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Quantum mechanics is a cornerstone of modern physics and at the very basis of the Standard Model.
However, decades-old open questions at its foundations, such as the "measurement problem" is
still with us. Moreover, theories beyond the Standard Model often include extra-dimensions and
violation of the Lorentz/Poincaré symmetries which could entail a departure from the predictions
of the standard quantum mechanics. At the Gran Sasso underground laboratory in Italy, we search
for small, beyond the quantum theory signals using radiation detectors. In particular, emission
of spontaneous radiation is predicted by gravity-related and continuous spontaneous localization
(CSL) collapse models. We have ruled out the natural parameter-free version of the Didsi-Penrose
(DP) model, and put stringent limits on the CSL model. In addition, with the VIP-2 experiment we
are searching for possible violations of the Pauli Exclusion Principle (PEP) in forbidden atomic
transitions. The impact of this research on quantum gravity models, as well as its experimental
upgrade VIP-3 is also discussed.
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1. Introduction

The theory of quantum mechanics has demonstrated its validity in describing the microscopic
world since the last century. It was therefore employed in its relativistic field formulation in the
construction of the Standard Model (SM), which successfully describes the electroweak and strong
interactions. While great scientific effort has been put in place to investigate its validity, there
are few shortcomings both from the experimental and theoretical points of view. Dark Matter and
Dark Energy, neutrino masses, matter-antimatter asymmetry are few important examples. The main
theoretical challenge the SM faces is the role and the inclusion of gravity. Precision tests of quantum
mechanics have a two-facets relevance to modern physics. The first one, which we may call bottom-
up, starts from the main unanswered question at the basis of the quantum theory, which may hint
the best direction to a better comprehension of the laws of nature. This is the case of the so-called
measurement problem connected to the wave function collapse. The debate around the collapse was
started by Schrodinger himself [1], in his cat paradox. Microscopic systems can be in superposition
of states, and their evolution follows the linearity of the Schrodinger equation. To account for the
quantum collapse, it was soon suggested that this evolution breaks downs after a certain scale, to
explain the absence of superposition in macroscopic objects [2—7]. The wave function collapse,
while accounting for the experimental evidence, still lacks a fundamental explanation.

One model has been proposed by R. Penrose and L. Diési independently, where the gravitational
self-potential of objects in superposition of states plays a major role [8—12]. The time of collapse

can be expressed by:
h
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The gravitational self interaction is measured by AEpp. For macroscopic objects, this leads
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to instantaneous wave function collapse, i.e. no superposition is possible at all. The model
predicts [13] the emission of spontaneous radiation with a rate dI'; /dwy per unit frequency wg,
which happens as a result of the charged particles’ random motion following the collapse. It can be

written as: -
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Here G,e,€p and ¢ are the gravitational constant, the electron charge, the vacuum permittivity and
the speed of light; N, is the total number of atoms. The parameter Ry was suggested by Penrose
as the size of the nucleus wave function, but can be treated as a free parameter of the model, as we
will see in Section 2.1.

Another important collapse model is the Continuous Spontaneous Localization (CSL) model [ 14—
18], where the wave function collapse occurs as a consequence of the interaction with an external
noise. In this case, the radiation emission rate is expressed as:

dr hd
dE ~ A47r260m2r2 3E )
0'c
where A in this case takes different forms if the emission is coherent or incoherent, E is the radiation
energy, and the model parameters rc and A are the collapse spatial resolution and the strength of
the noise, respectively. As shown in Section 2.1, we have strongly constrained the parameter space

