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1 Data

1.1 Data curation and splitting
During our training and testing, we used two groups of data sets. The first group is for benchmarking affinity
prediction only. It includes three established benchmark datasets: Davis, KIBA and PDBbind. Then based
on PDBbind and BindingDB dataset, we curated the second group with intermolecular contacts data for
benchmarking both affinity and contact prediction (our current definition of accuracy and interpretability).
In general, our data is composed of four portions: protein sequence, compound SMILEs, affinity labels
and intermolecular interaction/contact data (only used for assessing interpretability). To embed protein
sequences, we used SPS formats in RNNs and FASTA sequences from UniProt in HRNNs or CNNs. To
embed compounds, we used the canonical SMILES from Pubchem in RNNs and RDKit-converted graphs
in GCNs or GINs. Cases are removed when multiple ligands simultaneously interact with one protein or
protein/compound identities are unclear.
All of our interaction data are curated from the LigPlot service of PDBsum(Laskowski et al., 2018). PDBsum
provides an overview of each 3D macromolecular structure deposited in the Protein Data Bank. Based on
the HET ID of the compound and the PDB ID of the protein (complex), we downloaded corresponding
interaction data from PDBsum for the compound-protein pair. PDBsum only provides the interaction list.
So we mapped each residue of the protein (each atom of the compound) between FASTA sequences (SMILES
and graphs) to that in the list file derived from PDB files. After this, we converted the list to a native contact
matrix with indexed protein residues and compound atoms. During this process, we removed cases which
can’t be mapped because of incomplete information in PDB files.
Davis: The Davis dataset (He et al., 2017) contains all 30,056 Kd-labeled pairs between 68 kinase inhibitors
(including FDA-approved drugs) and 442 kinases, randomly split into 25,046 for training and 5,010 for
testing.
KIBA:The Kinase Inhibitor BioActivity (KIBA) dataset (Tang et al., 2014) contains 118,254 pairs between
2,111 kinase inhibitors and 229 kinases,including 98,545 for training and 19,709 for testing.
PDBbind: We downloaded the v2019 of PDBBIND database (Liu et al., 2015). PDBbind database contains
17,679 protein-ligand complexes which are referred to as the “general set”. A “refined set” has been compiled
which includes better quality samples in comparison to the “general set”. The refined set consists of 4,852
protein-ligand complexes with Ki/Kd affinity labels. We utilized the UniProt (Consortium, 2015) Retrieving
API (https://www.uniprot.org/uploadlists/) to retrieve the UniProt FASTA sequences (canonical) and
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GO terms for proteins involved. Some cases are with the same pair of UniProt ID and compound but with
different labels, which could be due to protein mutations and removed here. In addition, we set 1,000 and
100 as the length-cutoffs for protein sequence and compound SMILES, respectively, to remove extremely
long sequences/strings.
After filtering, we have 3,505 pairs between 1149 proteins and 2870 compounds. The pairs include 62
cases involving nuclear receptors (6 of them are estrogen receptors [ER]), 33 involving G protein-coupled
receptor(GPCR), 106 involving ion channels and 2,157 involving enzymes (EC1: 77, EC2: 557, EC3: 1,014,
EC4: 400, EC5: 78, EC6: 49, EC7: 2 overlapping; 72 kinases). They are randomly split into 2,921 pairs for
training and 584 for testing affinity alone.
BindingDB: BindingDB(Liu et al., 2006) is a public, web-accessible database of measured binding affini-
ties. We used part of data whose Ki or Kd label is available from the previously-curated BindingDB
dataset(Karimi et al., 2019). In our previous Kd-labeled set, there were 8,778 pairs for the training set,
3,811 for testing, 4 for ER, 2554 for GPCR, 366 for ion channels and 2306 for kinases, only 721 among which
is found to have interaction data. In our previously curated Ki-labeled set, there were 101,135 pairs for the
training set, 43,392 for testing, 516 for ER, 77,994 for GPCR, 8,101 for ion channels and 3,354 for kinases,
only 1,627 of which is now found to have interaction data.
Curated dataset for affinity and contact prediction: Firstly, we merged PDBbind dataset and Bind-
ingDB dataset and applied 1,000 and 100 as the length-cutoffs for protein sequences and compound SMILES
again. After generating their interaction data from PDBsum, we filtered out cases which didn’t have cor-
responding contact information. In the end, we reached 4,446 pairs, with both affinity (Ki or Kd) and
contacts (as in crystal structures of protein-ligand complexes) available, between 1,287 proteins and 3,672
compounds. The pairs include 105 interactions with nuclear receptors (21 of which are with ER), 89 with
G protein-coupled receptor(GPCR), 111 with ion channels and 2,913 with enzymes (including 114 with ki-
nases). In particular, those pairs involving enzymes can be split (with overlaps) into EC classes: 222 (EC1),
865 (EC2), 1,218 (EC3), 500 (EC4), 92 (EC5), 52 (EC6) and 2 (EC7).
The set is randomly split into four folds where fold 1 do not overlap with fold 2 in compounds, do not do
so with fold 3 in proteins, and do not do so with fold 4 in either compounds or proteins. Folds 2, 3, and 4
are referred to as new-compound, new-protein, and both-new sets for generalizability tests; and they contain
521, 795 and 205 pairs, respectively. Then we randomly split fold 1 into training (2,334) and test (591) sets.
During this process, we followed the algorithm in 1. Ideally, we expect to split 70% cases into training +
test sets and at least 5% into both-new. In addition, we aim to balance the compound and protein unique
set. In this case, the ideal percentage of new-compound and new-protein sets would be 10% - 15%.

