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The precision of 1% that is reached today in LHC 𝑊- and 𝑍-boson measurements is a great
achievement, but also a great challenge. The reward of these measurements comes from a wealth
of Standard Model precision tests and phenomenology. On the other hand, the achieved precision
challenges practical calculational methods for higher order cross-sections, and even stress tests
underlying concepts like factorization. In particular, perturbative third-order QCD predictions are
necessary to reduce residual truncation uncertainties to the level of 1 − 2%. These developments
open up a future focus on many similarly sized effects in non-perturbative proton structure and
electroweak effects, for example. In these proceedings we briefly summarize our third-order QCD

predictions for 𝑊- and 𝑍-boson production, which are publicly implemented in the code MCFM.
We put our calculation in the broader context of current calculations and future development needs.
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Experimental status. Measurements of𝑊- and 𝑍- boson observables at the LHC have been limited
only by luminosity measurements for a while. For example, measurements of 𝑍 production [1–4]
and 𝑊 production by ATLAS, CMS and LHCb [5–9] [10–14] [15–19] typically reach uncertainties
at the level of 2-3%. New luminosity measurements with an uncertainty of just 1% [20, 21]
pass this precision on to new vector-boson measurements [22, 23]. The precision in vector-boson
measurements is generally much greater than many existing Standard Model inputs, and allows
for precise 𝑊-mass measurements [24–27], charge asymmetries [14, 28–31], parton distribution
functions (PDFs) [8, 32–35], as well as the strong coupling 𝛼𝑠 [36–38].

Theory status & Drell-Yan at N3LO in QCD. Experimentally, vector-boson production is among
the simplest processes to analyze at the LHC with an abundance of statistics. Also for the theoretical
description it is among the simplest to model and predict at the LHC. Together with Higgs production
and deep-inelastic scattering, it is a process where the highest order in perturbation theory is reached,
but also where even today the highest level of precision is needed to allow for interpretation of
data, and to model signal and background. Reaching the 1% level will require pushing fixed-order
expansions in QCD, QED and electroweak couplings beyond current limits, as well as higher-order
resummation and parton showers. Non-perturbative effects in PDFs and TMDs become limiting
factors, and effects of event-generator tuning, numerical precision, and even subleading power terms
in (collinear) factorization become all equally important aspects. Only a comprehensive combination
will allow us to take maximum advantage of the experimental precision. Recent contributions of
non-QCD effects include mixed QCD⊗EW corrections at fixed-order, see e.g. refs. [39–48], as well
as resummation including non-QCD effects, see e.g. refs. [49, 50].

The first Drell-Yan predictions at N3LO in QCD were total cross-sections at a fully inclusive level
[51, 52]. Using 𝑞𝑇 subtractions, differential N3LO results were first published in ref. [53] for the
𝑍-boson rapidity distribution. A finding of those calculations were unexpectedly large corrections
of about −2.5% due to cancellations between partonic initial-state channels. At the time of these
papers no N3LO PDFs were available, and it is meanwhile understood [54, 55] that this effect is
counteracted by the inclusion of N3LO PDFs [56, 57]. The current state-of-the-art is at a fiducial and
fully differential level and further includes transverse-momentum (𝑞𝑇 ) resummation at a similar
level in 𝛼𝑠 (N4LL) [54, 55, 58–62]. Residual QCD truncation uncertainties are at the level of 1 %
to 2 % for sufficiently inclusive quantities and at small transverse momenta 𝑞𝑇 ≲ 𝑚𝑉 due to the
higher-order 𝑞𝑇 resummation.

N3LO subtraction methods. Currently, all fully differential QCD calculations of Drell-Yan
production at N3LO rely on the 𝑞𝑇 slicing method [63].1 At this order they are made possible through
calculations of the corresponding three-loop beam-functions [68–70], complete three-loop hard
function [71–75] and NNLO calculations of 𝑉+jet production [76–80].

The extension of 𝑁-jettiness slicing [81, 82] [83, 84] to N3LO, as applicable to Drell-Yan production
(𝑁 = 0), is still work in progress. It relies on the corresponding three-loop beam functions [85, 86],
while the soft function is still missing certain triple-real emission contributions [87–91].

1Note that the projection-to-Born method [64] has also been applied for N3LO QCD corrections in the cases of Higgs
production [65] and DIS [66, 67].
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See also ref. [92] for general challenges towards wide-spread N3LO phenomenology.

Power corrections. Perturbative power corrections in 𝑞𝑇 factorization play a dual role. In
resummed predictions they are important to increase the precision and improve matching with
fixed-order predictions. In the form of 𝑞𝑇 subtractions they are essential to allow for larger slicing
cutoffs. These issues are closely related and have been identified and studied in refs. [93–95].
These insights in recent years have caused a shift from relying on fixed-order calculations for total
fiducial cross-sections to resummed calculations. The most prominent case is that of symmetric
lepton cuts, causing numerical issues as well as an unphysical sensitivity to low scales in fixed-
order cross-sections, which would otherwise be resolved through different cuts [59, 94] instead
of resummation. While in 𝑞𝑇 factorization fiducial power corrections can be included through a
numerically easy to implement recoil prescription [93, 96], they are numerically more difficult for
0-jettiness subtractions [97]. On the other hand, for 0-jettiness there have been significant efforts in
analytically computing power corrections up to N3LO [97–100], making 0-jettiness subtractions a
promising alternative to 𝑞𝑇 subtractions at N3LO.

