as we increase the value of Z
the number of cache-line fetches decrease from the 2D/Z
to D/B + 2 due to the coalesced access pattern when Z is
greater than D. Also, as we will see in section 4, the greater
the value of Z, the better is dimensionality reduction. So it
is advisable to choose a large value for Z.

Dimensionality Reduction: As we will see in Section 4,
ROBE-Z hashing is better than ROBE-1 in terms of dimen-
sionality reduction. As the value of Z increases, while the
estimate of inner products in projected space is unbiased,
the variance decreases until Z reaches |M |.

4 THEORETICAL CONSIDERATIONS

The procedure described in ROBE-Z is closely related to
the sketching literature, and in particular, the area of random
projections. A parameter vector can be created by joining
all the flattened embedding matrices. The ROBE-Z hashing,
essentially, projects this parameter vector into a R|M| space.
We know from Johnson-Lindenstrauss Lemma, that ran-
dom projections can provide us with low-dimensional and

ROBE : Random Offset Block Embedding

Figure 3. The mapping from parameter vector in Rn to smaller
memory vector Rm can be described by a sketching matrix of
size m × n. Here, we show sketching matrix without sign for
HashedNet/feature hashing/ ROBE-1 (left) and ROBE-3 (right).

low-distortion embeddings of vectors from high dimension.
Feature hashing is an efficient form of random projection
where the sketching matrix is sparse - i.e. each row of the
matrix has exactly one non-zero (usually ±1) and this loca-
tion is determined randomly. We can visualize the sketching
matrix for ROBE-Z as shown in Figure 3.

Using the mapping function, or alternatively the sketching
matrix, we can recover the original embedding vector from
the memory. In fact, in this paper, we directly learn the
compressed representation of the parameter vector (hence
embedding tables).

We provide two analysis. (1) The first analysis measures the
quality of the dimensionality reduction while using ROBE-
Z hashing. This is a standard analysis on the lines of that
presented in (Weinberger et al., 2009). We show that ROBE-
Z (with Z > 1) is better than ROBE-1 which is essentially
the feature hashing described in (Weinberger et al., 2009).

(2) The previous papers such as HashedNet only evaluate
their method on dimensionality reduction. However, de-
pending on how the compressed memory is being used, we
believe it is important to also measure the application spe-
cific effect of compression. Hence, we analyse the quality
of embedding structure maintained by the ROBE-Z hashing
in the projected space. In this analysis, we measure how the
relation between two embeddings is maintained under this
memory allocation scheme.

4.1 Dimensionality reduction : ROBE-ZZZ beats
feature hashing

In order to assess the quality of dimensionality reduction of
the parameter vector in Rn, we look at the estimation of the
inner product of two vectors in the projected space. This
is a standard way to measure the preservation of distances
under projection.

Let x and y be two parameter vectors in Rn. Note that these
are not embedding vectors but two parameter vectors. Let
the inner product between x and y be denoted as 〈x, y〉. Let
ROBE-Z sketching matrix be a n × m matrix projecting
the vectors in space of Rn to Rm such that m < n. Let the
projected vectors be x̂ and ŷ respectively. The projections
are obtained by using two hash functions h and g. h is
the memory allocation function described in section above,
which maps the block id into the range {0, ...,m−1}, and g
assigns a value in {+1,−1} to each index of the vector. The
final mapping obtained is idx as described in section 3.2.
Note that while hash function h applies to blocks, g gives
independent values to each index within the block as well.
We do not use g in practice, but here we use g to simplify
the analysis. To begin with, the inner product estimator can
be written as

〈̂x, y〉 =

m∑
j=1

(
n∑

i=1

xig(i)1(idx(i) == j)

)
(

n∑
i=1

yig(i)1(idx(i) == j)

)
where 1(·) is an indicator function. The expectation and
variance of the inner product estimator can be written as
below (Theorem 1). Here, we use the function Zid directly
on the index of parameter vector as opposed to how it is
defined in Equation (5) when we are dealing with embed-
ding tables. Both notations are equivalent and we use them
interchangeably depending on context.

Theorem 1 The inner product of two parameter vectors
x, y ∈ Rn projected into the space Rm using the sketching
matrix for ROBE-Z with block size Z, m < n and Z < m
is a random variable with expectation and variance as noted
below. Let Zid(i) denote the block id of index i as computed
in Equation (5).

E(〈̂x, y〉) = 〈x, y〉

V(〈̂x, y〉) =
1

m
(ΣZid(i) 6=Zid(j)x

2
i y

2
j + ΣZid(i)6=Zid(j)xiyixjyj)

Let VZ(x, y, n,m) be the variance of inner product between
x, y ∈ Rn while using ROBE-Z on memory size |M | = m.
Then the above equation can be rewritten as follows.
VZ(x, y, n,m) = V1(x, y, n,m)−

n/Z−1∑
i=0

V1(x[Zi : Z(i+ 1)], y[Zi : Z(i+ 1)], Z,m),

where x[i : j] refers to slice of vector from index i to j.

Note that V1(x, y, n,m) is exactly the variance observed
with ROBE-1 or feature hashing matrix (Weinberger et al.,
2009). As we can clearly see that ROBE-Z has lower vari-
ance than ROBE-1. Hence, ROBE-Z is better at dimension-
ality reduction than feature hashing.

