nature genetics

Supplementary information

Article <https://doi.org/10.1038/s41588-024-01930-4>

Yield of genetic association signals from genomes, exomes and imputation in the UK Biobank

In the format provided by the authors and unedited

Table of Contents

Supplementary Note

Survey of coding variation

Before proceeding to genetic association analyses, we compared the number of coding variants detected by the WGS and WES+IMP approaches. We annotated variants by functional consequence with the ENSEMBL Variant Effect Predictor (McLaren et al., 2016) using the ENSEMBL 100 canonical transcript definitions (Cunningham et al., 2022). As expected, both approaches resulted in very similar numbers of coding variants per individual (WGS median: 19,905, IQR: 239; WES+IMP median: 19,948, IQR: 245). For both datasets, 48% of observed variants were singletons. For WGS, 75.3% variants are present in less than 5 individuals and similarly 74.7% of WES+IMP variants are present in less than 5 individuals. Overall, coding variants were distributed across 19,377 genes in the WGS data, and across 18,446 genes in the WES+IMP data set (among the genes in WES+IMP dataset, variants in 347 genes were outside the exome target regions and detected only through arrays and imputation).

The total number of coding variants captured by each approach was very similar (WGS 6,732,108 variants; WES+IMP 6,761,880 variants) with 6,544,263 observed in both WGS and WES+IMP. Among variants that were present in only the WES+IMP dataset, there were 126,319 missense variants – compared to 88,448 missense variants specific to the WGS data – the largest increase for a coding variant consequence. In contrast, the largest proportional gain was for variants that were present only in the WGS data for in-frame indels or predicted-loss-of-function (pLOF) variants – there were 9.3% more pLOFs and 23.5% more in-frame indels specific to the WGS data, but only 7.2% more pLOFs and 5.6% more in-frame indels specific to the WES+IMP data. Overall, 2.7% of coding variants were observed only in WGS and 3.1% of variants were observed only in WES+IMP. The coding variation was even more similar when limiting comparison to the target capture regions (Supplementary Table 4).

Supplementary Figure 1.

Flowchart of analytical UKB sample. The analysis includes individuals from the UK Biobank with WES, imputed array, and WGS data with all analytical datasets in the dotted box. The primary analytical dataset includes 149,195 individuals who have all data sources available (bold); secondary datasets include (a) 468,169 individuals with WES and imputed array data and (b) a subset of 47,545 individuals with WGS.

Supplementary Figure 2.

Flowchart of primary analyses. Analyses of the primary datasets (n=149,195) included performing single variant and gene-based association testing for WES, imputed array, and WGS data. The same tests were performed on the secondary datasets (n=468,169 and n=47,545).

Supplementary Figure 3.
Survey of coding variation for WGS and WES+IMP. A comparison of the coding variation observed by the WES+IMP and WGS datasets stratified by functional consequence. In Panel A, the count of variants observed in each approach, in both approaches, and in only one approach is given; the percentage gains in approachspecific variants is also given. In Panel B, the variant count per individual (n=149,195) is given; the point provides the average and the error bars representing the corresponding standard errors.

Supplementary Figure 4.

Flowchart of unified GENE_P test. Gene-based association analyses primarily focused on a single, unified pvalue per gene. This gene-p p-value aggregates across multiple variant frequencies, masks (Supplementary Table 6), and set-based testing methods. The flowchart visualized how the single variants from a given gene are combined and tested to yield a single gene-level p-value, where gray arrows indicate aggregation by ACAT (Liu et al., 2019).

Supplementary Figure 5.
Summary of allele frequency, effect size, and p-value of all single variant association signals. Single variant a ssociations are grouped by the platform in which they were observed. Key features of the signals, AAF, effect siz e, and -log10(p-value), are plotted for each signal in all groups. The median value is plotted with box bounded b y 25th and 75th percentiles, with whiskers extending from the box to values within 1.5*Interquartile Range, and outlying values (minima/maxima) as points.