of the DP and CSL model by searching for the predicted radiation of both models.
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The other research line, top-down, consists of looking for beyond the SM effects on quantum
mechanics. This is the case of a class of quantum gravity theories which are referred to as Non-
Commutative Quantum Gravity (NCQG). The idea of the non-commutativity of space-time was
firstly introduced by W. Heisenberg [19-21], and was afterwards employed in the context of string
theory [22] and loop quantum gravity [23]. The NCQG theories deform the Poincaré symmetry,
x-Poincaré and 6-Poincaré (e.g. [24, 25]). The deformation of fundamental symmetries in these
scenarios, even if suppressed at low energies, could induce a violation of the Pauli Exclusion
Principle (PEP), which directly related to the Spin Statistics theorem (SST) and Lorentz/Poincaré
symmetry. PEP violation was parametrized by Ignatiev and Kuzmin [26] in terms of a three level
Fermi oscillator. In their formalism, 3 is the amplitude parameter connecting the forbidden states
to allowed states, and 3% /2 represents the violation probability. As shown in Section 2.2, precision
measurements can place stringent limits on the 3%/2 parameter, and have the potential to constrain
classes of NCQG theories.

2. Experimental Results at LNGS

We perform precision tests of quantum mechanics and beyond the SM theories in the low radiation
environment of the INFN’s national underground laboratories (LNGS), under the Gran Sasso
mountain in central Italy. With an overburden of around 3500 meters of water equivalent shielding
provided by the mountain rocks, the LNGS is an ideal laboratory for searches involving rare events.
The cosmic radiation is reduced by six orders of magnitude, and the main background originates
mostly from environmental radiation. Section 2.1 introduces the setup and the results of the study
of the collapse models. Section 2.2 is focussed on experimental searches for the PEP violation.

2.1 Collapse Models

Since both the DP and CSL models predict the emission of faint, spontaneous radiation at the
time of collapse, it is possible to investigate these models in the clean environment of LNGS. We
use a coaxial p-type high-purity germanium detector, which is heavily shielded to further reduce
contamination from environmental y-radiation [13]. From the inside out, a germanium crystal is
surrounded by an inactive layer of lithium-doped germanium. The total active volume is 375 cm?.
Electrolytic copper and lead are used for the inner and outer shielding.

A Monte Carlo simulation was performed to account for residual cosmic radiation and radionuclide
contamination in the setup. The acquired spectrum is shown in Figure la, together with the
simulation. A statistical analysis was performed, taking into account the signal shape and the
detection efficiency. Since no significant amount of events was found above the expected ones, an
upper limit on the Ry parameter was placed [13]:

Ry > 0.54x 107" m. 4)

This result rules out the parameter-free version of the DP model, where the Ry is fixed by the wave
function size in the germanium crystal (Rg = 0.05 X 10710 m).

The same germanium detector, used for the study of the DP model, was also employed for the CSL
collapse model. Since again, no significant amount of signal events are found above the expected
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Figure 1: On the left, the spectrum acquired by the high purity germanium detector and its comparison with
the Monte Carlo description between 1 and 3.8 MeV used to constrain the DP model [13]. On the right,
the parameters space of the CSL model is shown. The constraints derived from the germanium detector are
shown in orange [27].

ones, upper limits are placed [27]. In Figure 1b, the rc-A parameter space of the CSL model is
shown. The black points correspond to proposed values by Adler [28, 29] and Ghirardi-Rimini-
Weber (GRW) [5]. The gray band shows the exclusion from theoretical considerations. The green,
blue and red bounds at higher r¢ are obtained from gravitational wave detectors. The purple bound
corresponds to the study of the emission of radiation; the orange bound comes from the germanium
detector described in this section, and improve the previous results by a factor of 13.

Investigating wave function collapse models is a key milestone in precision tests on the foundations
of quantum mechanics, since any possible deviations from the prediction of the standard quantum
theory could hint a possible physics beyond the SM. By exploiting the low radiation of the Gran
Sasso underground laboratories and state-of-the-art high purity germanium detectors, we have
strongly constrained the parameter space still available, and ruled out parameter free models.