1.2 Compound preprocessing
At first we used open babel software (O’Boyle et al., 2011) for ionization of compounds. Then, We
used “chem.SanitizeMol()” from RDkit open source software (Landrum et al., 2006) for compound san-
itization, which includes converting certain neutral atoms to Zwitterionic forms or aromatic atoms to
Kekulized forms where applicable. Citing the RDKit book (https://www.rdkit.org/docs/RDKit_Book.
html#molecular-sanitization), the detailed steps are:

• “Standardizes a small number of non-standard valence states which include ionization.

• Calculates the explicit and implicit valences on all atoms.

• Symmetrized based on smallest set of smallest rings algorithm

• Converts aromatic rings to their Kekule form.

• Determines the number of radical electrons

• Identifies the aromatic rings and ring systems

• Identifies which bonds are conjugated

• Calculates the hybridization state of each atom

• Removes chiral tags from atoms that are not sp3 hybridized.
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Algorithm 1 Data Splitting
1: Input: Data from PDBbind and BindingDB with Ki+Kd labels
2: Output: Five folds data sets: training set, test set and three generalization sets
3: Initialize: ProteinPercentage and CompoundPercentage as 15%,
4: Initialize: Result as Empty
5: Initialize: Iter = 0
6: while Result is Empty do
7: while Iter < 5 do
8: Shuffle Data
9: Randomly Initialize ProteinPercentage protein from Protein List to UniqueProteinList

10: Randomly Initialize CompoundPercentage proteins from Compound List to UniqueCompoundList
11: for Each case in Data do
12: if Protein in UniqueProteinList and Compound in UniqueCompoundList then
13: Store case in DoubleUniqueSet
14: else if Protein in UniqueProteinList then
15: Store case in ProteinUniqueSet
16: else if Compound in UniqueCompoundList then
17: Store case in ComoundUniqueSet
18: else
19: Store case in Rest
20: end if
21: end for
22: Randomly split 20% of Rest to TestSet and 80% to TrainingSet
23: if Percentage of Rest ∈ [65%, 70%] and Percentage of DoubleUniqueSet ∈ [5%, 10%] then
24: Store splitting result to Result
25: end if
26: Iter = Iter + 1
27: end while
28: if Percentage of ProteinUnique > 15% then
29: ProteinPercentage = ProteinPercentage - 1%
30: else if Percentage of ProteinUnique < 10% then
31: ProteinPercentage = ProteinPercentage + 1%
32: end if
33: if Percentage of CompoundUnique > 15% then
34: CompoundPercentage = CompoundPercentage - 1%
35: else if Percentage of CompoundUnique < 10% then
36: CompoundPercentage = CompoundPercentage + 1%
37: end if
38: Iter = 0
39: end while
40: return Splitting result with most cases in DoubleUniqueSet among Result

• Adds explicit Hs where necessary to preserve the chemistry. This is typically needed for heteroatoms
in aromatic rings.”

1.3 Predicting protein residue-residue contact maps
We used the standalone software RaptorX-contact for contact map prediction that is eventually for distance-
based protein structure prediction (Xu, 2019). The software was provided at the following link: https://
github.com/j3xugit/RaptorX-Contact. RaptorX-contact utilized various 1D and 2D sequence information
as features for their deep learning model. In the following, the feature generation for RaptorX-contact is
explained in details:
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• Protein sequence: primary sequence represented as a string of letters (upper case).

• Multiple sequence alignment (MSA): For each protein, we generated four MSAs by running HHblits
(Remmert et al., 2012) with 3 iterations and E-value set to 0.001 and 1 for UniClust30 library (Mirdita
et al., 2017) created in October 2017 and the UniRef sequence database (Suzek et al., 2015) created in
early 2018. For each MSA, we calculate the position-specific frequency matrix (PSFM) and position-
specific scoring matrix (PSSM).

• Protein property prediction: For each of the protein sequences, we predict its disorder (Wang et al.,
2016a) its secondary structure (SS3 and SS8)through DeepCNF (Wang et al., 2016b), and its solvent
accessability through Acconpred (Ma and Wang, 2015).

