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The 
ausality 
on
ept D.A. SlavnovThe 
ausality problem is one of the main problems in the quantum theory. It attra
ted espe
ial-ly 
lose attention during the 
onstru
tion of the quantum �eld theory, where the 
ausality (lo
ality)axiom plays a 
entral role [1, 2℄. This axiom has different formulations; however, without goinginto mathemati
al subtleties, it 
an be redu
ed to the following: boson �elds must 
ommute atspa
e-like separated points, while fermion �elds must anti-
ommute.The following argument is often used as a physi
al justi�
ation of this axiom. The results ofthe measurement in a bounded domain of a Minkowski spa
e (a lo
al measurement) are determinedby boson-�eld values and by bilinear 
ombinations of fermion �elds in this domain.Su
h lo
ality requirement is purely mathemati
al in its nature. It 
an be formulated only inthe framework of a parti
ular mathemati
al formalism, and it is a part of that formalism. In ageneral dis
ussion of 
ausality it is desirable to pro
eed from requirements that 
an be formulatedin physi
s terminology and that 
an be 
he
ked in the experiment dire
tly. That is, su
h formulationmust be fairly obvious.It is Einstein 
ausality. If two bounded domains O1 and O2 of the Minkowski spa
e are spa
e-like separated, then the results of measurements in the domain O1 do not depend on any manipula-tions in the O2.Pra
ti
ally no one argues with the above formulation. However, the situation 
hanges radi
allywhen we try to supplement the above requirement with the following one. There exists a 
ertainphysi
al reality, whi
h determines the results of a lo
al measurement.Many people obje
t to su
h an extension of the 
ausality requirement. The arguments on thismatter began a long time ago. One 
an re
all the famous debates between Einstein [3℄ and Bohr [4℄.Einstein was in favor of the above extension, while Bohr was against it.Later on, the majority's opinion within the physi
s s
ienti�
 
ommunity leaned towards theBohr side. The results of many modern experiments related to this problem are 
urrently 
onsideredas proof that the physi
al reality mentioned above does not exist.However, if we abandon the extension formulated above, we almost 
ompletely lose the physi-
al foundation behind the lo
ality axiom a

