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Abstract

Task-based assessment of image quality in undersampled magnetic resonance imaging (MRI) 

using constraints is important because of the need to quantify the effect of the artifacts on task 

performance. Fluid-attenuated inversion recovery (FLAIR) images are used in detection of small 

metastases in the brain. In this work we carry out two-alternative forced choice (2-AFC) studies 

with a small signal known exactly (SKE) but with varying background for reconstructed FLAIR 

images from undersampled multi-coil data. Using a 4x undersampling and a total variation (TV) 

constraint we found that the human observer detection performance remained fairly constant for 

a broad range of values in the regularization parameter before decreasing at large values. Using 

the TV constraint did not improve task performance. The non- prewhitening eye (NPWE) observer 

and sparse difference-of-Gaussians (S-DOG) observer with internal noise were used to model 

human observer detection. The parameters for the NPWE and the internal noise for the S-DOG 

were chosen to match the average percent correct (PC) in 2-AFC studies for three observers using 

no regularization. The NPWE model observer tracked the performance of the human observers 

as the regularization was increased but slightly over-estimated the PC for large amounts of 

regularization. The S-DOG model observer with internal noise tracked human performace for all 

levels of regularization studied. To our knowledge this is the first time that model observers have 

been used to track human observer detection for undersampled MRI.
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1. INTRODUCTION

The assessment of image quality in reconstructed MRI images is critical to the development 

and validation of accelerated reconstruction techniques.1,2 Current methods for assessment 

of image quality in MRI are largely root mean square error (RMSE) and structural similarity 

index (SSIM) which are measures of pixel value differences between the original and 

reconstructed image.3,4 While these measures do give an indication of similarity between 
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images, neither RMSE nor SSIM take into account the specific task for which the image 

will be used. As a result, images with the same RMSE and SSIM could produce different 

performance in detection of tumors. Observer models are an alternative way to assess image 

quality by taking into account human visual principles as well as the task for which the 

image will be used.

The purpose of this work is to evaluate constrained reconstruction of undersampled MRI 

data using a TV constraint based on human observer performance in detecting a small signal 

in a 2-AFC task. Model observers (NPWE and S-DOG) are used to model human observer 

performance in this detection task. Ultimately, the goal of this work is to reduce the number 

of future human observer studies needed in this area of research.

2. METHODS

2.1 Undersampled acquisition in MRI

For this study we consider 1-D undersampling of FLAIR images (Figure 1) with a sampling 

pattern that samples every fourth phase encoding line plus fully sampling the middle 

16 kspace lines resulting in an effective acceleration factor of 3.48. Data used in the 

preparation of this article were obtained from the NYU fastMRI Initiative database5). As 

such, NYU fastMRI investigators provided data but did not participate in analysis or writing 

of this report. The reconstruction of the images was done using the Berkeley Advanced 

Reconstruction Toolbox (BART) toolbox.6

2.2 Constrained reconstruction from multi-coil data

Constrained reconstruction minimizes a data agreement functional with additional 

constraints. For this work we consider a total variation constraint4 and multi-coil data with 

the coil sensitivities estimated using the sum of squares method which leads to real estimates 

of the underlying object.

2.3 Two-alternative forced choice experiments

In each individual trial of the 2AFC experiment we presented three 128×128 pixel images: 

one image of an anatomical background with the signal, the signal, and one image of an 

anatomical background without the signal. The signal image was always in the center, and 

the location (left or right) of the anatomical image with the signal was randomly chosen 

for each trial. An example trial is shown in Figure 2. The signal location is always in the 

middle of the anatomical image, which makes this task a signal known exactly (SKE) and 

the human observer only determines whether or not it is present in the image.

2.4 Experimental procedure

For each experimental condition, 200 2AFC trials were carried out by three observers. As 

training, all observers repeated an initial set of 200 trials until the performance plateaued. 

Based on performance in the training trials, the signal amplitude was chosen so that the 

mean percent correct for the observers would be close to 80 percent.

O’Neill et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because of the physical distancing required due to COVID-19, the experiment locations 

and conditions of each observer differed. Two of the observers (1 and 3) used their laptops 

(MacBook Air and MacBook Pro) and observer number 2 used a Barco MDRC 2321 

monitor. Each observer took the studies in a dark room. The resolution of the laptops was set 

so that the pixel pitch was 0.28 mm and the resolution of the Barco monitor was 0.294 mm. 

All observers were approximately 50 cm from the screen.

For each individual trial, a set of images like Figure 2 appeared on the screen and the 

observer chose which image they believed contained the signal. The answers for each trial 

are recorded, as well as the time in between each trial, the location of coordinates that the 

user clicked, and which specific images in the set were chosen correctly or incorrectly. The 

observers received feedback on whether they had identified the signal correctly after each 

trial for possible improvement between trials and took breaks between sets of 200 trials to 

avoid fatigue.