• CCMpred: For each of the MSA, we predict its normalized contact map through CCMpred (Ekeberg
et al., 2013).

• MetaPSICOV: For each of the MSA, we calculate three matrices of pairwise relationship generated by
alnstats in MetaPSICOV (Jones et al., 2015).

In summary, 1 protein has 4 sets of input features and accordingly 4 predicted distance matrices, which are
then averaged to obtain the final prediction.

1.4 Compound similarity calculation
Molecular fingerprints provide a mathematical representation of compounds which is very useful for com-
pound similarity calculation (Cereto-Massagué et al., 2015). For virtual screening (and protein-ligand inter-
actions), circular (that is topological) fingerprints are better (Hert et al., 2004) such as Extended-connectivity
fingerprints (ECFPs) (Rogers and Hahn, 2010). We have used the open source software RDkit (Landrum
et al., 2006) for implementation of ECFP4 with 1024 bits. We used Morgan fingerprint with radius 2 which
is roughly equivalent to ECFP4 (Rogers and Hahn, 2010). To assess the similarity between molecular finger-
prints, we used the standard Tanimoto/Jaccard coefficient (Cereto-Massagué et al., 2015). Tanimoto score
considers the common number of 1 bits divided by the total number of 1 bits. Tanimoto scores range between
0 (no similarity) and 1 (highly similar). 0.85 has been chosen as the Tanimoto coefficient threshold above
which molecules will be considered similar enough (Martin et al., 2002; Patterson et al., 1996).

1.5 Compound’s property and label distribution

Training set compare to Test New Protein New Compound Both New
LogP 0.1707 0.1781 0.2350 0.3077

Exact_MW 0.1350 0.2304 0.2146 0.2906
Label (Affinity) 0.1721 0.2118 0.1581 0.3065

Table S1: Jensen-Shannon distances between the training and the other sets in various property distributions.

1.6 Features used for compounds in graph-based representation
The following table describes the features used for the vertex (atoms) in graph representation (GCN/GIN)
for DeepAffinity+ and DeepRelations:
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Feature name type length
Atom being inside aromatic ring binary 1

Polarity (based on Gasteiger partial Charges) continuous 1
Charge (based on formal Charges) integer 1

Type of atoms (C,N ,O ,S ,F ,Si ,Cl ,P ,Br ,I ,B or unknown) one hot encoding 12
Hydrogen bonding (F, N, O or not) binary 1
Halogen bonding (F, Cl, I, Br or not) binary 1

Degree of atom (adopted from (Tang et al., 2020)) one hot encoding 6
Number of hydrogen attached (adopted from (Tang et al., 2020)) one hot encoding 5

Implicit valence (adopted from (Tang et al., 2020)) one hot encoding 6
Radical electrons (adopted from (Tang et al., 2020)) integer 1
Hybridization (adopted from (Tang et al., 2020)) one hot encoding 6

Table S2: Features used for compounds in graph-based representation of DeepAffinity versions

2 Results

2.1 Attentions alone are inadequate for interpreting compound-protein affinity
prediction.

Model (Prot.-Comp.) Assessment Training Test New-Prot. New-Comp. Both-New

RNN-RNN
affinity RMSE 0.53 1.57 1.66 1.40 1.66

Pearson’s r 0.97 0.65 0.39 0.70 0.49

contact AUPRC 0.0065 0.0067 0.0060 0.0061 0.0057
AUROC 0.5108 0.5078 0.5182 0.5053 0.5122

RNN-GCN
affinity RMSE 0.49 1.40 1.68 1.28 1.82

Pearson’s r 0.98 0.72 0.35 0.74 0.36

contact AUPRC 0.0068 0.0069 0.0063 0.0063 0.0064
AUROC 0.5061 0.5031 0.5023 0.5021 0.5047

CNN-GCN
affinity RMSE 1.02 1.49 1.72 1.33 1.71

Pearson’s r 0.85 0.67 0.38 0.72 0.45

contact AUPRC 0.0060 0.0064 0.0038 0.0060 0.0045
AUROC 0.5059 0.5049 0.4862 0.5004 0.4848

HRNN-RNN
affinity RMSE 0.40 1.47 1.49 1.28 1.60

Pearson’s r 0.98 0.69 0.57 0.74 0.55

contact AUPRC 0.0067 0.0069 0.0049 0.0065 0.0052
AUROC 0.5025 0.5047 0.4946 0.5009 0.4934

HRNN-GCN
affinity RMSE 0.69 1.47 1.46 1.34 1.49

Pearson’s r 0.93 0.70 0.56 0.73 0.61

contact AUPRC 0.0071 0.0069 0.0061 0.0065 0.0067
AUROC 0.5174 0.5143 0.5269 0.5085 0.5272