ROBE : Random Offset Block Embedding

Intuition: The results are not surprising and can explained
by observing that once we hash blocks, we ensure that ele-
ments of parameter vector that lie within a particular block
do not collide under random projection (benign correlations
due to blocking). Also, the marginal probability of collision
of two elements that lie in different blocks is same as that in
ROBE-1. While there is additional constraint in ROBE-Z
of the form “if i and j collide then i + 1 and j + 1 also
collide if they lie in same blocks as i and j respectively,”
these relations do not affect the variance as can be seen
in detailed analysis in the Appendix. The exciting part is
that the improved variance also comes with improved cache
performance.

The analysis can be extended to get concentration inequal-
ities on the lines of the analysis provided by (Weinberger
et al., 2009).

4.2 Embedding structure preservation under
projection

Let a and b be two tokens and their corresponding embed-
ding vectors be ~θa, ~θb ∈ RD . Let θ be the parameter vector,
then θa = θ[ida : ida+D] for some ida. We assess the qual-
ity of embedding structure preservation under the ROBE-Z
projection by measuring the inner product estimation be-
tween θa and θb under the projection. The inner product
estimator can be written as
̂〈~θa, ~θb〉 =

D∑
j=1

(
n∑

i=1

θig(ida + j)g(i)1(idx(i) == idx(ida + j))

)
(

n∑
i=1

θig(idb + j)g(i)1(idx(i) == idx(idb + j))

)
.

Theorem 2 The inner product for embeddings of two dis-
tinct values a and b, say θa, θb ∈ RD, when the parameter
vector θ ∈ Rn is projected onto a space Rm using the
ROBE-Z hashing has an expected value as shown below.

E(
̂〈~θa, ~θb〉) = 〈θa, θb〉,

when a and b have embeddings in same block.

E(
̂〈~θa, ~θb〉) = 〈θa, θb〉(1 +

1

m
),

when a and b have embeddings in different blocks or Z < D.
The variance for the case when embeddings of a and b lie in
separate blocks and Z ≥ D can be expressed as

V(〈~θa, ~θb〉) ≤ O

 D

m2
||θ||4 +

1

m2
(

D∑
i6=j=1

θ(i)a θ
(i)
b θ(j)a θ

(j)
b)


We provide variance of inner product estimator for a com-
monly occuring case. Detailed proof of Theorem 2 can be
found in the Appendix. Variance for other cases can be

computed similarly. We factor out the dependence on Z
to simplify the expression. However , it can be noted that
if Z < D there will be additional interactions which will
increase the variance.

Intuition: The expected value of inner product of two em-
beddings is unbiased only in the case when embeddings of
a and b lie in the same block. This is expected as when
embeddings of a and b lie in different blocks, ith element
of a and b can be potentially mapped to the same location
in memory leading to biased estimates. Also, the variance
depends on the `2-norm of the parameter vector (equiva-
lently frobenius norm of embedding tables). Again, one
can expect this as every element can potentially collide with
the elements of embeddings of a and b. It is interesting
to note that while dimensionality reduction’s variance was
proportional to 1

m ||θ||
2, the variance in this case is propor-

tional to (1
m ||θ||

2)2. One can expect this to happen as in
this analysis, vectors share the same memory (as opposed
to dimensionality reduction).

5 EXPERIMENTAL RESULTS

We evaluate ROBE-Z for embedding tables in deep learn-
ing recommendation models in this section. Subsection
5.1 compiles various baselines from literature which try to
compress embedding tables for various recommendation
datasets. One can clearly see that ROBE-Z provides the
best compression of embedding tables that is orders of mag-
nitude better than previous state of the art. In the section
5.2 we show that quality of model holds for different values
of Z on CriteoTB dataset for Facebook DLRM model. In
the section 5.3, we show that the results of ROBE-Z holds
on Criteo Kaggle dataset for a set of state-of-art recommen-
dation models proving the generalized success of ROBE-Z.
In the last two subsections 5.4 and 5.5, we discuss the effect
of ROBE-Z on inference and training times respectively.
Specifically, we show that using ROBE-Z gives 3.1× more
throughput during inference. The two datasets are described
in sections 5.2 and 5.3.

5.1 Comparison with baselines

We select the following baselines to compare our results
against. More details on these methods can be found in the
related work section of the paper. The results are aggregated
in the table 2

• Quantization with low precision models: In (Zhang
et al., 2018), authors note that low precision embedding
tables gives upto 2× reduction in embedding tables by
using FP16 instead of FP32.

• Hashing Trick : This is the popular form of input size
reduction technique as introduced in (Weinberger et al.,
2009). In this technique, each category value is hashed

ROBE : Random Offset Block Embedding

Table 2. Comparison of ROBE-Z and other baselines on Criteo datasets.
Method Dataset Memory Compression Quality of model Metric Used
Low-Precision(Zhang et al., 2018) Criteo Kaggle 2× similar to baseline Logloss
Hashing Trick (Weinberger et al., 2009) Criteo Kaggle 4× Much worse than QR Trick Logloss
QR Trick (Shi et al., 2019) Criteo Kaggle 4× Slightly worse than baseline Logloss
MD Emeddings (Ginart et al., 2019) Criteo Kaggle 16× Better or Similar to baseline Logloss
TT-Rec (Yin et al., 2021) Criteo Kaggle 112× Better or similar to baseline Accuracy/logloss
TT-Rec Criteo TB 117× Better or similar to baseline Accuracy/logloss
ROBE-Z Criteo Kaggle 1000× Better or similar to baseline AUC/logloss
ROBE-Z Criteo TB 1000× Better or similar to baseline AUC/logloss

Table 3. Criteo Kaggle dataset: Test AUC of 1000× reduced ROBE-Z model (2MB embedding) compared against original model (2GB).
While all models overfit after a time, DLRM models do not and the training is cutoff at 11 epochs. All values of Z in ROBE-Z show
similar std-deviation. So we only write one of them.

