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The causality problem is one of the main problems in the quantum theory. It attracted especial-
ly close attention during the construction of the quantum field theory, where the causality (locality)
axiom plays a central role [1, 2]. This axiom has different formulations; however, without going
into mathematical subtleties, it can be reduced to the following: boson fields must commute at
space-like separated points, while fermion fields must anti-commute.

The following argument is often used as a physical justification of this axiom. The results of
the measurement in a bounded domain of a Minkowski space (a local measurement) are determined
by boson-field values and by bilinear combinations of fermion fields in this domain.

Such locality requirement is purely mathematical in its nature. It can be formulated only in
the framework of a particular mathematical formalism, and it is a part of that formalism. In a
general discussion of causality it is desirable to proceed from requirements that can be formulated
in physics terminology and that can be checked in the experiment directly. That is, such formulation
must be fairly obvious.

It is Einstein causality. If two bounded domains ¢} and &, of the Minkowski space are space-
like separated, then the results of measurements in the domain &'} do not depend on any manipula-
tions in the 0.

Practically no one argues with the above formulation. However, the situation changes radically
when we try to supplement the above requirement with the following one. There exists a certain
physical reality, which determines the results of a local measurement.

Many people object to such an extension of the causality requirement. The arguments on this
matter began a long time ago. One can recall the famous debates between Einstein [3] and Bohr [4].
Einstein was in favor of the above extension, while Bohr was against it.

Later on, the majority’s opinion within the physics scientific community leaned towards the
Bohr side. The results of many modern experiments related to this problem are currently considered
as proof that the physical reality mentioned above does not exist.

However, if we abandon the extension formulated above, we almost completely lose the physi-
cal foundation behind the locality axiom accepted in the quantum field theory. This rejection would
force us to assume that neither local fields, nor their combinations describe a local reality (because
it does not exist). Then, it is not clear why these combinations must commute in space-like sepa-
rated domains.

Thus we have a deadlock situation. The assumption of the existence of a local physical reality
contradicts the mathematical formalism of the quantum theory. At the same time, the rejection
of this assumption denies the physical foundation one of the main axioms in the mathematical
formalism of the quantum field theory.

However, the mathematical formalism of the quantum theory can be compatible with the as-
sumption of the existence of physical reality determining the results of local measurements [5, 6].
The often-produced incompatibility proofs have the following two flaws. First, these proofs often
point out toward a contradiction between the experimental data and certain mathematical assump-
tions, which are used in the construction of mathematical formalism. The questions of physical
validity of these assumptions and their necessity are usually not discussed. Second, the interpreta-
tion given to the obtained experimental data is far from being always adequate.

The so-called de Broglie waves can be considered as one of the most striking examples of
inadequate interpretation. In the beginning of practically any textbook on quantum mechanics it is



The causality concept D.A. Slavnov

said that a de Broglie wave with the wavelength
27h
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is associated with any quantum particle having the momentum k. The results of electron interfer-
ence are mentioned as examples supporting the above statement. In agreement with (1) a clear
interference pattern was observed in the experiment.

Equation (1) became the basis of subsequent assertions, that the distinctive feature of quantum
particles is the presence of both corpuscular and wave properties.

These assertions seem to be quite well supported experimentally. Nevertheless, we would like
to examine if this is indeed the case.

Let us turn to the results of more recent experiments performed by Tonomura [7]. These
experiments investigated electron beam scattering by a biprism, which by its physical properties is
analogous to a double-slit screen. The beam intensity was so low, that on average there was less
than one electron in the experimental apparatus at any single moment. This allowed one to neglect
the influence of electron interaction on the results of the experiment. Moreover, it was possible to
register the results of passage of a small number of electrons in this experiment.

The experimental results are shown in Fig. 1. The individual photographs correspond to
different exposure times. The photograph (1) registered traces of 10 electrons, (2) — 200, (3) —
6000, (4) — 40000, (5) — 140000.

When only a small number of electrons are registered (the photographs (1) and (2)) the inter-
ference is not showing through. A pattern appears only after a very large number of electrons were
registered (the photographs (4) and (5)). If we try to determine the electron wavelength with a help
of the photographs (1) and (2), we do not obtain anything similar to de Broglie Eq. (1).