Supplementary Figure 6.
LocusZoom plot of lead single variant signals detected by all platforms. A 1Mb region centered around most significant single variant association that was supported across all platforms (WGS, WES, IMP, WGS – SV). This w as defined as observing an association with a p-value within an order of magnitude of the threshold of significan ce within a 1Mb region of the index association. The association is shown for 12:21178615:T:C (rs4149056), ass ociated with Total bilirubin and identified first from the WGS sequencing data with p-value 2.23e-307. This miss ense variant lies in an exon of gene *SLCO1B1*, and is commonly observed with AAF=0.15.

Supplementary Figure 7.
LocusZoom plots of single variant signals detected only by WGS. A 1Mb region centered on a peak single vari ant association signal observed only in WGS. This intronic variant, 4:23156769:C:T, is associated with forced vita l capacity with p-value 3.06e-12 and AAF=1.9e-5. It is supported by additional associated variants in WGS. **WGS**

Chromosome 4 (Mb)

Supplementary Figure 8.
LocusZoom plots of single variant signals detected only by WES. A 1Mb region centered on a peak single varia nt association signal observed only in WES. Variant 14:33367284:AAAG:A is an intronic variant in gene *NPAS3*. It is associated with mean reticulocyte volume with p-value 3.99e-13 and AAF 0.0020. The most significant variant in the region in WES is neighboring with a p-value below the commonly recognized 5e-8 GWAS threshold. Simila r signal is not observed in WGS and IMP.
WGS

Supplementary Figure 9.

LocusZoom plots of single variant signals detected only by IMP. A 1Mb region centered on a peak single varia nt association signal observed only in IMP. This intergenic variant, 9:104216027:T:G, is associated with impedan

Supplementary Figure 10.
Summary of p-value of all gene-based association signals. Gene-based associations are grouped by the platfor m in which they were observed. The unified GENE_P p-value, incorporating multiple statistical tests and masks, are plotted for each signal in all groups. The median value is plotted with box bounded by 25th and 75th percenti les, with whiskers extending from the box to values within 1.5*Interquartile Range, and outlying values (minima /maxima) as points.

Supplementary Figure 11.

Comparison of GENE_P p-values for gene-based analyses between platforms. For each gene tested, the twosided, unadjusted p-value between each pair of platforms is given for all tests and for those with $-\log_{10}(p-value)$.

Supplementary Figure 12.

Evaluation of TOPMed-based imputation accuracy (R²) across ancestry groups. Across allele frequency bins, where sufficient variation was observed, the imputation accuracy is given in comparison to the observed WGS.

Supplementary Figure 13.

Comparison of TOPMed-based and UKB-based imputation accuracy (R²). We imputed 1,000 white British individuals who had both WGS and array data. Imputation was based on (1) a reference panel generated from 200K UKB phased WGS samples and (2) a TOPMed reference panel, and compared. Across allele frequency bins, where sufficient variation was observed, the imputation accuracy is given for imputation based on a TOPMed reference panel and UKB 200K reference panel.

Supplementary Table 1.

Characteristics of the UKB data. Analyses included UKB data with three sample sizes, comprised of individuals with an assigned ancestry. Demographic features of these individuals are provided.

Supplementary Table 2.

Genotype concordance between the different approaches. For all autosomal variants that passed QC in each platform, after enforcing hard calls, we assessed the number of mean discordant calls per variant and the concordance across all variant calls.

Supplementary Table 3.
Number of canonical coding variants in WGS and WES+IMP datasets. Count of variants for each coding consequence, stratified by frequency. Variants were annotated with VEP and genes were defined by Ensembl v100.

Supplementary Table 4.
Number of canonical coding variants in target capture regions for WGS and WES+IMP datasets. Count of variants for each coding consequence when limiting to variants within the WES targeted capture regions. Variants were annotated with VEP and genes were defined by Ensembl v100. pLoFs included frameshift, splice donor, splice acceptor, stop gained, stop lost, and start lost variants.

Supplementary Table 5.
Single variant signal consequences by platforms with association observed. Count of variants for each consequence with an observed trait association, given by the platforms in which the signal is observed. Variants were annotated with VEP and genes were defined by Ensembl v100.