Model
Original

#1

ROBE-1
(avg)

(seed 1,2,3)

ROBE-1
(stdev)

ROBE-2
(seed 1)

ROBE-4
(seed 1)

ROBE-8
(seed 1)

ROBE-16
(seed 1)

DLRM 0.8031 0.8032 0.0001 0.8050 0.8049 0.8047 0.8050
DCN 0.7973 0.7991 0.0004 0.7994 0.7995 0.7994 0.7993

AUTOINT 0.7968 0.7987 0.0002 0.7984 0.7984 0.7988 0.7985
DEEPFM 0.7957 0.7951 0.0001 0.7949 0.7949 0.7947 0.795

XDEEPFM 0.8007 0.7989 0.0004 0.7987 0.7988 0.799 0.7991
FIBINET 0.8016 0.8011 0.0002 0.8011 0.8010 0.8013 0.8012

to a smaller range and all values that are mapped to a
single value use the same embedding. As reported by the
(Shi et al., 2019), hashing trick performs quite worse than
baseline with a compression of 4×

• Compositional Embeddings (QR Trick) : This tech-
nique ensures that each value has a unique embedding
by composing different chunks from shared pool of em-
beddings. As reported in (Shi et al., 2019), at 4× com-
pression, we see slight drop in quality of the model as
compared to original on Criteo Kaggle dataset.

• Mixed Dimensional (MD) Embeddings : We choose
MD Embeddings (Ginart et al., 2019) as a representative
technique of different techniques (Joglekar et al., 2020;
Liu et al., 2020; 2021; Cheng et al., 2020; Zhao et al.,
2020) to choose mixed dimensional embeddings for com-
pression. The paper reports 16× compression with results
similar to the baseline on criteo Kaggle dataset.

• TT-Rec (Yin et al., 2021) employs a tensor-train decom-
position of the embedding matrix. As reported in (Yin
et al., 2021), it shows little over 100× compression on
both Criteo Kaggle and Criteo TB datasets. This is an
impressive improvement in memory usage as compared
to its predecessors.

As can be seen in table 2, ROBE-Z provides orders of mag-
nitude improvement in memory compression while main-
taining the quality of the model. Thus ROBE-Z beats the
state of the art compression results on DLRM models.

Table 4. CriteoTB dataset: 1000× reduced memory with ROBE-Z
for varying Z. AUC was reached in 1.89 epochs for all settings.

Model(100MB embedding) 0.8025 AUC reached?
ROBE-1 Yes
ROBE-8 Yes
ROBE-32 Yes
ROBE-128 Yes

5.2 1000× Compression of CriteoTB MLPerf Model
with AUC 0.825 or higher with varying values of
Z

Dataset: CriteoTB dataset has 13 integer features and 26
categorical features with around 800 million categorical
tokens in total. This is the advertising data of 23 days pub-
lished by criteo. We use exactly same setting as mentioned
for official version by MLPerf for training.

Model: The official MLPerf model for DLRM on CriteoTB
(see section A in appendix for code details) requires around
100GB sized embedding tables and achieves the target
MLPerf AUC of 0.8025 in 1 epoch. We will use the same
quality metric of 0.8025 AUC as prescribed in MLPerf set-
tings for CriteoTB dataset to evaluate ROBE-Z.

Results: With ROBE-Z using 1000× less memory, i.e.
only 100MB, we achieve higher than 0.8025 AUC within
2 epochs with different settings of block sizes. The details
are given in table 4 As we can see we can achieve the same
target AUC, although with almost 2x time in terms of iter-

ROBE : Random Offset Block Embedding

Table 5. Sample throughput: run with a batch size of 16384. The
time includes the time taken to send the batch from RAM to GPU
global memory and then the forward pass on the batch. The time
also includes hash computation. There is 120% increase in through-
put by using ROBE-1 which can be further improved using ROBE-
32 to 209%. Original model is run on 4 QUADRO RTX 8000
GPUs while ROBE-Z models are run on a single GPU. All models
have access to 120 CPUs. (CPUs are not involved in the measured
computation though)

Model samples/second Improvement
Original(100GB) 341454 -

ROBE-1 755469 121%
ROBE-2 865757 153%
ROBE-8 913893 167%

ROBE-32 920183 170%
ROBE-128 1055470 209%

ations. We experiment with different block sizes and see
that we can achieve the required quality with different block
sizes. The results can be reproduced using our code. (see
section A in appendix for code details)

5.3 1000××× Compression of Embedding Tables on
Criteo Kaggle Dataset

For more comprehensive study on different state-of-the-art
recommendation models, we use criteo kaggle dataset.