These results speak in favor of the fact that wave properties are not revealed by a single elec-
tron. They become apparent only in a specially prepared ensemble of electrons. In the considered
case, all electrons had approximately the same momentum.

Just as interference pattern, quantum state is not the characteristic of an individual physical
object. It describes ensemble of such objects. Therefore, the commonly used in textbooks formu-
lation of the mathematical formalism of the quantum theory, with wave functions or state vectors
as the basic elements, is not ideal for discussions of the locality problem, because these objects
themselves are obviously nonlocal.

The so-called algebraic approach [8, 9] is much better suited for these purposes. Unlike the
traditional approach, the Hilbert’s space of state vectors is no longer a primary object of the theory
within the algebraic approach, and observables are no longer defined as operators in the Hilbert
space.

Observables, more specifically, local observables are considered as the primary elements of
the theory. Heuristically, an observable is defined as such an attribute of the investigated physical
system for which one can obtain some numerical value with the help of a certain measuring pro-
cedure. Accordingly, for local observables one can obtain numerical values with the help of local
measurements.

Initially the observables are not related to operators in a Hilbert space at all. The Hilbert space
itself is constructed with the help of observables as some secondary object. After that a connection
between the observables and the operators in this space is established.
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Figure 1: Interference pattern in electron scattering: 10; 200; 6000; 40000; 140000 events

We will conduct the subsequent examination in the framework of a special version of the
algebraic approach.

We begin from stating the basic properties of observables. The main property is the following
one. The observables can be multiplied by real numbers, added to each other, and multiplied by
one another. This property is formulated as the following postulate.

POSTULATE 1. The observables A of a physical system are Hermitian elements of some C*-
algebra [10].

Postulate 1 (and all the subsequent ones) is valid for classical systems as well. The set of ob-
servables will be denoted 2l ([, < 2l). In classical systems all observables are compatible with
each other (can be measured simultaneously). In a quantum system they can be either compatible
or incompatible.

POSTULATE 2. The set of compatible with each other observables is a maximal real associative
commutative subalgebra ,Qg of the algebra 2l (Qg c A,
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The index &, which runs through the set Z, distinguishes one such subalgebra from another.
For a classical system the set E contains just a single element, for a quantum system E contains
infinitely many elements.

The set of observables 2L, can be considered as a mathematical model of a quantum system.
Accordingly, the subset Qg can be considered as observables of some classical subsystem. This
subsystem is open, because the quantum-system’s degrees of freedom corresponding to observables
from different subsets Q;; can interact with each other.

Moreover, these classical subsystems may not have their own dynamics, because the gen-
eralized coordinates and momenta corresponding to the same degree of freedom, may belong to
different subsets of Qé. Therefore, the traditional approach for defining the state as a point of
a phase space is not suitable for such subsystems. But, specifying a point in the phase space is
equivalent to setting initial conditions for the equations of motion. This allows one to fix the values
of all observables of the considered system.

However, one can avoid using equations of motion and the initial condition, and fix the values
of all observables directly. Such an approach is suitable for open systems as well.

Measuring the sum of observables in any concrete classical system yields the sum of the val-
ues of the individual observables, and measuring the product of observables yields the product
of their individual values. In other words, specifying the values of all observables is equivalent
to specifying some homomorphic map of the algebra of observables into the set of real numbers.
For commutative associative algebra, such a map is called a character. Therefore we accept the
following postulate.

POSTULATE 3. The state of a classical subsystem, whose observables are elements of a subal-
gebra 0 ¢ 18 described by a character of this subalgebra.

This definition of the state of a classical subsystem has an important advantage, that it can
be generalized to the quantum case. Each quantum observable belonging to 2., simultaneously
belongs to some subalgebra Qé. This allows one to consider a quantum system as a family of
classical subsystems. If we knew the states of all these subsystems, we could have predicted the
result of measuring any observable of the quantum system. This gives us grounds for accepting the
following postulate.