epted in the quantum �eld theory. This reje
tion wouldfor
e us to assume that neither lo
al �elds, nor their 
ombinations des
ribe a lo
al reality (be
auseit does not exist). Then, it is not 
lear why these 
ombinations must 
ommute in spa
e-like sepa-rated domains.Thus we have a deadlo
k situation. The assumption of the existen
e of a lo
al physi
al reality
ontradi
ts the mathemati
al formalism of the quantum theory. At the same time, the reje
tionof this assumption denies the physi
al foundation one of the main axioms in the mathemati
alformalism of the quantum �eld theory.However, the mathemati
al formalism of the quantum theory 
an be 
ompatible with the as-sumption of the existen
e of physi
al reality determining the results of lo
al measurements [5, 6℄.The often-produ
ed in
ompatibility proofs have the following two �aws. First, these proofs oftenpoint out toward a 
ontradi
tion between the experimental data and 
ertain mathemati
al assump-tions, whi
h are used in the 
onstru
tion of mathemati
al formalism. The questions of physi
alvalidity of these assumptions and their ne
essity are usually not dis
ussed. Se
ond, the interpreta-tion given to the obtained experimental data is far from being always adequate.The so-
alled de Broglie waves 
an be 
onsidered as one of the most striking examples ofinadequate interpretation. In the beginning of pra
ti
ally any textbook on quantum me
hani
s it is2
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ausality 
on
ept D.A. Slavnovsaid that a de Broglie wave with the wavelengthl = 2p h̄k : (1)is asso
iated with any quantum parti
le having the momentum k. The results of ele
tron interfer-en
e are mentioned as examples supporting the above statement. In agreement with (1) a 
learinterferen
e pattern was observed in the experiment.Equation (1) be
ame the basis of subsequent assertions, that the distin
tive feature of quantumparti
les is the presen
e of both 
orpus
ular and wave properties.These assertions seem to be quite well supported experimentally. Nevertheless, we would liketo examine if this is indeed the 
ase.Let us turn to the results of more re
ent experiments performed by Tonomura [7℄. Theseexperiments investigated ele
tron beam s
attering by a biprism, whi
h by its physi
al properties isanalogous to a double-slit s
reen. The beam intensity was so low, that on average there was lessthan one ele
tron in the experimental apparatus at any single moment. This allowed one to negle
tthe in�uen
e of ele
tron intera
tion on the results of the experiment. Moreover, it was possible toregister the results of passage of a small number of ele
trons in this experiment.The experimental results are shown in Fig. 1. The individual photographs 
orrespond todifferent exposure times. The photograph (1) registered tra
es of 10 ele
trons, (2) � 200, (3) �6000, (4) � 40000, (5) � 140000.When only a small number of ele
trons are registered (the photographs (1) and (2)) the inter-feren
e is not showing through. A pattern appears only after a very large number of ele
trons wereregistered (the photographs (4) and (5)). If we try to determine the ele
tron wavelength with a helpof the photographs (1) and (2), we do not obtain anything similar to de Broglie Eq. (1).These results speak in favor of the fa
t that wave properties are not revealed by a single ele
-tron. They be
ome apparent only in a spe
ially prepared ensemble of ele
trons. In the 
onsidered
ase, all ele
trons had approximately the same momentum.Just as interferen
e pattern, quantum state is not the 
hara
teristi
 of an individual physi
alobje
t. It des
ribes ensemble of su
h obje
ts. Therefore, the 
ommonly used in textbooks formu-lation of the mathemati
al formalism of the quantum theory, with wave fun
tions or state ve
torsas the basi
 elements, is not ideal for dis
ussions of the lo
ality problem, be
ause these obje
tsthemselves are obviously nonlo
al.The so-
alled algebrai
 approa
h [8, 9℄ is mu
h better suited for these purposes. Unlike thetraditional approa
h, the Hilbert's spa
e of state ve
tors is no longer a primary obje
t of the theorywithin the algebrai
 approa
h, and observables are no longer de�ned as operators in the Hilbertspa
e.Observables, more spe
i�
ally, lo
al observables are 
onsidered as the primary elements ofthe theory. Heuristi
ally, an observable is de�ned as su
h an attribute of the investigated physi
alsystem for whi
h one 
an obtain some numeri
al value with the help of a 
ertain measuring pro-
edure. A

ordingly, for lo
al observables one 
an obtain numeri
al values with the help of lo
almeasurements.Initially the observables are not related to operators in a Hilbert spa
e at all. The Hilbert spa
eitself is 
onstru
ted with the help of observables as some se
ondary obje
t. After that a 
onne
tionbetween the observables and the operators in this spa
e is established.3



P
o
S
(
Q
F
T
H
E
P
2
0
1
0
)
0
2
0

The 
ausality 
on
ept D.A. Slavnov

Figure 1: Interferen
e pattern in ele
tron s
attering: 10; 200; 6000; 40000; 140000 eventsWe will 
ondu
t the subsequent examination in the framework of a spe
ial version of thealgebrai
 approa
h.We begin from stating the basi
 properties of observables. The main property is the followingone. The observables 
an be multiplied by real numbers, added to ea
h other, and multiplied byone another. This property is formulated as the following postulate.POSTULATE 1. The observables �A of a physi
al system are Hermitian elements of some C�-algebra [10℄.Postulate 1 (and all the subsequent ones) is valid for 
lassi
al systems as well. The set of ob-servables will be denotedA+ (A+ �A). In 
lassi
al systems all observables are 
ompatible withea
h other (
an be measured simultaneously). In a quantum system they 
an be either 
ompatibleor in
ompatible.POSTULATE 2. The set of 
ompatible with ea
h other observables is a maximal real asso
iative
ommutative subalgebraQx of the algebraA (Qx �A+).4
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ausality 
on
ept D.A. SlavnovThe index x , whi
h runs through the set X, distinguishes one su
h subalgebra from another.For a 
lassi
al system the set X 
ontains just a single element, for a quantum system X 
ontainsin�nitely many elements.The set of observables A+ 
an be 
onsidered as a mathemati
al model of a quantum system.A