HRNN-GIN
affinity RMSE 1.22 1.53 1.67 1.43 1.68

Pearson’s r 0.80 0.66 0.49 0.67 0.53

contact AUPRC 0.0067 0.0071 0.0048 0.0074 0.0051
AUROC 0.4936 0.4969 0.4693 0.4948 0.4688

Gao et al.
affinity RMSE 1.79 1.87 1.72 1.75 1.79

Pearson’s r 0.73 0.58 0.42 0.51 0.42

contact AUPRC 0.0062 0.0060 0.0048 0.0057 0.0048
AUROC 0.5150 0.5157 0.5165 0.5150 0.5155

Table S3: Comparing accuracy and interpretability among various versions of DeepAffinity with (unsuper-
vised) joint attention mechanisms as well as a state-of-the-art interpretable method (Gao et al., adapted from
binding classification to affinity regression). Best affinity predictions in each set are highlighted in boldface.
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2.2 Supervising attentions significantly improves interpretability

Model Assessment Training Test New-Prot. New-Comp. Both-New

HRNN-GCN
_cstr

affinity RMSE 0.44 1.42 1.61 1.34 1.72
Pearson’s r 0.95 0.71 0.40 0.73 0.32

contact AUPRC 0.0067 0.0065 0.0052 0.0064 0.0065
AUROC 0.5041 0.5036 0.5087 0.4996 0.5060

HRNN-GCN
_cstr_sup

(Best DeepAffinity+)

affinity RMSE 0.64 1.49 1.57 1.34 1.61
Pearson’s r 0.95 0.68 0.45 0.73 0.51

contact AUPRC 0.3614 0.1974 0.0477 0.1998 0.0411
AUROC 0.8184 0.7378 0.6001 0.7380 0.5909

HRNN-GIN
_cstr

affinity RMSE 0.73 1.46 1.69 1.31 1.80
Pearson’s r 0.93 0.69 0.47 0.74 0.43

contact AUPRC 0.0084 0.0083 0.0064 0.0087 0.0066
AUROC 0.5187 0.5214 0.5109 0.5297 0.5186

HRNN-GIN
_cstr_sup

affinity RMSE 1.13 1.53 1.54 1.37 1.59
Pearson’s r 0.81 0.65 0.55 0.70 0.57

contact AUPRC 0.0698 0.0457 0.0113 0.0482 0.0135
AUROC 0.5999 0.5847 0.5066 0.5803 0.5157

DeepRelations
_cstr

affinity RMSE 0.43 1.51 1.52 1.41 1.67
Pearson’s r 0.97 0.67 0.52 0.69 0.47

contact AUPRC 0.0083 0.0091 0.0100 0.0086 0.0089
AUROC 0.528 0.533 0.558 0.533 0.552

DeepRelations
_cstr_sup

(Best DeepRelations)

affinity RMSE 0.47 1.45 1.57 1.35 1.63
Pearson’s r 0.96 0.69 0.47 0.71 0.52

contact AUPRC 0.367 0.187 0.052 0.191 0.047
AUROC 0.845 0.760 0.669 0.764 0.659

Gao et al.
affinity RMSE 1.79 1.87 1.72 1.75 1.79

Pearson’s r 0.73 0.58 0.42 0.51 0.42

contact AUPRC 0.0062 0.0060 0.0048 0.0057 0.0048
AUROC 0.5150 0.5157 0.5165 0.5150 0.5155

Table S4: Comparing accuracy and interpretability among various versions of DeepAffinity+ (DeepAffinity
with regularized and supervised attentions) and DeepRelations. “cstr” indicates physical constraints imposed
on attentions through regularization term R2(·), whereas “sup” indicates supervised attentions through reg-
ularization term R3(·). Best performances in each set are highlighted in boldface.
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2.3 Ablation study for DeepRelations
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Figure S1: Comparing interpretability between DeepRelations and DeepRelations- (DeepRelations without
multi-stage focusing, explicitly-modeled relations, or both).

2.4 Randomization tests for affinity prediction

Training Test New-Comp. New-Prot. Both-New
Random sampling

training set
RMSE 2.77 ± 0.03 2.82 ± 0.06 2.74 ± 0.07 2.72 ± 0.06 2.79 ± 0.11

Pearson’s r 0.004 ± 0.019 -0.002 ± 0.037 -0.001 ± 0.041 0.006 ± 0.036 0.006 ± 0.068
Random sampling

each set
RMSE 2.78 ± 0.03 2.85 ± 0.06 2.71 ± 0.07 2.51 ± 0.06 2.67 ± 0.13

Pearson’s r -0.004 ± 0.021 0.003 ± 0.037 -0.005 ± 0.043 0.004 ± 0.033 0.003 ± 0.081
Mean of training RMSE 1.95 2.02 1.91 1.85 1.95
Mean of each set RMSE 1.95 2.02 1.91 1.77 1.90
Mean of all data RMSE 1.96 2.02 1.91 1.82 1.93

Table S5: Affinity prediction based on several random schemes.