Supplementary Table 6.
Gene burden mask definitions. For gene-based testing, variants were grouped into seven different masks by variant consequence. The variants were annotated with VEP and Ensembl 100, and aggregated into masks for tests in Regenie.

Supplementary Table 7.

Single and rare variant signals when considering alternative significance thresholds. For single variant testing, we summarize results for the association analysis using our main analysis significance threshold of P=5 x 10^{-12} and under a relaxed significance threshold of P=5 x 10^{-10} . For gene-based testing, we summarize the results of our analysis using our main analysis significant threshold of P=2.6 x 10⁻⁸ and a relaxed significant threshold of $P=2.6 \times 10^{-6}$.

Supplementary Table 8.

Single variant signals detected only by structural variant analyses. We analyzed structural variants from the WGS data using the single variant approach, and then jointly performed peak finding with the WGS, WES, and imputed data (significance threshold of P=5 x 10^{-12}). The signals exclusive to structural variants are summarized.

Supplementary Data 1.

Significant single variant tests. *Attached*.

Supplementary Data 2.
Significant gene-based tests.

Attached.

Supplementary Data 3. List of 100 traits used in association analysis. *Attached*.

List of Investigators from the Regeneron Genetics Center

RGC Management & Leadership Team

Aris Baras¹, Gonçalo R. Abecasis¹, Adolfo Ferrando¹, Michael Cantor¹, Giovanni Coppola¹, Andrew Deubler¹, Aris Economides¹, Luca A. Lotta¹, John D. Overton¹, Jeffrey G. Reid¹, Alan Shuldiner¹, Katherine Siminovitch¹, Jason Portnoy¹, Marcus B. Jones¹, Lyndon Mitnaul¹, Alison Fenney¹, Jonathan Marchini¹, Manuel Allen Revez Ferreira¹, Maya Ghoussaini¹, Mona Nafde¹, William J. Salerno¹

Sequencing & Lab Operations

John D. Overton¹, Christina Beechert¹, Erin D. Brian¹, Laura M. Cremona¹, Hang Du¹, Caitlin Forsythe¹, Zhenhua Gu¹, Kristy Guevara¹, Michael Lattari¹, Alexander Lopez¹, Kia Manoochehri¹, Prathyusha Challa¹, Manasi Pradhan¹, Raymond Reynoso¹, Ricardo Schiavo¹, Maria Sotiropoulos Padilla¹, Chenggu Wang¹, Sarah E. Wolf¹

Clinical Informatics

Michael Cantor¹, Amelia Averitt¹, Nilanjana Banerjee¹, Dadong Li¹, Sameer Malhotra¹, Justin Mower¹, Mudasar Sarwar¹, Deepika Sharma¹, Jeffrey C. Staples¹, Sean Yu¹, Aaron Zhang¹, Muhammad Aqeel¹

Genome Informatics & Data Engineering

Jeffrey G. Reid¹, Mona Nafde¹, George Mitra¹, Sujit Gokhale¹, Krishna Pawan Punuru¹, Sanjay Sreeram¹, Gisu Eom¹, Sujit Gokhale¹, Benjamin Sultan¹, Rouel Lanche¹, Vrushali Mahajan¹, Eliot Austin¹, Sean O'Keeffe¹, Razvan Panea¹, Ayesha Rasool¹, William J. Salerno¹, Xiaodong Bai¹, Lance Zhang¹, Boris Boutkov¹, Evan Edelstein¹, Alexander Gorovits¹, Ju Guan¹, Lukas Habegger¹, Alicia Hawes¹, Olga Krasheninina¹, Samantha Zarate¹, Adam J. Mansfield¹, Evan K. Maxwell¹, Suganthi Balasubramanian¹, Suying Bao¹, Kathie Sun¹, Chuanyi Zhang¹