2.2 Pauli Exclusion Principle violations

Since Pauli’s formulation in 1925 [30], the Exclusion Principle has been embedded in the develop-
ment of quantum mechanics. Indeed, PEP lies in very few, general assumption as shown by Liiders
and Zumino [31], such as CPT symmetry, Lorentz and Poincaré symmetries as well as unitarity,
causality and locality. It is therefore natural to consider that any theories beyond the SM which
entail a deformation, albeit small, of one of these principles, could have an effect on the PEP. In
particular, quantum gravity models which assume a deformation of the commutativity of space-time
as the NCQG models through alteration of the Poincaré symmetry, would have an effect even at
lower energies [23-25].

The Messiah and Greenberg (MG) superselection rule [32] forbids transitions between states with
different symmetries, i.e. it would not be possible to observe PEP violating processes without
an interaction with an external, new fermion. Depending on how the new fermion is introduced,
searches for PEP violations under the MG rule are can be performed in open systems, if the
interaction is introduced from outside, and closed systems if not.
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Figure 2: On the left, the schematic representation of the PEP allowed 2p — 1s transition, and the forbidden
one which is under scrutiny in the VIP-2 experiment. On the right, later and transverse section of the VIP-2
setup.

Ignatiev and Kuzmin parametrized the violation in terms of a three level Fermi oscillator, with
the violation probability historically expressed as 3%/2 [26], where §8 is the amplitude connecting
the forbidden state to the allowed ones. At the LNGS, we are performing dedicated experiments
looking for possible violation of the PEP in atomic transitions in open and closed systems [33].

2.3 VIP-2 Experiment

The VIP-2 open system experiment is targeting forbidden 2p — 1s transitions in copper, as shown
in Figure 2a, from the 2p state to the already-occupied 1s state, where the 2p electron is introduced
via a strong direct current.

The increased shielding provided by the additional electron is responsible for an energy shift of
the emitted X-ray, with respect to the energy of the standard Cu-K, emission. This experimental
method was first suggested by Greenberg and Mohapatra [34] and carried out by Ramberg and
Snow [35].

In Figure 2b the experimental VIP-2 apparatus is shown in transverse section. The VIP-2 experiment
is the successor of the VIP experiment, with the experimental goal of reaching 82/2 < 4 x 10731,
To this end, it is equipped with state-of-the-art Silicon Drift Detectors (SDDs) with a resolution of
190 eV (FWHM) at 8 keV, developed in collaboration with the Stefan Meyer Institute, Politecnico
di Milano and the Fondazione Bruno Kessler [36]. They guarantee a greater active area, thickness
and quantum efficiency in the energy region considered, with respect to Charge Coupled Devices
employed by the precedent VIP experiment.

The SDDs are operated at about -90 C° and placed in front of the copper target, comprised of two
strips, each 71 mm long, 20 mm high and 25 pm thick, where a direct current of up to 180 A is
circulated. A closed circuit chiller prevents the target from overheating. The target, SDDs and their
front-end electronics are housed in a vacuum chamber, operated at 107> mbar. Additionally, a low
activity Fe-55 radioactive source is present inside the setup in order to provide an in-situ calibration
for the SDDs.

When the current is on, new electrons are injected inside the target. According to MG, they can test
the PEP at each interaction with the copper atoms. If PEP is violated, the violating electrons would
perform the forbidden 2p — 1s transition, emitting a characteristic X-ray at a lower energy with
respect to the standard electromagnetic K, transition due to the shielding of the additional electron.
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Figure 3: Energy calibrated spectra of 42 days collected by the VIP-2 in 2018 [37]. On the left (right), the
spectrum acquired with current on (off) is presented. The titanium and manganese K, and Kz lines are used
for the in-situ calibration. The PEP violating signal in copper is expected at around 7.7 keV, below the copper
K. The spectrum with current off is normalized to the data taking time with current on.

When the current is off, no signal is expected, and the data taken is used as control and reference
for the data with current.

A preliminary result of the VIP-2 setup from [37] is shown in Figure 3, with the spectrum acquired
in 2018 with current on (left) and off (right).