ordingly, the subsetQx 
an be 
onsidered as observables of some 
lassi
al subsystem. Thissubsystem is open, be
ause the quantum-system's degrees of freedom 
orresponding to observablesfrom different subsetsQx 
an intera
t with ea
h other.Moreover, these 
lassi
al subsystems may not have their own dynami
s, be
ause the gen-eralized 
oordinates and momenta 
orresponding to the same degree of freedom, may belong todifferent subsets of Qx . Therefore, the traditional approa
h for de�ning the state as a point ofa phase spa
e is not suitable for su
h subsystems. But, spe
ifying a point in the phase spa
e isequivalent to setting initial 
onditions for the equations of motion. This allows one to �x the valuesof all observables of the 
onsidered system.However, one 
an avoid using equations of motion and the initial 
ondition, and �x the valuesof all observables dire
tly. Su
h an approa
h is suitable for open systems as well.Measuring the sum of observables in any 
on
rete 
lassi
al system yields the sum of the val-ues of the individual observables, and measuring the produ
t of observables yields the produ
tof their individual values. In other words, spe
ifying the values of all observables is equivalentto spe
ifying some homomorphi
 map of the algebra of observables into the set of real numbers.For 
ommutative asso
iative algebra, su
h a map is 
alled a 
hara
ter. Therefore we a

ept thefollowing postulate.POSTULATE 3. The state of a 
lassi
al subsystem, whose observables are elements of a subal-gebraQx , is des
ribed by a 
hara
ter of this subalgebra.This de�nition of the state of a 
lassi
al subsystem has an important advantage, that it 
anbe generalized to the quantum 
ase. Ea
h quantum observable belonging to A+, simultaneouslybelongs to some subalgebra Qx . This allows one to 
onsider a quantum system as a family of
lassi
al subsystems. If we knew the states of all these subsystems, we 
ould have predi
ted theresult of measuring any observable of the quantum system. This gives us grounds for a