Dataset: The Criteo Kaggle dataset (see section A in ap-
pendix) has 13 integer features and 26 categorical features
with 33.7M total categorical values. It is similar to CriteoTB
dataset with lesser number of days and different sampling
strategy. We split the data randomly into partitions 9:1, the
smaller partition being used for testing. The training parti-
tion is further divided into partitions 8:2, the smaller parti-
tion being used for validation. We use early stopping based
on validation AUC to choose the model. Models We use
six different embedding based models from the literature:
DLRM (Naumov et al., 2019), DCN (Wang et al., 2017),
AutoInt (Song et al., 2019), DeepFM (Guo et al., 2017),
xDeepFM (Lian et al., 2018), and FiBiNET (Huang et al.,
2019). The exact details of hyperparameters for the models
and optimizer parameters, data split used for testing, and
properties of the dataset used can be found in Appendix C.
Specifically, we use embedding size of 16 for all the cate-
gorical values (around 33.7M). Hence, the original models
have 540M parameters. We use Adam(Kingma & Ba, 2014)
for all models except DLRM which uses SGD as provided
in original code. In this experiment, we set the compressed
memory size to 540K parameters for ROBE-Z (i.e. 1000×
compression)

Results: Table 3 shows the results of AUC and along with
the corresponding standard deviations for all the models in

Table 6. Training iterations required for original embedding model
and ROBE-Z 1000x compressed model. As can be seen, there is a
consistent increase in number of iterations required for compressed
model. (1) Matches the performance of the original model (2)
Reaches its best performance. This is used when the model does
not outperform the original model.

Model Dataset
Original
epochs to
reach best

ROBE-Z 1000×
epochs to reach

(1) or (2)
DLRM Criteo TB 1 1.94 (1)
DLRM Criteo Kaggle 1.37 3.96 (1)
DCN Criteo Kaggle 1 1.8 (1)

AutoInt Criteo Kaggle 1 1.62 (1)
DeepFM Criteo Kaggle 1 1.99 (2)

XDeepFM Criteo Kaggle 1.625 3.93 (2)
FiBiNET Criteo Kaggle 3 2.99 (2)

Table 3. The standard deviations of AUC of all settings are
pretty similar and we exclude putting the results for other
models (original and ROBE-Z for Z > 1) to save space.

We make the following observations from Table 3.

• Test AUC of ROBE-Z 1000× compressed model is either
better than original model (3/6 models) or similar (2/6
models). Only in case of XDeepFM , ROBE-Z performs
worse than original model.

• The quality of model (i.e. AUC) reached is stable across
different values of Z for ROBE-Z.

Our results can be reproduced using the DLRM code for
DLRM model and deep-torch code for other models(see
section A in appendix for code details)

5.4 Inference Time for ROBE-Z

With our proof-of-concept code (experimental and un-
optimized), we measure the throughput of the samples dur-
ing inference on CriteoTB dataset. We can see a phenom-
enal improvement in throughput during inference. While
original 100GB model, run on 4 Quadro RTX-8000 (46GB)
GPUs, can process around 341K samples per second, the
ROBE-Z models which are only 100MB large, perform
much faster. Using ROBE-Z we can process about 3.1×
samples. Specifically, we see 120%(2.2×) improvement in
throughput with Z = 1. As expected, increasing value of
Z in ROBE-Z improves the throughput further upto 209%
(3.1×) for ROBE-128.

5.5 Training Time for ROBE-ZZZ

Table 6 shows the running time of ROBE-Z models in terms
of number of epochs needed to reach the best AUC or match
the performance of original models. We note that training
ROBE-Z models is 2-3× slower w.r.t number of epochs
required to reach the same quality. This can potentially be

ROBE : Random Offset Block Embedding

explained by the fact that having more parameters to tune
can significantly speed up the learning. We see that with rec-
ommendation models with large embedding tables, we can
achieve same quality with smaller compressed ROBE-Z
given enough training time. A lot of research on recom-
mendation models on click-through rate (CTR) data like
Criteo, restrict themselves to 1 epoch of training. However,
we want to stress that smaller models can potentially reach
same quality and in these cases and it is just a matter of
training more.

Our current proof-of-concept code does not show any
training time per iteration improvement and thus as of now,
training for ROBE-Z models is slower than original models.
However, we believe that leveraging the smaller size of
overall embeddings the training for these smaller ROBE-Z,
we can improve the training time per iteration as well and
potentially improve the wall-clock training times.

6 CONCLUSION

While industrial scale recommendation models are explod-
ing due to large number of categorical features, ROBE Array
is a perfect alternative to embedding tables and enable train-
ing models of 1000× less memory to achieve same quality.
ROBE Array also shows clear inference throughput benefit
and can potentially be trained much faster than original mod-
els. Also, training models with ROBE Array is accessible to
a average machine learning user who does not have access
to high end hardware or engineering expertise required to
train hundreds of TBs sized model. We believe DLRM with
ROBE Array will serve as a new baseline for compression
and expedite the research in recommendation models.

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation
IIS-1652131, BIGDATA-1838177, AFOSR-YIP FA9550-
18-1-0152, ONR DURIP Grant, ONR BRC grant on Ran-
domized Numerical Linear Algebra, and gift grants from
Intel and VMware. We want to acknowledge Yanzhou Pan
and Kuangyuan Sun for their initial code on which our code
was built.

REFERENCES

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y.
Compressing neural networks with the hashing trick. In
International conference on machine learning, pp. 2285–
2294. PMLR, 2015.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,
Ispir, M., et al. Wide & deep learning for recommender

systems. In Proceedings of the 1st workshop on deep
learning for recommender systems, pp. 7–10, 2016.

Cheng, W., Shen, Y., and Huang, L. Differentiable neural
input search for recommender systems. arXiv preprint
arXiv:2006.04466, 2020.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Desai, A., Pan, Y., Sun, K., Chou, L., and Shrivastava, A.
Semantically constrained memory allocation (scma) for
embedding in efficient recommendation systems. arXiv
preprint arXiv:2103.06124, 2021.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM computing surveys (CSUR), 46(4):1–37, 2014.