Analytical Genetics and Data Science

Gonçalo R. Abecasis¹, Manuel Allen Revez Ferreira¹, Joshua Backman¹, Kathy Burch¹, Adrian Campos¹, Lei Chen¹, Sam Choi¹, Amy Damask¹, Liron Ganel¹, Sheila M. Gaynor¹, Benjamin Geraghty¹, Arkopravo Ghosh¹, Salvador Romero Martinez¹, Christopher Gillies¹, Lauren Gurski¹, Joseph Herman¹, Eric Jorgenson¹, Tyler Joseph¹, Michael Kessler¹, Jack Kosmicki¹, Nan Lin¹, Adam Locke¹, Priyanka Nakka¹, Jonathan Marchini¹, Karl Landheer¹, Olivier Delaneau¹, Maya Ghoussaini¹, Anthony Marcketta¹, Joelle Mbatchou¹, Arden Moscati¹, Aditeya Pandey¹, Anita Pandit¹, Charles Paulding¹, Jonathan Ross¹, Carlo Sidore¹, Eli Stahl¹, Maria Suciu¹, Timothy A. Thornton¹, Peter VandeHaar¹, Sailaja Vedantam¹, Scott Vrieze¹, Jingning Zhang¹, Rujin Wang¹, Kuan-Han Wu¹, Bin Ye¹, Blair Zhang¹, Andrey Ziyatdinov¹, Yuxin Zou¹, Olivier Delaneau¹, Maya Ghoussaini¹, Jingning Zhang¹, Kyoko Watanabe¹, Mira Tang¹, Frank Wendt¹

Therapeutic Area Genetics

Adolfo Ferrando¹, Giovanni Coppola¹, Luca A. Lotta¹, Alan Shuldiner¹, Katherine Siminovitch¹, Brian Hobbs¹, Jon Silver¹, William Palmer¹, Rita Guerreiro¹, Amit Joshi¹, Antoine Baldassari¹, Cristen Willer¹, Sarah Graham¹, Ernst Mayerhofer¹, Mary Haas¹, Niek Verweij¹, George Hindy¹, Jonas Bovijn¹, Tanima De¹, Parsa Akbari¹, Luanluan Sun¹, Olukayode Sosina¹, Arthur Gilly¹, Peter Dornbos¹, Juan Rodriguez-Flores¹, Moeen Riaz¹, Manav Kapoor¹, Gannie Tzoneva¹, Momodou W. Jallow¹, Anna Alkelai¹, Giovanni Coppola¹, Ariane Ayer¹, Veera Rajagopal¹, Sahar Gelfman¹, Vijay Kumar¹, Jacqueline Otto¹, Neelroop Parikshak¹, Aysegul Guvenek¹, Jose Bras¹, Silvia Alvarez¹, Jessie Brown¹, Jing He¹, Hossein Khiabanian¹, Joana Revez¹, Kimberly Skead¹, Valentina Zavala¹, Jae Soon Sul¹

Research Program Management & Strategic Initiatives

Marcus B. Jones¹, Esteban Chen¹, Michelle G. LeBlanc¹, Jason Mighty¹, Jennifer Rico-Varela¹, Nirupama Nishtala¹, Nadia Rana¹, Jaimee Hernandez¹

Senior Partnerships & Business Operations

Alison Fenney¹, Randi Schwartz¹, Jody Hankins¹, Samuel Hart¹

Business Operations & Administrative Coordinators

Ann Perez-Beals¹, Gina Solari¹, Johannie Rivera-Picart¹, Michelle Pagan¹, Sunilbe Siceron¹

¹Regeneron Genetics Center, Tarrytown, NY, USA.

References

- Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Austine-Orimoloye, O., Azov, A. G., Barnes, I., & Bennett, R. (2022). Ensembl 2022. *Nucleic acids research*, *50*(D1), D988-D995.
- Liu, Y., Chen, S., Li, Z., Morrison, A. C., Boerwinkle, E., & Lin, X. (2019). ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies. *The American Journal of Human Genetics*, *104*(3), 410-421.
- McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., & Cunningham, F. (2016). The ensembl variant effect predictor. *Genome biology*, *17*(1), 1-14.