Permuted Training Test New-Comp. New-Prot. Both-New
HRNN

Y randomization
RMSE 0.56 ± 0.02 2.45 ± 0.06 2.39 ± 0.07 2.20 ± 0.15 2.25 ± 0.16

Pearson’s r 0.960 ± 0.003 0.001 ± 0.054 0.001 ± 0.043 -0.028 ± 0.084 -0.10 ± 0.112
DeepRelations

Y randomization
RMSE 1.03 ± 0.15 2.38 ± 0.16 2.29 ± 0.17 2.16 ± 0.13 2.24 ± 0.14

Pearson’s r 0.817 ± 0.169 -0.007 ± 0.063 -0.006 ± 0.069 -0.16 ± 0.078 -0.031 ± 0.095

Table S6: Y randomization test for DeepAffinity+ and DeepRelations to validate their affinity prediction.

Permuted Training Test New-Comp. New-Prot. Both-New
HRNN

comp. randomization
RMSE 0.55 ± 0.04 2.03 ± 0.04 1.95 ± 0.06 2.15 ± 0.15 2.22 ± 0.13

Pearson’s r 0.962 ± 0.007 0.154 ± 0.032 0.243 ± 0.027 0.028 ± 0.097 0.017 ± 0.105
DeepRelations

comp. randomization
RMSE 0.86 ± 0.17 2.06 ± 0.03 1.94 ± 0.12 2.20 ± 0.17 2.23 ± 0.16

Pearson’s r 0.877 ± 0.128 0.135 ± 0.041 0.219 ± 0.039 0.012 ± 0.095 0.012 ± 0.113

Table S7: Compound randomization test for DeepAffinity+ and DeepRelations to validate their affinity
prediction.
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2.5 Ensemble approach further improves affinity prediction
To further improve the accuracy of affinity prediction for DeepAffinity+ and DeepRelations, we have pursued
an ensemble-learning approach and trained 50 models with different hyper-parameters for either DeepAffin-
ity+ and DeepRelations (100 in total). Specifically, for either model, we used 5 different dropout ratios
({0.5, 0.6, 0.7, 0.8, 0.9}), 2 different λbind ({100, 1000}) and 5 different amount of neurons for the 2 last fully
connected layers ({(300, 300), (600, 300), (600, 600), (800, 800), (1000, 1000)}). In the end, we consider the
ensemble of 5× 2× 5 = 50 combinations for either DeepAffinity+ or DeepRelations as well as the ensemble
of 50 + 50 = 100 combinations. We report the results in Table S8 based on three metrics: RMSE, Pearson’s
r and R2

pred.

Training Test New-Comp. New-Prot. Both-New

HRNN-GCN single
RMSE 0.64 1.49 1.34 1.57 1.61

Pearson’s r 0.95 0.68 0.73 0.45 0.51
R2

pred 0.89 0.45 0.51 0.27 0.32

DeepRelations single

RMSE 0.47 1.45 1.35 1.57 1.63
Pearson’s r 0.96 0.69 0.71 0.47 0.52
R2

pred 0.92 0.48 0.50 0.27 0.30

HRNN-GCN ensemble
RMSE 0.19 1.29 1.20 1.50 1.60

Pearson’s r 0.99 0.77 0.78 0.57 0.58
R2

pred 0.99 0.59 0.60 0.34 0.34

DeepRelations ensemble

RMSE 0.29 1.35 1.27 1.59 1.65
Pearson’s r 0.99 0.75 0.75 0.53 0.54
R2

pred 0.98 0.55 0.56 0.26 0.28

HRNN-GCN +
DeepRelations ensemble

RMSE 0.23 1.30 1.21 1.53 1.60
Pearson’s r 0.99 0.76 0.77 0.56 0.57
R2

pred 0.99 0.58 0.60 0.31 0.32

Table S8: Affinity prediction through ensembles of DeepAffinity+ or/and DeepRelations.
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2.6 Model Generalizability
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Figure S2: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the global protein generalizability
of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) in global
sequence identity perspective for the both-new set. Cyan dashed lines indicate the performances of random
predictors.
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Figure S3: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the local protein (binding k-mer)
generalizability of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC)
in local sequence identity perspective for the both-new set.
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Figure S4: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the compound generalizability
of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) in tanimoto
score perspective for the both-new set.
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Figure S5: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the compound generalizability
of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) in Tanimoto
score perspective for the new compound set.
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Figure S6: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the global protein generalizability
of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) in global
sequence identity perspective for the new protein set.
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Figure S7: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the local protein (binding k-mer)
generalizability of affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC)
for the new protein set.
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Both New
(seq identity)

Both New
(k-mer identity)

Both New
(Tanimoto)