Ginart, A., Naumov, M., Mudigere, D., Yang, J., and
Zou, J. Mixed dimension embeddings with appli-
cation to memory-efficient recommendation systems.
arXiv:1909.11810, 2019.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a
factorization-machine based neural network for ctr pre-
diction. arXiv preprint arXiv:1703.04247, 2017.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
International conference on machine learning, pp. 1737–
1746. PMLR, 2015.

Gupta, U., Wu, C.-J., Wang, X., Naumov, M., Reagen, B.,
Brooks, D., Cottel, B., Hazelwood, K., Hempstead, M.,
Jia, B., et al. The architectural implications of facebook’s
dnn-based personalized recommendation. In 2020 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pp. 488–501. IEEE, 2020.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Huang, T., Zhang, Z., and Zhang, J. Fibinet: combining
feature importance and bilinear feature interaction for
click-through rate prediction. In Proceedings of the 13th
ACM Conference on Recommender Systems, pp. 169–177,
2019.

ROBE : Random Offset Block Embedding

Joglekar, M. R., Li, C., Chen, M., Xu, T., Wang, X., Adams,
J. K., Khaitan, P., Liu, J., and Le, Q. V. Neural input
search for large scale recommendation models. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp.
2387–2397, 2020.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., and
Moshovos, A. Stripes: Bit-serial deep neural network
computing. In 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pp.
1–12. IEEE, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., and Sun,
G. xdeepfm: Combining explicit and implicit feature
interactions for recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1754–1763,
2018.

Liu, H., Zhao, X., Wang, C., Liu, X., and Tang, J. Au-
tomated embedding size search in deep recommender
systems. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 2307–2316, 2020.

Liu, S., Gao, C., Chen, Y., Jin, D., and Li, Y. Learnable em-
bedding sizes for recommender systems. arXiv preprint
arXiv:2101.07577, 2021.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Effi-
cient estimation of word representations in vector space.
arXiv:1301.3781, 2013.

Mudigere, D., Hao, Y., Huang, J., Tulloch, A., Sridharan,
S., Liu, X., Ozdal, M., Nie, J., Park, J., Luo, L., et al.
High-performance, distributed training of large-scale
deep learning recommendation models. arXiv preprint
arXiv:2104.05158, 2021.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundara-
man, N., Park, J., Wang, X., Gupta, U., Wu, C., Azzolini,
A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, I.,
Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V.,
Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong,
L., and Smelyanskiy, M. Deep learning recommendation
model for personalization and recommendation systems.
arXiv:1906.00091, 2019.

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee,
H., Lee, S. K., Hernández-Lobato, J. M., Wei, G.-Y.,
and Brooks, D. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 267–278. IEEE, 2016.

Shi, H. M., Mudigere, D., Naumov, M., and Yang, J.
Compositional embeddings using complementary par-
titions for memory-efficient recommendation systems.
arXiv:1909.02107, 2019.

Shi, Q., Petterson, J., Dror, G., Langford, J., Smola,
A., and Vishwanathan, S. Hash kernels for structured
data. J. Mach. Learn. Res., 10:2615–2637, December
2009. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=1577069.1755873.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In Proceedings of the
28th ACM International Conference on Information and
Knowledge Management, pp. 1161–1170, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. arXiv:1706.03762, 2017.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In Proceedings of the
ADKDD, 2017.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,
and Attenberg, J. Feature hashing for large scale multi-
task learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09,
pp. 1113–1120, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553516. URL https://doi.
org/10.1145/1553374.1553516.

Yin, C., Acun, B., Wu, C.-J., and Liu, X. Tt-rec: Tensor train
compression for deep learning recommendation models.
Proceedings of Machine Learning and Systems, 3, 2021.

Zhang, J., Yang, J., and Yuen, H. Training with low-
precision embedding tables. In Systems for Machine
Learning Workshop at NeurIPS, volume 2018, 2018.

Zhao, X., Wang, C., Chen, M., Zheng, X., Liu, X., and
Tang, J. Autoemb: Automated embedding dimensionality
search in streaming recommendations. arXiv preprint
arXiv:2002.11252, 2020.

http://dl.acm.org/citation.cfm?id=1577069.1755873
http://dl.acm.org/citation.cfm?id=1577069.1755873
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1145/1553374.1553516

ROBE : Random Offset Block Embedding

A REPRODUCING RESULTS

We rely on the following repositories of code

• DLRM Patch(to run dlrm model on kaggle and criteotb
dataset)1

• robe-z code2

• kaggle challenge data3

• deep-torch code (to run multiple state-of-the-art mod-
els on kaggle dataset) 4

• Official Model for CriteoTB5

• Reproduce TB/kaggle results with DLRM model:

– Install the robe-z code
– apply dlrm patch on dlrm original code
– setup data for criteoTB/kaggle
– see the md file in dlrm file for commands

• Reproduce kaggle results on other models:

– Install the robe-z code
– use the deep-torch code
– run the criteo_train file with appropriate config as

provided in md file

B ROBE-ZZZ
The parameter vector is constructed by flattening out the
embedding table row-wise and concatenate all the embed-
ding tables. let all the embeddings be of dimension d and
let the chunk size be Z.

The ROBE-Z is performed as follows

• split the parameter vector into chunks of Z.