epting thefollowing postulate.POSTULATE 4. The result of measuring any observable of a physi
al system is determined byits elementary state j .Here, j is a family j = [jx ℄ of 
hara
ters jx of all subalgebrasQx . Ea
h subalgebraQx inthe family is represented by a single 
hara
ter.At �rst it may seem that the last postulate 
ontradi
ts the fa
t that one 
annot predi
t themeasurement results for all observables of a quantum system. However, there is no 
ontradi
tionhere. The point is that we 
an measure simultaneously (that is in a 
ompatible way) only 
ompatibleobservables. These observables belong to a 
ertain subalgebra Qx . Lets say for instan
e theybelong to the subalgebra with the index x = h . Then, from the 
omplete set [jx ℄ we 
an spe
ifyonly one 
hara
ter jh . 5
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The 
ausality 
on
ept D.A. SlavnovEndowed with su
h information we 
an predi
t only the measurement results for observablesbelonging toQh . We will not be able to say anything 
ertain about the values of other observables.Additional measurements, if they are not 
ompatible with the previous ones, will not improve thesituation. They will produ
e new information about the quantum system; however, simultaneouslythe additional measurements will disturb the state of our system and will make the informationobtained earlier worthless.Figuratively speaking, an elementary state is a holographi
 image of the system under investi-gation. Using 
lassi
al measuring devi
es we 
an look at it from one side only, and, hen
e, obtaina two-dimensional image. Moreover, the measurement will disturb the system and will 
hange itsoriginal holographi
 image.Therefore, if later we will look at the system from another side, we will see a two-dimensionalproje
tion of the new holographi
 image. Thus, we will never be able to see the entire holographi
image.In 
onne
tion with the above it is useful to introdu
e the notion of jh -equivalen
e. Two ele-mentary states j = [jx ℄ è j 0 = [j 0x ℄will be 
alled jh -equivalent, if jh =j 0h . The relations betweenthe remaining 
hara
ters jx and j 0x 
an be arbitrary. The 
lass of jh -equivalent elementary stateswill be denoted fjgjh . The most that one 
an possibly learn about an elementary state j is that itbelongs to some equivalen
e 
lass j 2 fjgjh .There is one more obsta
le preventing unambiguous predi
tions of measurement results.One and the same observable �A may belong simultaneously to several subalgebras Qx : �A 2Qx \Qx 0 (x 6= x 0).Therefore, it is not 
lear whi
h of the fun
tionals (
hara
ters) jx or jx 0 will des
ribe the resultsof a parti
ular measurement.At �rst it may seem that this additional ambiguity 
an be easily eliminated with the help of theadditional 
ondition jx ( �A) = jx 0( �A); åñëè �A 2Qx \Qx 0 : (2)However, this 
ondition leads to numerous 
ontradi
tions. On the other hand, one 
an show thatthe 
ondition (2) is not a ne
essary one. Indeed, the measurement result may depend not only onthe system under investigation, but on the 
hara
teristi
s of the measuring devi
e as well.From the observer's point of view su
h dependen
e is extremely obje
tionable, and experi-mentalists try to minimize it as mu
h as possible.We have 
ome to think that measurement results are virtually independent of the 
hara
teristi
sof "good" measuring devi
es. However, for this to be true all the devi
es used for measuringthe observable of interest must at least be 
alibrated in a 
onsistent way. One 
an show that theexisten
e of in
ompatible measurements in the quantum 
ase makes su
h 
alibration far from beingalways possible. In parti
ular, if we assign a 
ertain type of measuring devi
es (x -type) to everysubalgebraQx , then, as it turns out, the devi
es of different types 
annot be 
alibrated 
onsistently.Therefore, one 
annot get rid of a possible dependen
e of the measurement results on the devi
etype (or, on the index x ).Thus, value of an observable is not attribute of physi
al system. Su
h attribute ( lo
al physi
alreality) is the elementary state. 6
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The 
ausality 
on
ept D.A. SlavnovThe above assertion does not ex
lude that for some elementary states j Eq. (2) will be validfor allQx ,Qx 0 , 
ontaining the observable �A. In this 
ase we shall say that the elementary state jis stable with respe
t to the observable �A.Measurements allow one to establish that the elementary state j of the system under inves-tigation belongs to some equivalen
e 
lass j 2 fjgjh . Thereafter, we 
an make the followingpredi
tions. Measuring devi
es of the h-type will yield the value A = jh( �A) for the observable�A 2Qh . From now on the measurement result is denoted by the same symbol as the observableitself, but without the "hat."If the elementary state j is stable with respe
t to the observables �A2Qh , then the same resultwill be obtained by using measuring devi
es of any type x . One 
annot say anything de�nite aboutmeasurement results for observables �A =2Qh , be
ause we will obtain different values for differentelementary states j 2 fjgjh .Within the standard mathemati
al formalism of quantum me
hani
s all the physi