2.5 Model observers

We used the non-prewhitening eye (NPWE) observer7 and the channelized Hotelling 

observer with sparse difference-of-Gaussians (S-DOG) channels8 to model human observer 

performance in the 2-AFC experiments as we varied the regularization parameter in the TV 

constraint.

The NPWE applies a template that does not whiten the background noise of an image, but 

models the human eye response to frequencies in an image. Based on these frequencies and 

mathematical responses, a decision of which image contains the signal is made. The eye 

filter that was used in this study is of the form

Eye(f) = fne−c * f2

where f is the distance from the zero frequency, we chose c for the eye filter to peak at 5 

cycles per degree for our images and n = 0.9 to fit the experimental data (Figure 3).

The second model that we used in our study was the S-DOG channelized Hotelling 

Observer. The S-DOG channels whiten the noise within the images by using the inverse 

covariance matrix and applying the template.8 We used the S-DOG of the form

Cj(f) = exp − 1
2

f
Q * σj

2
− exp − 1

2
f
σj

2

where f is the distance from the zero frequency, Q is the multiplicative factor of the 

bandwidth,

σj = σ0 * αi

where j denotes the jth channel and σj denotes the standard deviation of each channel. The 

parameters that were used for the S-DOG were Q = 2, α = 2, and σ0 = 0.015 which were 
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used by Abbey8 (Figures 4, 5). In order to match the high performing S-DOG observer to 

our human data, it was necessary to add internal noise. We used an internal noise model that 

added uncorrelated normal noise to the channel outputs for each image.8

3. RESULTS AND DISCUSSION

We utilized four sets of FLAIR images that were generated with 4x acceleration and at four 

different values of TV regularization: 0, 0.001, 0.01, and 0.1. The signal amplitude was 

chosen to achieve a percent correct for humans of about 0.8 for no regularization.

The NPWE observer was matched to human performance for TV = 0 with a peak of 5 cycles 

per degree and n = 0.7. As seen in Figure 6, this observer was matched exactly at TV = 0 

but also captures the performance of the average human observer for both TV = 0.001 and 

0.01. At the largest regularization value of TV = 0.1, the NPWE slightly overestimated the 

performance of the human observers. The eye filter that was used for matching this data can 

be seen in Figure 3.

Unlike the NPWE which was chosen to match the average human performance, the S-DOG 

alone highly overestimated human performance without the addition of noise. However, the 

pattern of performance as TV increased was the same as both the human observers and the 

NPWE model observer. Once the internal noise was added, a similar trend of tracking the 

human performance to the NPWE can be seen with the S-DOG in Figure 7. For all levels of 

TV = 0, 0.001, 0.01, and 0.1, the S-DOG closely tracks human performance.

Both the NPWE and S-DOG with internal noise were able to track human performance for 

image sets as regularization parameter changes. Additionally, our results suggest that TV 

constraint does not improve human detection performance for this task.

4. CONCLUSION

To our knowledge, this is the first application of model observers for tracking human 

observer detection performance in undersampled MRI. Both model observers followed the 

same pattern as the average performance of the human observers. However, the S-DOG 

was able to track human performance at all levels of regularization, but the NPWE slightly 

overestimated human performance at large amounts of regularization. One of the results 

of this study is that model observers are able to track human observer performance as the 

regularization changes. The other result is that the TV constraint does not improve human 

detection performance for this task.
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Figure 1. 
(A) Sampling mask for 4x acceleration, (B) Fully sampled image, (C) Undersampled 

constrained reconstruction with no TV regularization, (D) 4x undersampled constrained 

reconstruction with TV regularization parameter TV = 10−2.Aliasing in the vertical axis 

is visible in the undersampled images. There are slightly fewer artifacts and slightly more 

blurring in the reconstruction with TV regularization.
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Figure 2. 
Sample 2AFC trial with signal in the left image.
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Figure 3. 
(A) A cross section of the eye filter matched for human performance with TV = 0. (B) The 

2-dimensional eye filter matched for human performance with no TV regularization.
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Figure 4. 
(A) The cross section of S-DOG channels matched for human performance with no TV 

regularization in the frequency domain and (B) spatial domain.
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Figure 5. 
A, C, and E are the basis images for the S-DOG channels in the spatial domain, B, D, and 

F are the basis images in the frequency domain. The zero frequency is empty because the 

human eye is unable to see the zero frequency.
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Figure 6. 
NPWE observer matched to human observer for images with no TV regularization. The 

NPWE observer tracked the human observer data for the other regularization parameters 

with a slight overestimate for a large amount of regularization.
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Figure 7. 
S-DOG observer with internal noise matched to human observer for images with no 

TV regularization. The S-DOG observer tracked the human observer data for the other 

regularization parameters.

O’Neill et al. Page 12

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Undersampled acquisition in MRI
	Constrained reconstruction from multi-coil data
	Two-alternative forced choice experiments
	Experimental procedure
	Model observers

	RESULTS AND DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.