• hash each chunk to a particular location in the array of
size m

• This chunk is added to the corresponding sub-array of
the memory and in case we run outside of m we cycle
through to add at the beginning of the array. So the
array we are sketching the parameter vector is actually
a circular array

1https://github.com/apd10/dlrm
2https://github.com/apd10/universal_memory_allocation
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://github.com/apd10/criteo_deepctr
5https://github.com/facebookresearch/dlrm/tree/

6d75c84d834380a365e2f03d4838bee464157516

• each element is actually multiplied by the sign which is
obtained by using another hash function g() and this is
applied at the element level. We do not use the sign in
our experiments. However, it can be used and greatly
simplifies the theory.

B.1 Analysis 1: Analysis of quality of dimensionality
reduction - feature hashing

Let the parameter vector be in Rn. The projection maps this
vector into Rm.

Let x ∈ Rn and y ∈ Rn The estimator we want to analyse
is that of inner product estimation . The estimator can be
written in terms of the indicator functions 1(·) as follows:

〈̂x, y〉 =

m∑
j=1

(
n∑

i=1

xig(i)1(h(i) == j)

)(
n∑

i=1

yig(i)1(h(i) == j)

)
.

We can simplify the above indicator as

〈̂x, y〉 =

n∑
i=1

n∑
j=1

xiyj1(h(i) == h(j)), (6)

〈̂x, y〉 = 〈x, y〉+ Σi 6=jxiyj1(h(i)==h(j))g(i)g(j). (7)
Let Ci be the chunk-id that is assigned to to i, following the
same notation used in Equations (5). Then, we know that
1(h(i)==h(j)) is 0 if Ci==Cj . Using this fact, we have

〈̂x, y〉 = 〈x, y〉+ ΣCi 6=Cjxiyj1(h(i)==h(j))g(i)g(j).
(8)

We can easily see that this estimator of 〈x, y〉 is unbiased.
Let us now look at

E(〈̂x, y〉) = 〈x, y〉. (9)

The variance of the estimator can be computed as

V(〈̂x, y〉) = E((〈̂x, y〉 − 〈x, y〉)2)

= E((ΣCi 6=Cjxiyj1(h(i)==h(j))g(i)g(j))2),

V(〈̂x, y〉) = E((
∑

Ci 6=Cj ,Ci′ 6=Cj′

xiyj

1(h(i)==h(j))g(i)g(j))xi′yj′1(h(i′)==h(j′))g(i′)g(j′)

)).

The expected value of term in summation above is non-zero
only if pairs are equal to eliminate the gs. As i cannot be
equal to j , i = j′, i′ = j or i = i′, j′ = j. This implies that

ROBE : Random Offset Block Embedding

V(〈̂x, y〉) =

E((
∑
Ci 6=Cj

x2i y
2
j1(h(i)==h(j)) + xiyixjyj1(h(i)==h(j)).

Note that although there are some constraints that ap-
pear when we do chunk hashing. like if iii and jjj collide
then and iii and jjj lie within the chunk, then i+ 1i+ 1i+ 1 and
j + 1j + 1j + 1 will also collide. But you can see that this rela-
tion does not really appear in the equation for variance.
Maybe this appears in higher moments of the estimator.

Using the fact that E(g(i)) = 0, we can simplify the expres-
sion above as

V(〈̂x, y〉) =
1

m
(ΣCi 6=Cjx

2
i y

2
j + ΣCi 6=Cjxiyixjyj). (10)

Note that when Z = 1, the equation for variance is exactly
the random projection that is used for "feature hashing" as
proposed by (Weinberger et al., 2009).

Let us denote the variance of inner product of vectors x and
y projected from the dimension n to m while using chunk
size of Z to be V(x, y, Z, n,m). We will use this notation
so that we are very precise in our statements.

Note that
V(x, y, 1, n,m) =

1

m
(ΣCi 6=Cjx

2
i y

2
j + ΣCi 6=Cjxiyixjyj)

+
1

m

∑
c∈chunks

(Σic 6=jcx
2
iCy

2
jc + Σic 6=jcxicyicxjcyjc),

where xic is an element of sub-vector xc, which refers to
the chunk of the parameter vector.

V(x, y, 1, n,m) = V(x, y, Z, n,m)+
∑

c∈chunks

V(xc, yc, 1, Z,m)

(11)
It is clear from the above equation that ROBE-Z has better
variance w.r.t feature hashing .

B.2 Effect of ROBE-ZZZ on inner product of
embeddings of two values - i.e. parts of
parameter vector that are identified as two
separate embeddings.

The previous analysis was the analysis of the sketching ma-
trix and how good it is in preserving distances in a space.
However, another important aspect of this projection - perti-
nent to the discussion of this paper is how does this projec-
tion of entire parameter vector affect the inter- embedding
relation between embeddings of two different values.

Consider how the parameter vector is constructed. We flat-
ten out each embedding table row wise (so each embedding
is contiguous) and we concatenate all flattened embedding

tables together to get a single parameter vector which is
projected down.