POSTULATE 4. The result of measuring any observable of a physical system is determined by
its elementary state @.

Here, @ is a family ¢ = [¢¢] of characters ¢ of all subalgebras Qé. Each subalgebra Qé in
the family is represented by a single character.

At first it may seem that the last postulate contradicts the fact that one cannot predict the
measurement results for all observables of a quantum system. However, there is no contradiction
here. The point is that we can measure simultaneously (that is in a compatible way) only compatible
observables. These observables belong to a certain subalgebra Qé. Lets say for instance they
belong to the subalgebra with the index £ = 7. Then, from the complete set [@g] we can specify
only one character @y,.



The causality concept D.A. Slavnov

Endowed with such information we can predict only the measurement results for observables
belonging to Qn- We will not be able to say anything certain about the values of other observables.
Additional measurements, if they are not compatible with the previous ones, will not improve the
situation. They will produce new information about the quantum system; however, simultaneously
the additional measurements will disturb the state of our system and will make the information
obtained earlier worthless.

Figuratively speaking, an elementary state is a holographic image of the system under investi-
gation. Using classical measuring devices we can look at it from one side only, and, hence, obtain
a two-dimensional image. Moreover, the measurement will disturb the system and will change its
original holographic image.

Therefore, if later we will look at the system from another side, we will see a two-dimensional
projection of the new holographic image. Thus, we will never be able to see the entire holographic
image.

In connection with the above it is useful to introduce the notion of @y-equivalence. Two ele-
mentary states ¢ = [@g] & @' = [(pé] will be called @p-equivalent, if ¢ = @;,. The relations between
the remaining characters @ and (pé can be arbitrary. The class of @p-equivalent elementary states
will be denoted {¢}, . The most that one can possibly learn about an elementary state ¢ is that it
belongs to some equivalence class @ € {@}, .

There is one more obstacle preventing unambiguous predictions of measurement results.

One and the same observable A may belong simultaneously to several subalgebras Qg: Ac
Qe (E£8).

Therefore, it is not clear which of the functionals (characters) @g or @g will describe the results
of a particular measurement.

At first it may seem that this additional ambiguity can be easily eliminated with the help of the
additional condition

0z (A) = g (A), dice A € Qe N Q. )

However, this condition leads to numerous contradictions. On the other hand, one can show that
the condition (2) is not a necessary one. Indeed, the measurement result may depend not only on
the system under investigation, but on the characteristics of the measuring device as well.

From the observer’s point of view such dependence is extremely objectionable, and experi-
mentalists try to minimize it as much as possible.

We have come to think that measurement results are virtually independent of the characteristics
of "good" measuring devices. However, for this to be true all the devices used for measuring
the observable of interest must at least be calibrated in a consistent way. One can show that the
existence of incompatible measurements in the quantum case makes such calibration far from being
always possible. In particular, if we assign a certain type of measuring devices (§-type) to every
subalgebra Q;;, then, as it turns out, the devices of different types cannot be calibrated consistently.
Therefore, one cannot get rid of a possible dependence of the measurement results on the device
type (or, on the index &).

Thus, value of an observable is not attribute of physical system. Such attribute ( local physical
reality) is the elementary state.
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The above assertion does not exclude that for some elementary states @ Eq. (2) will be valid
for all Qg, le, containing the observable A. In this case we shall say that the elementary state @
is stable with respect to the observable A.

Measurements allow one to establish that the elementary state ¢ of the system under inves-
tigation belongs to some equivalence class ¢ € {@}p, . Thereafter, we can make the following
predictions. Measuring devices of the n-type will yield the value A = @y (A) for the observable
Ac Dn- From now on the measurement result is denoted by the same symbol as the observable
itself, but without the "hat."

If the elementary state @ is stable with respect to the observables A € Qn, then the same result
will be obtained by using measuring devices of any type &. One cannot say anything definite about
measurement results for observables A ¢ Qn, because we will obtain different values for different
elementary states @ € {@}g, .

Within the standard mathematical formalism of quantum mechanics all the physical properties
mentioned above are exhibited by quantum states specified by particular values of a complete set of
commuting observables. This allows one to state the following definition of a quantum state within
the proposed approach.