HRNN-GCN
_cstr_sup

affinity RMSE 1.66, 1.64, 1.28 1.76, 1.28, 1.53 1.69, 1.37, 1.26
Pearson’s r 0.57, 0.39, 0.60 0.54, 0.52, 0.50 0.48, 0.58, 0.75

contact AUPRC 0.0278, 0.0631, 0.0630 0.0306, 0.0571, 0.0545 0.0434, 0.0359, 0.0269
AUROC 0.5576, 0.6326, 0.6707 0.5520, 0.6269, 0.6814 0.6024, 0.5597, 0.5526

DeepRelations
_cstr_sup

affinity RMSE 1.69, 1.54, 1.53 1.73, 1.37, 1.68 1.71, 1.44, 1.23
Pearson’s r 0.53, 0.42, 0.61 0.56, 0.47, 0.50 0.47, 0.56, 0.84

contact AUPRC 0.045, 0.035, 0.075 0.043, 0.046, 0.065 0.050, 0.037, 0.041
AUROC 0.669, 0.603, 0.714 0.654, 0.672, 0.660 0.658, 0.668, 0.630

Gao et al.
affinity RMSE 1.87, 1.65, 1.68 1.95, 1.49, 1.64 1.83, 1.62, 1.91

Pearson’s r 0.39, 0.42, 0.36 0.38, 0.44, 0.46 0.38, 0.48, 0.63

contact AUPRC 0.0060, 0.0045, 0.0037 0.0061, 0.0046, 0.0037 0.0050, 0.0066, 0.0050
AUROC 0.5016, 0.5224, 0.5568 0.4998, 0.5242, 0.5525 0.5137, 0.5168, 0.5041

New Prot.
(seq identity)

New Prot.
(k-mer identity)

New Compound
(Tanimoto)

HRNN-GCN
_cstr_sup

affinity RMSE 1.53, 1.75, 1.40 1.59,1.56,1.53 1.32, 1.44, 1.18
Pearson’s r 0.53, 0.41, 0.56 0.46,0.50,0.43 0.74, 0.69, 0.75

contact AUPRC 0.0340, 0.0662, 0.0654 0.0355, 0.0671, 0.0588 0.2001, 0.1972, 0.2101
AUROC 0.5627, 0.6388, 0.6695 0.5642, 0.6290, 0.6764 0.7361, 0.7435, 0.7539

DeepRelations
_cstr_sup

affinity RMSE 1.52, 1.71, 1.52 1.54, 1.65, 1.57 1.34, 1.39, 1.26
Pearson’s r 0.51, 0.39, 0.55 0.51, 0.42, 0.52 0.71, 0.70, 0.65

contact AUPRC 0.060, 0.030, 0.064 0.054, 0.046, 0.055 0.189, 0.196, 0.202
AUROC 0.688, 0.619, 0.69 0.675, 0.656, 0.673 0.763, 0.769, 0.757

Gao et al.
affinity RMSE 1.67, 1.77, 1.62 1.73, 1.66, 1.59 1.72, 1.76, 1.44

Pearson’s r 0.40, 0.37, 0.33 0.39, 0.36, 0.37 0.60, 0.46, 0.58

contact AUPRC 0.0058, 0.0050, 0.0038 0.0059, 0.0048, 0.0038 0.0060, 0.0061, 0.0052
AUROC 0.5002, 0.5309, 0.5469 0.4987, 0.5356, 0.5431 0.5097, 0.5145, 0.5192

Table S9: Comparing DeepAffinity+, DeepRelations, and Gao’s method in the generalizability of affinity
prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) to molecules unlike
training data. Each cell includes three numbers for increasingly similar proteins or compounds to training
data (global sequence or binding k-mer identity below 30%, between 30% and 60%, and above 60%; Tanimoto
score below 0.5, between 0.5 and 0.8, and above 0.8).

The global and local sequence identities are defined as follows. We denote the i-th reference sequence in the
training set as Sr

i and the test sequence in the new-protein or both-new set as St. Then the global sequence
identity for a test sequence St is defined as

IDglobal(S
t) = max

i∈trainingSet
SeqID(St, Sr

i ),

in which SeqID(St, Sr
i ) denotes the sequence identity.