The upper limit on the signal yield was determined to be 178 events in the Region of Interest (ROI)
7647-7847 eV, which corresponds to a FWHM windows centered at the energy of the expected
violating line. The limit was calculated at 90% confidence level with a Bayesian analysis with a
flat prior for the signal. Taking into account the uncertainties, the 90% limit on the 52 /2 parameter

becomes:
2

5 < 1.2x107%, (3)

This limit is extracted the same way Ramberg and Snow did in their original experiment [35], i.e.
considering the observed number of violating X-rays Nx = ﬁz /2 - Nins + Nypew - 1/10 - €, where
Nin is the number of scatterings of the electrons, Ny, the number of new electrons introduced
with the current, 1/10 is an estimate of the capture probability per scattering [35] and € encodes the
geometrical acceptance and the self-absorption of X-rays in the target material evaluated through
a GEANT4 Monte Carlo simulation. However, a more complete picture of the interactions of the
conduction electrons with the target material has been developed [38]. The electron scatterings is
in fact caused by the interaction with phonons, defects and impurities, which rarely have to do with
the electron capture process. Due to its Fermi velocity and material density, an electron will have
a so-called "close encounter" with an atom in about 7 = 3.5 x 1077 s. Consequently, the number
of X-rays becomes Nx = 8%/2 - Nins - Npew - € Where this time N;,, becomes now T /7, where
T =1/vp is the time the electron takes to travel through [/ due to its drift velocity vp. In this case,
the exclusion limit on the PEP violation becomes [37]:

ﬁz
o < 5.4 % 1072, (6)

The VIP-2 experiment is presently taking data in its final configuration after the commissioning
phase. It will provide an improvement of two orders of magnitude with respect to the previous
VIP experiment. A data analysis of a partial statistics is in course of publication in peer-reviewed
journals.
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2.3.1 Towards VIP-3

As noted by L. B. Okun [39], the PEP enjoys a place so special in modern theoretical physics, that
experimental tests investigating this fundamental principle should be carried out across the entire
periodic table. The VIP collaboration is planning to perform dedicated searches for PEP violation
with different target elements. To this purpose, a 1 mm thick SDD is being produced at Fondazione
Bruno Kessler, in order to improve the quantum efficiency at higher X-ray energies. The additional
thickness will provide a factor of two higher efficiency at 20 keV with respect to the 450 pm thick
SDDs currently employed in the VIP-2 experiment. The new SDDs will guarantee to extend the
experimental reach to silver, tin and palladium. A new apparatus is under finalization to house the
new detector, presenting sensible improvements with respect to the present one. The new vacuum
chamber for the VIP-3 experiment is optimized to arrange twice the number of the new SDDs and
their front end electronics, with a total of 64 active channels. The new setup will allow to safely
operate a direct current of up to 400A

3. Conclusions

Quantum Mechanics is being investigated on its foundations at the LNGS underground laboratory.
The bottom-up approach starts from the measurement problem connected to the wave function
collapse. Theories which modify the standard quantum dynamics have been put forward to explain
the collapse, most notably the DP and CSL models. The spontaneous radiation emission they predict
is testable, and detectable with high purity germanium detectors. We have put strong bounds on the
CSL model [27] and ruled out the parameter-free version of the DP [13].

Theories beyond the Standard Model, such as quantum gravity, can assume a deformation of the
commutativity of space-time as the NCQG. The deformation of the Poincaré symmetry at low
energies is deeply linked to CPT, unitarity, causality and locality, and even a faint deformation
would cause a violation of the Pauli Exclusion Principle. VIP-2 is a dedicated experiment, looking
for PEP violation under the MG superselection rule. To this end, a strong direct current is circulated
in a copper target, introducing new electrons which fulfil the superselection rule. The analysis
of preliminary data shows the VIP collaboration is well on its way to the experimental target. In
parallel, the VIP collaboration is finalizing the design of the successor upgraded VIP-3 experiment,
which will be able to operate a greater number of detectors with a stronger current. The thickness
of the SDD which are being produced will allow extending the reach of PEP violation searches to
even higher energies.
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