There are three cases that we need to check. We will assume
that either Z divides d or d divides Z (if Z > d) also, both
Z and d divided n. Let the embeddings of two values under
consideration be x and y

• x and y lie in same chunk (Z > d)

• x and y lie in different chunks Z > d

• Z < d

CASE: Z > dZ > dZ > d, xxx and yyy lie in the same chunk CCC

Let us first look at the product of two elements x1y1.

x̂1 = x1 +

n∑
i=1,i/∈C

θig(x1)g(i)1(h(i) == h(1)) (12)

ŷ1 = y1 +

n∑
i=1,i/∈C

θig(y1)g(i)1(h(i) == h(y1)) (13)

ˆx1y1 = x1y1+

x1(

n∑
i=1,i/∈C

θig(y1)g(i)1(h(i) == h(y1)))+

y1(

n∑
i=1,i/∈C

θig(x1)g(i)1(h(i) == h(1)))+

∑
i=1,/∈C,j=1,j /∈C

θi, θjg(x1)g(y1)g(i)g(j)

1(h(i) = h(x1))1(h(j) == h(y1))

(14)

E(x̂1y1) = xy (15)

Hence,

E(〈̂x, y〉) = 〈x, y〉 (16)

CASE : Z > dZ > dZ > d or Z ≤ dZ ≤ dZ ≤ d, xxx and yyy lie in different chunks
C1C1C1 and C2C2C2
Let us first look at the product of two elements x1y1.

x̂1 = x1 +

n∑
i=1,i/∈C1

θig(x1)g(i)1(h(i) == h(1)) (17)

ŷ1 = y1 +

n∑
i=1,i/∈C2

θig(y1)g(i)1(h(i) == h(y1)) (18)

ROBE : Random Offset Block Embedding

ˆx1y1 = x1y1+

x1(

n∑
i=1,i/∈C2

θig(y1)g(i)1(h(i) == h(y1)))+

y1(

n∑
i=1,i/∈C1

θig(x1)g(i)1(h(i) == h(1)))+

∑
i=1,/∈C1,j=1,j /∈C2

θi, θjg(x1)g(y1)g(i)g(j)

1(h(i) = h(x1))1(h(j) == h(y1))

(19)

E(x̂1y1) = xy(1 +
1

m
) (20)

Hence,

E(〈̂x, y〉) = 〈x, y〉(1 +
1

m
) (21)

Variance:

We will analyse the variance for specific case of Z > E = d
and x and y values have embeddings in different blocks.
Other cases can be computed similarly as

̂〈 ~θx, ~θy〉 =

d∑
j=1

(
n∑

i=1

θig(idxx + j)g(i)1(h(i) == h(idxx + j))

)
(

n∑
i=1

θig(idxy + j)g(i)1(h(i) == h(idxy + j))

)

(
̂〈 ~θx, ~θy〉)2 =

d∑
j1=1

d∑
j2=1

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

θi1θi2θi3θi4

g(i1)g(i2)g(i3)g(i4)

g(idxx + j1)g(idxy + j1)g(idxx + j2)g(idxy + j2)

1(h(i1)=h(idxx + j1))1(h(i2)=h(idxy + j1))

1(h(i3)=h(idxx + j2))1(h(i4)=h(idxy + j2))

(22)

separating cases when (i1 = idxx + j1, i2 = idxy + j1 ,

i3 = idxx + j2, i4 = idxy + j2) and others

(
̂〈 ~θx, ~θy〉)2 =

d∑
k1=1

d∑
k2=1

xk1
yk1

xk2
yk2

+

d∑
j1=1

d∑
j2=1

n∑
i1=1,i1 6=idxx+j1

n∑
i2=1,i1 6=idxy+j1

n∑
i3=1,i3 6=idxx+j2

n∑
i4=1,i4 6=idxy+j2

θi1θi2θi3θi4

g(i1)g(i2)g(i3)g(i4)

g(idxx + j1)g(idxy + j1)g(idxx + j2)g(idxy + j2)

1(h(i1)=h(idxx + j1))1(h(i2)=h(idxy + j1))

1(h(i3)=h(idxx + j2))1(h(i4)=h(idxy + j2))

(23)

V(〈 ~θx, ~θy〉) =

E(

d∑
j1=1

d∑
j2=1

n∑
i1=1,i1 6=idxx+j1

n∑
i2=1,i1 6=idxy+j1

n∑
i3=1,i3 6=idxx+j2

n∑
i4=1,i4 6=idxy+j2

θi1θi2θi3θi4

g(i1)g(i2)g(i3)g(i4)

g(idxx + j1)g(idxy + j1)g(idxx + j2)g(idxy + j2)

1(h(i1)=h(idxx + j1))1(h(i2)=h(idxy + j1))

1(h(i3)=h(idxx + j2))1(h(i4)=h(idxy + j2)))

(24)

We will analyse the case of embeddings of x and y lie in
separate blocks and Z > d.

For convenience we are using x = ~θx and similarity for y

V(〈 ~θx, ~θy〉) ≤ d
1

m2

n∑
i=1

θ4i + 2d
1

m4

∑
i 6=j

θ2i θ
2
j

+ d
1

m2

∑
i 6=j

θ2i θ
2
j + 2(

1

m2
+

1

m3
)

d∑
i 6=j=1

xiyixjyj)

(25)

We use less than as not all elements from θ are present in
actual summation.