Similarly, the local identity means the sequence identity at the binding k-mer level. Here we only consider
binding k-mers with at least two binding residues. Only around 4 binding-site residues (less than 10%) are
present in an average k-mer (k=40) and around 3 binding k-mers are found in an average protein. The
local, binding k-mer sequence identity for a given test sequence is simply the maximum binding k-mer level
sequence identity averaged over all binding k-mers of the sequence.
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2.7 Distance patterns of top-10 predicted residue-atom contacts

Test New Protein
HRNN-GCN_cstr_sup 0.3986, 0.1862, 0.0729, 0.0556 0.1768, 0.2245, 0.0608, 0.0416
HRNN-GIN_cstr_sup 0.1170, 0.1049, 0.0776, 0.0783 0.0476, 0.0793 ,0.0420, 0.0534

DeepRelations_cstr_sup 0.3734, 0.1935, 0.0840, 0.0637 0.1746, 0.2367, 0.0958, 0.0794
Gao et al. 0.0055, 0.0179 , 0.0269, 0.0446 0.0050, 0.0134 ,0.0275 ,0.0671

New Compound Both New
HRNN-GCN_cstr_sup 0.4030 ,0.2099, 0.0823, 0.0612 0.1559, 0.1920 ,0.0539, 0.0539
HRNN-GIN_cstr_sup 0.1201, 0.1186, 0.0852, 0.0654 0.0534, 0.0782 ,0.0475 ,0.0594

DeepRelations_cstr_sup 0.3738, 0.2115, 0.0902, 0.0545 0.1551, 0.2131, 0.0770 ,0.0853
Gao et al. 0.0051 ,0.0149, 0.0239, 0.0395 0.0039, 0.0193 ,0.0282, 0.0504

Table S10: Distributions of top-10 binding sites predicted by DeepAffinity+, DeepRelations, and Gao et al..
Four fractions in each cell correspond to various distance ranges in the order of (0, 4), [4, 6), [6, 8), and [8, 10)
(unit: Å).

2.8 Binding site prediction

Training Test New Protein New Compound Both New
HRNN-GCN
_cstr_sup

AUPRC 0.5830 0.4216 0.1698 0.4314 0.1565
AUROC 0.8576 0.7633 0.6493 0.7822 0.6518

HRNN-GIN
_cstr_sup

AUPRC 0.1536 0.1252 0.0611 0.1296 0.0676
AUROC 0.5728 0.5648 0.4865 0.5615 0.4930

DeepRelations
_cstr_sup

AUPRC 0.594 0.431 0.208 0.440 0.195
AUROC 0.865 0.769 0.726 0.789 0.720

Gao et al. AUPRC 0.0545 0.0543 0.0495 0.0538 0.0496
AUROC 0.5012 0.4979 0.4821 0.5051 0.4874

Table S11: Binding site prediction results for DeepAffinity+, DeepRelations, and Gao et al.’s method
(adapted to affinity prediction).
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2.9 Case study: Affinity prediction for CA2 compounds against non-CA2 pro-
teins
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Figure S8: Probability distributions of DeepAffinity+ affinity predictions for AL1 and IT2 compounds against
non-CA2 proteins. Red and blue dashed lines indicate actual and predicted affinity to the known target CA2.

2.10 Affinity and contact prediction of DeepRelations with actual protein residue-
residue contact maps

For the true residue-contact maps, we used 8Å-cutoff for Cβ–Cβ distances in known structures (bound for
now). The maps can be incomplete due to missing residues in PDB.

Training Test New Comp New Prot Both New

DeepRelations
with predicted

residue-contact maps

affinity RMSE 0.47 1.45 1.35 1.57 1.63
Pearson’s r 0.96 0.69 0.71 0.47 0.52

contact AUPRC 0.367 0.187 0.191 0.052 0.047
AUROC 0.845 0.760 0.764 0.669 0.659

DeepRelations
with true

residue-contact maps

affinity RMSE 0.46 1.49 1.45 1.64 1.72
Pearson’s r 0.97 0.70 0.69 0.44 0.47

contact AUPRC 0.432 0.204 0.206 0.026 0.028
AUROC 0.858 0.754 0.766 0.652 0.63

Table S12: Comparing DeepRelations performances with predicted or actual protein residue-contact maps.

The performances with predicted and actual residue-contact maps are somewhat close. We conjecture that
contact map prediction might be quite accurate for our dataset that contains proteins of known structures.
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2.11 SAR

Method Kendall’s τ Spearman’s ρ

87mci 0.71 0.86
7bi2k 0.6 0.75
yghq5 0.56 0.74
5rtw4 0.31 0.42
a6kw3 0.16 0.25
vshma 0.13 0.32
5jfzy 0.05 0.05
5ywmk 0.02 0.00
ngsyu 0.02 0.07
kqhj5 0.02 0.04
tdvzq -0.02 0.02
ispmq -0.09 -0.08
8xf7u -0.16 -0.30
ukjcf -0.20 -0.27
a8eqr -0.20 -0.26
yqoad -0.31 -0.50
ha84u -0.31 -0.40
gvzji -0.56 -0.7
Gao et al. -0.42 -0.54
HRNN-GCN (ours) -0.36 -0.47
DeepRelations (ours) 0.15 0.21

Table S13: Comparison of our structure-free methods
and Gao et al. with structure-based models (marked in
receipt IDs) that participated in D3R grand challenge
3 for JAK2.