al propertiesmentioned above are exhibited by quantum states spe
i�ed by parti
ular values of a 
omplete set of
ommuting observables. This allows one to state the following de�nition of a quantum state withinthe proposed approa
h.DEFINITION. A quantum state Yjh is the 
lass fjgjh jh - equivalent elementary states,whi
h are stable with respe
t to the observables �A 2Qh .It is usually assumed that a quantum stateYjh appears as a result of measuring the observables�A 2Qh , where a spe
i�ed value is registered for ea
h of the observables �A Of 
ourse, this is notalways true, at least, be
ause some parti
les of the investigated system 
an be absorbed by thedevi
e in the measuring pro
ess. In order for a measurement to be simultaneously a preparation of aquantum state, it must be reprodu
ible. If repeated measurements of an observable �A give identi
alresults, we shall mean the measurements reprodu
ible. Note that the repeated measurements arenot ne
essarily performed by measuring devi
es of the same type.Within the standard mathemati
al formalism of quantum me
hani
s pure states are de�ned asve
tors jFi of some Hilbert stateH.These ve
tors are used for 
al
ulating the average values of observables in the 
orrespondingquantum states. This de�nition works very well for applied purposes; however, it does not havean intuitively 
lear physi
al interpretation. Within the approa
h proposed in the present work theaverage value of an observable is 
onne
ted in a natural way with the probability distribution of theelementary states j within the equivalen
e 
lass j 2 fjgh .One has to bear in mind that the elementary states satisfy the standard properties of elementaryevents from the 
lassi
al Kolmogorov probability theory [11℄. Namely, ea
h random experimentresults in one and only one elementary event. Different elementary events are mutually ex
lusive.Note that the standard approa
h to quantum me
hani
s does not have su
h an ingredient. Thisbe
ame an insurmountable obsta
le for appli
ation of the 
lassi
al probability theory to quantumme
hani
s. Su
h an obsta
le is absent within the approa
h used here. Therefore, there is no needfor 
reating some arti�
ial quantum probability theory. Instead one 
an use the well-developedformalism of the 
lassi
al probability theory. Therefore, the following postulate appears to befairly natural. 7
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The 
ausality 
on
ept D.A. SlavnovPOSTULATE 5. The equivalen
e 
lass fjgjh 
orresponding to the quantum state Yjh 
an beequipped with the stru
ture of a probability spa
e.Then, the mean value of the observable �A in the quantum state Yjh is given by the formulaYjh ( �A) = Zj2Yjh P�A(dj)jx ( �A); (3)where P�A(dj) = P(j : jx ( �A)� A+dA)�P(j : jx ( �A)� A);and P(j : jx ( �A)� A) is probability measure 
orresponding to the event j : jx ( �A)� A.In order for formula (3) to de�ne the quantum average, the probabilisti
 measure must satisfythe following postulates.POSTULATE 6. The fun
tional Yjh is linear over the algebraAandPOSTULATE 7. The fun
tional does not depend on the parti
ular 
hoi
e of x .One 
an show [5℄ that su
h distribution a
tually exists.With the C�-algebra and a linear positive normalized fun
tional Yjh (�) de�ned over this al-gebra, we 
an 
onstru
t a representation of the algebra A by using the Gelfand-Naimark-Segal
anoni
al 
onstru
tion [12℄. In other words, we 
an 
onstru
t Hilbert spa
eH, in whi
h there is anoperator P( �A) a
ting over a spa
eH that 
orresponds to ea
h element �A2A, while the expe
tationvalue hFjP( �A)jFi, where jFi 2H is the 
orresponding ve
tor in Hilbert spa
e � to the quantumaverage Yjh (�). This is the way the standard mathemati
al apparatus of quantum me
hani
s isreprodu
ed.Thus, there are two paths leading to the same result. One 
an �x the algebra of observables, andbuild on it a set of elementary states 
orresponding to some quantum states. Then, one 
an endowthis set by the stru
ture of a probability spa
e and, �nally, 
al
ulate the probabilisti
 averages.The alternative path is the following one. Fix a Hilbert spa
e, de�ne observables as linear op-erators in that spa
e, while quantum states are either ve
tors of that spa
e, or density matri
es. Theaverage values of observables are de�ned as the mathemati
al expe
tations of the 
orrespondingoperators with respe
t to either ve
tors of the Hilbert spa
e, or density matri
es.Usually the se
ond path turns out to be mu
h more 
onvenient from the pragmati
 point ofview. However, the �rst path has a better physi
al foundation. This allows one to 
reate a more orless intuitively 
lear pi
ture of the quantum world. In parti
ular, our model allows one to presentan intuitively appealing interpretation of quantum phenomena [6℄, whose traditional interpretationlooks absolutely absurd from the 
lassi
al physi
s point of view.The list of su
h phenomena in
ludes quantum parti
le s
attering on a double-slit s
reen, theEinstein-Podolsky-Rosen paradox [13℄, the delayed 
hoi
e experiment [14℄, and quantum telepor-tation [15℄.Referen
es[1℄ N.N. Bogolioubov and D.V. Shirkov, Introdu
tion to the Theory of Quantized Fields. World S
i.,Singapore, 1982. 8
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