V(〈 ~θx, ~θy〉) ≤ O

 d

m2
||θ||4 +

1

m2
(

d∑
i 6=j=1

xiyixjyj)


(26)

ROBE : Random Offset Block Embedding

term factor comment
j1 = j2 i1=i2=i3=i4 t^4 1/m^2 The value of i_1, i_2, i_3, i_4 should be equal

in pairs or all of them. Also, they should not match their
own elements. (i.e. i_1 != x+j1, etc)
t = typical element of theta

i1 = i2 != i3=i4 t1^2 t2^2 1/m^4
i1 = i3 != i2 = i4 t1^2 t2^2 1/m^2
i1 = i4 != i2 =i3 t1^2 t2^2 1/m^4

j1!=j2 i1 = y + j1, i3 = y + j2 , i2 = x + j1, i4=x+j2 x1y1x2y2 1/m^2
The value of i_1, i_2, i_3, i_4 should be equal to
the 4 distinct elements (2 of x and 2 of y) without
matching their own elements.
Also, as the indicators should be non-zero
So,
i_1 cannot be x+j1 also it cannot be x+j2 as the value of
indicator in that case will always be 0. Since Z >d h(i_1=x+j2)
cannot be equal to h(x+j1)
Hence i_1 can be equal to y+j1 or y+j2
x,y are vectors

i1 = y + j1, i3 = y + j2 , i2 = x + j2, i4=x+j1 x1y1x2y2 1/m^3
i1 = y + j2, i3 = y + j1 , i2 = x + j1, i4=x+j2 x1y1x2y2 1/m^3
i1 = y + j2, i3 = y + j1 , i2 = x + j2, i4=x+j1 x1y1x2y2 1/m^2

Table 7. For x and y lie in different blocks and Z >d . so each embedding lies completely inside the block.

C CRITEO KAGGLE EXPERIMENT

The experimental settings are described in detail below

Dataset: We choose the Criteo Kaggle dataset in order to
demonstrate the compressive power of UMA. The original
dataset of Criteo has 13 integer features and 26 categorical
features. The counts of the feature values in total is around
33M. the breakup in each of the feature is as follows.

counts:
[1460, 583, 10131227, 2202608, 305, 24,
12517, 633, 3, 93145, 5683, 8351593, 3194,
27, 14992, 5461306, 10, 5652, 2173, 4,
7046547, 18, 15, 286181, 105, 142572]

We do not perform any rare feature filtering, which reduces
the number of categorical values as is done in papers re-
porting SOTA values for the Criteo dataset. We want to
demonstrate an algorithm that can deal with large embed-
ding tables (e.g., terabytes-size of embedding tables as ob-
served in industries) and choose the entire feature set of the
Criteo dataset to make a reasonable dataset. Also, this is
standard practice in papers which deal with “compression”
or efficient embedding tables research (Ginart et al., 2019;
Shi et al., 2019).

Hyperparameters chosen for different models. The hy-
perparameters for running different models were chosen as
mentioned in the respective original papers. We did not do
hyperparameter tuning for UMA as the result sufficiently
supports our hypothesis that these memory allocation ap-
proaches are valuable to efficiently learn compressed em-
bedding tables. We fix the batch size of each of training
to 2048 and cutoff the training at 300K iterations for all
models except DLRM which is run till 540K (due to SGD).
All the models have embedding size = 16.

Train/Test data split. We use the following way to split

the data into random training and testing data for all models
except DLRM. For DLRM, the code provided has their own
data loader and we do not make any changes there.

from sklearn.model_selection \\
import train_test_split

train, test = train_test_split \\
(data, test_size=0.1,\\

random_state=2020)

Choosing models while training. We observe that most
models (especially the original models) start to overfit after
some iterations. Hence, we use early stopping based on
validation AUC to select the final model.

C.1 FAQ on Kaggle Experiment:

1. Why do we not perform rare feature filtering? We
do not perform any sort of rare feature filtering which
reduces the number of categorical values as is done in
papers reporting SOTA values for criteo kaggle dataset.
It is important to note that such tricks that are optimized
on smaller public benchmarks do not help in the real
production scale datasets (Gupta et al., 2020) and hence
are avoided. We want to demonstrate an algorithm that
can deal with large embedding tables (e.g., terabytes-
size of embedding tables as observed in industries)
and choose the entire feature set of the Criteo dataet
to make a reasonable dataset. Also, this is a standard
in papers which deal with “compression” or efficient
embedding tables research (Ginart et al., 2019; Shi
et al., 2019).

2. Why do we not achieve the SOTA results (as re-
ported on original papers)? Reproducing results in
the original papers would require access to their codes
and dataset preprocessing if any and dataset split they
use to create training and testing datasets. Unfortu-

ROBE : Random Offset Block Embedding

Table 8. Hyperparameters of different model chosen as per the specification in their papers. The code used for running DLRM model is :
https://github.com/facebookresearch/dlrm . For other models, the code used is https://github.com/shenweichen/DeepCTR-Torch.

architecture dropout l2_regularization optimizer learning rate

DLRM
bot: 13-512-256-64-16

top: 512-256-1 0 0 SGD 1.0

DCN 1024-1024-1024-1024 0 0 ADAM 0.001

AutoInt
400-400-400

attention_embedding_size:
32

0 0 ADAM 0.001

DeepFM 400-400-400 0.5 0 ADAM 0.001

XDeepFM

dnn:
400-400-400

cross interaction:
200-200-200

0.5 0.0001 ADAM 0.001

FiBiNET 400-400-400 0.5 0.0001 ADAM 0.001

nately, most papers do not have their own codes public
and do not specify the random seeds used to split the
data. In our experiments, we use the random seed =
2020 for all the models except DLRM which has its
own random splitter in the code provided. Apart from
this, we also do not perform rare feature filtering which
might affect the results. However, our experiments on
some models with rare feature filtering showed that it
does not help with performance of original model.

3. Why we use fixed embedding size for models like
DCN, which tell us to use custom embedding sizes?
While it is true that DCN model gives a custom way to
choose the size of the embedding based on the number
of values in that category, using the formula leads to
very large memory tables for the Criteo dataset using
full features (no rare feature filtering). Hence, it is
not possible to use the custom formula in our case.
We uniformly set the embedding size to 16 across the
different models.