Method Kendall’s τ Spearman’s ρ

uuihe 0.57 0.76
y7qxv 0.57 0.74
xpmn7 0.50 0.67
h6qgu 0.36 0.55
7d5vc 0.29 0.38
mey8v 0.21 0.33
hjy28 0.21 0.19
jkqbh 0.07 0.14
0dnju 0.07 0.17
bu5xc 0 0.05
pox3b 0.00 -0.05
fn2qt -0.07 -0.05
km744 -0.07 -0.17
th0hn -0.07 0.00
0fdt7 -0.29 -0.33
6685v -0.43 -0.60
yfg86 -0.5 -0.67
wg3ed -0.57 -0.69
Gao et al. 0.60 0.74
HRNN-GCN (ours) 0.65 0.79
DeepRelations (ours) 0.61 0.72

Table S14: Comparison of our structure-free methods
and Gao et al. with structure-based models (marked in
receipt IDs) that participated in D3R grand challenge
3 for TIE2.
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Receipt ID Kendall’s τ Spearman’s ρ Pearson’s r R2

7bi2k 0.41 0.59 0.57 0.32
87mci 0.36 0.52 0.49 0.24
yghq5 0.28 0.41 0.36 0.13
5rtw4 0.21 0.32 0.27 0.07
vshma 0.1 0.18 0.16 0.03
5ywmk 0.07 0.1 0.08 0.01
kqhj5 0.07 0.09 0.09 0.01
5jfzy 0.06 0.1 0.11 0.01
a6kw3 0.02 0.04 0.04 0.0
ngsyu -0.02 -0.03 -0.1 0.01
ukjcf -0.04 -0.06 -0.03 0.0
tdvzq -0.05 -0.05 -0.09 0.01
ispmq -0.06 -0.08 -0.07 0.0
a8eqr -0.09 -0.13 -0.14 0.02
ha84u -0.13 -0.19 -0.18 0.03
yqoad -0.2 -0.33 -0.23 0.05
8xf7u -0.21 -0.32 -0.31 0.09
gvzji -0.25 -0.36 -0.39 0.15
Gao et al. 0.05 0.08 0.1 0.01
HRNN-GCN (ours) -0.24 -0.3 -0.29 0.08
DeepRelations (ours) ∆ ˆpKd 0.16 0.26 0.22 0.05

DeepRelations (ours) ∆ ˆpKd
R

0.26 0.41 0.36 0.13

Table S15: Comparison of our models with structure-based models participated in D3R grand challenge 3
for JAK2 for ∆pKd prediction

JAK2 (Subchallenge 3): ∆pKd prediction
Rankinga Method(s) τ ρ r R2

1–3 3 structure-based methods in D3R 0.28 ∼ 0.41 0.41 ∼ 0.59 0.36 ∼ 0.57 0.13 ∼ 0.32

4 Structure-free DeepRelations (ours) ∆ ˆpKd
R

0.26 0.41 0.36 0.13
5 1 structure-based method in D3R 0.21 0.32 0.27 0.07
6 Structure-free DeepRelations (ours) ∆ ˆpKd 0.16 0.26 0.22 0.05

7–10 4 structure-based methods in D3R 0.06 ∼ 0.1 0.1 ∼ 0.18 0.11 ∼ 0.16 0.01 ∼ 0.03
11 Structure-free Gao et al. 0.05 0.08 0.1 0.01

12–20 9 structure-based methods in D3R −0.21 ∼ 0.02 −0.33 ∼ 0.04 −0.31 ∼ 0.04 0.00 ∼ 0.09
21 Structure-free DeepAffinity+ -0.24 -0.3 -0.29 0.08
22 1 structure-based method in D3R -0.25 -0.36 -0.39 0.13

a The 18 structure-based methods participated in the D3R subchallenges and were assessed officially. The 4 structure-
free methods were assessed post hoc.

Table S16: Summary of ∆pKd scoring performances among three structure-free methods (including our
DeepAffinity+ and two versions of DeepRelations and eighteen structure-based methods.
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Figure S9: Compounds in JAK2’s SAR with actual and DeepRelations-predicted affinities.
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Figure S10: Compounds in TIE2’s SAR with actual and DeepRelations-predicted affinities.
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Figure S11: Comparison of predicted affinity versus true affinity for different methods for SAR cases.

2.12 Combinatorial lead optimization
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Figure S12: Diagram for the scaffold and two functional groups of the JAK2 compounds.
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Figure S13: Comparison of true affinity changes versus various DeepRelations-based predictions, when JAK2
compounds are changed by substituting functional groups. The first row is for R1 substitution only, second
for R2 substitution only and third for both substitutions. The first column is for prediction based on predicted
affinity only, the second is based on decomposition (substituent group for the compound and all residues
for the protein), and the third column is based on decomposition (substituent group for the compound and
binding-site residues for the protein).
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Figure S14: For both R1+R2 substitutions, we compare the contribution of R1 (left), R2 (middle) and
R1+R2 (right).
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