Our implementation of Drell-Yan production with leptonic decays at N3LO in MCFM. Our
current public implementation of𝑊- and 𝑍-boson production in CuTe-MCFM2 [54, 55, 101] allows for
fully differential predictions at N3LO in fixed-order QCD, and including the effect of 𝑞𝑇 resummation
at N4LL. Electroweak effects can be included at NLO [102]. The third-order 𝛼3

𝑠 predictions have
residual QCD truncation uncertainties at the level of 1 − 3% inclusively and at small transverse
momenta using 𝑞𝑇 resummation. We find that the large negative cross-section corrections of −2 %
to −3 %, that have been previously found, are compensated by the use of (approximate) N3LO PDFs.
This is demonstrated in fig. 1 for 𝑊+ production, see also fig. 5 in ref. [55]. The impact of PDFs on
kinematic distributions is in general substantial, and now constitutes one of the major uncertainties.
In fig. 2 we show the impact of recent NNLO PDF fits and their (approximate) N3LO versions on the
differential 𝑞𝑇 distribution of 𝑍-bosons in the region 𝑞𝑇 < 30 GeV where the measurement is most
precise at the level of 1%. The right panel shows the use of PDF fits from the NNPDF collaboration,
while the left panel shows fits by MSHT and the comparison to the NNPDF N3LO fit. At small 𝑞𝑇 the
overall spread of all fits is larger than 10%, a multiple of the residual QCD truncation uncertainty as
well as other effects. The difference between both N3LO fits is smaller, but still substantial. Note
though that uncertainty bands are at the 1𝜎 level.

The use of 𝑞𝑇 subtractions in our calculation comes with significant computing requirements,
although still moderate compared to other state-of-the-art calculations [103]. To obtain cross-
sections and distributions as shown in refs. [54, 55] with a numerical error of better than 0.5%, about
800-1500 node hours (64–128 nodes running for 12 hours) are necessary on Perlmutter at NERSC,
equivalent to about 150k CPU core hours on similar modern systems. We rely on a 1-jettiness
calculation for the NNLO 𝑉+jet process, so the overall calculation relies on a nested slicing in 𝑞𝑇 and
1-jettiness, see fig. 3. To obtain reliable fixed-order N3LO predictions, the inclusion of (linear) fiducial
power corrections is crucial, see fig. 4. While we are able to obtain 𝑍-boson results with negligible
numerical and cutoff uncertainties using a 𝑞𝑇 -slicing and resummation-matching-correction cutoff

2https://mcfm.fnal.gov
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Figure 1: 𝑊+ cross-sections at various perturbative orders in 𝛼𝑠, with and without 𝑞𝑇 resummation, in
comparison with the 5.02 TeV ATLAS measurement [9]. Error bars show uncertainties from scale variation
and from the MSHT20 PDF sets [56, 104] corresponding to the perturbative order. The 𝛼3

𝑠 results have an
additional numerical and slicing cutoff uncertainty of 0.5% that was added linearly to the scale uncertainties
for display. This figure is taken from ref. [55]

of 5 GeV, the power corrections for 𝑊-boson production are substantially larger and required a cutoff
of about 3 GeV, compare in fig. 5.

Challenges and outlook. To summarize, the experimental precision reached for 𝑊 and 𝑍-boson
production demonstrates the LHC’s tremendous capabilities and the success of modern data-analysis
techniques, as well as advances in theoretical modeling. Is is a showcase for a level of precision
that is expected to be reached by a wider range of processes at the HL-LHC. To ensure that data
can be interpreted, theoretical predictions will need to match, posing a significant challenge in
higher order perturbative methods, but also in non-perturbative inputs like PDFs. It will require
and unprecedented community effort in novel developments and open collaboration to overcome
these challenges efficiently, in particular in light of dwindling resources for core theory research that
directly supports LHC precision.

With refs. [54, 55] we have completed the set of public calculations of 𝑊 and 𝑍-boson production at
𝛼𝑠 in QCD, at fixed order N3LO and with 𝑞𝑇 resummation at order N3LO+N4LL.
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Figure 2: N4LL resummed transverse momentum distribution of the 𝑍-boson (with fiducial cuts as in ref. [54])
using NNLO and (approximate) N3LO PDF sets by the MSHT and NNPDF collaborations [56, 57], normalized
to MSHT20nnlo [104]. Note that the MSHT20an3lo uncertainty band includes missing higher order (MHO)
effects and not just the fitting uncertainty.
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Figure 5: Left: Relative size of the matching corrections for the matched N3LO+N4LL 𝑞𝑇 -resummed
calculation of 𝑍-boson production [54]. Matching corrections are negligible below 5 GeV. Right: The same
for 𝑊+-boson production [55] where a 3 GeV cutoff leads to residual cutoff effects of about 0.5% in inclusive
quantities.
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