DEFINITION. A quantum state Wy, is the class {@}, ~ @p- equivalent elementary states,
which are stable with respect to the observables A € Qn-

It is usually assumed that a quantum state W, appears as a result of measuring the observables
Ae Qn, where a specified value is registered for each of the observables A Of course, this is not
always true, at least, because some particles of the investigated system can be absorbed by the
device in the measuring process. In order for a measurement to be simultaneously a preparation of a
quantum state, it must be reproducible. If repeated measurements of an observable A give identical
results, we shall mean the measurements reproducible. Note that the repeated measurements are
not necessarily performed by measuring devices of the same type.

Within the standard mathematical formalism of quantum mechanics pure states are defined as
vectors |®) of some Hilbert state £).

These vectors are used for calculating the average values of observables in the corresponding
quantum states. This definition works very well for applied purposes; however, it does not have
an intuitively clear physical interpretation. Within the approach proposed in the present work the
average value of an observable is connected in a natural way with the probability distribution of the
elementary states ¢ within the equivalence class ¢ € {@}.

One has to bear in mind that the elementary states satisfy the standard properties of elementary
events from the classical Kolmogorov probability theory [11]. Namely, each random experiment
results in one and only one elementary event. Different elementary events are mutually exclusive.

Note that the standard approach to quantum mechanics does not have such an ingredient. This
became an insurmountable obstacle for application of the classical probability theory to quantum
mechanics. Such an obstacle is absent within the approach used here. Therefore, there is no need
for creating some artificial quantum probability theory. Instead one can use the well-developed
formalism of the classical probability theory. Therefore, the following postulate appears to be
fairly natural.
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POSTULATE 5. The equivalence class {(p}(pn corresponding to the quantum state ¥y, can be
equipped with the structure of a probability space.
Then, the mean value of the observable A in the quantum state W, is given by the formula
P, (4) = [ Pi(de) gz (), )
Joe¥y,
where
Pi(de) =P(¢: ¢:(A) SA+dA) —P(g: ¢z (A) < A),
and P(¢ : ¢¢ (A) < A) is probability measure corresponding to the event ¢ : [0 (A) < A.
In order for formula (3) to define the quantum average, the probabilistic measure must satisfy
the following postulates.

POSTULATE 6. The functional W, is linear over the algebra 2
and
POSTULATE 7. The functional does not depend on the particular choice of £.

One can show [5] that such distribution actually exists.

With the C*-algebra and a linear positive normalized functional ¥y, (-) defined over this al-
gebra, we can construct a representation of the algebra 2 by using the Gelfand-Naimark-Segal
canonical construction [12]. In other words, we can construct Hilbert space f], in which there is an
operator H(A) acting over a space §) that corresponds to each element A € 2, while the expectation
value (®|TI(A)|®), where |®) € §) is the corresponding vector in Hilbert space — to the quantum
average ‘I‘(pn(-). This is the way the standard mathematical apparatus of quantum mechanics is
reproduced.

Thus, there are two paths leading to the same result. One can fix the algebra of observables, and
build on it a set of elementary states corresponding to some quantum states. Then, one can endow
this set by the structure of a probability space and, finally, calculate the probabilistic averages.

The alternative path is the following one. Fix a Hilbert space, define observables as linear op-
erators in that space, while quantum states are either vectors of that space, or density matrices. The
average values of observables are defined as the mathematical expectations of the corresponding
operators with respect to either vectors of the Hilbert space, or density matrices.

Usually the second path turns out to be much more convenient from the pragmatic point of
view. However, the first path has a better physical foundation. This allows one to create a more or
less intuitively clear picture of the quantum world. In particular, our model allows one to present
an intuitively appealing interpretation of quantum phenomena [6], whose traditional interpretation
looks absolutely absurd from the classical physics point of view.

The list of such phenomena includes quantum particle scattering on a double-slit screen, the
Einstein-Podolsky-Rosen paradox [13], the delayed choice experiment [14], and quantum telepor-
tation [15].
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