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Abstract
Patients with type 1 diabetes manually regulate blood glucose concentration by
adjusting insulin dosage in response to factors such as carbohydrate intake and exercise
intensity. Automated near-term prediction of blood glucose concentration is essential to
prevent hyper- and hypoglycaemic events in type 1 diabetes patients and to improve
control of blood glucose levels by physicians and patients. The imperfect nature of
patient monitoring introduces missing values into all variables that play important roles
to predict blood glucose level, necessitating data imputation. In this paper, we inves-
tigated the importance of variables and explored various feature engineering methods to
predict blood glucose level. Next, we extended our work by developing a new
empirical imputation method and investigating the predictive accuracy achieved under
different methods to impute missing data. Also, we examined the influence of past
signal values on the prediction of blood glucose levels. We reported the relative
performance of predictive models in different testing scenarios and different imputation
methods. Finally, we found an optimal combination of data imputation methods and
built an ensemble model for the reliable prediction of blood glucose levels on a 30-
minute horizon.
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1 Introduction

Type 1 diabetes (T1D) is a chronic disease in which the pancreas fails to produce
insulin to regulate blood glucose (BG) levels [1, 2]. This dysfunction can lead to both
hypoglycaemia (low blood sugar) and hyperglycaemia (high blood sugar) and burdens
patients to self-regulate carbohydrate consumption and delivery of supplemental insu-
lin. Furthermore, hyperglycaemia can lead to medical complications such as blindness,
kidney failure, and amputations and increases risk of heart disease and stroke. Mean-
while, hypoglycaemia can cause acute symptoms such as loss of consciousness,
seizures, and even death [3]. In order to avoid such diabetic complications, patients
continually monitor their BG levels and adjust insulin doses accordingly. An increasing
number of T1D patients are adopting continuous glucose monitoring (CGM) devices
and insulin pump therapy, wherein a wearable device releases insulin subcutaneously to
mimic pancreatic response. Current insulin pump therapy requires manual approval of
each recommended insulin dose which regulates BG levels. Effective prediction of BG
levels and diabetic complications before they occur would give patients time to
intervene and prevent these BG excursions, thus improving overall health, safety, and
quality of life.

Many studies have applied machine-learning and deep-learning techniques to predict
BG levels and identify diabetic complications. Bertachi et al. proposed BG level
prediction models using artificial neural networks (ANN) and physiological models
[1]. Other types of deep-learning algorithms such as convolutional neural network
(CNN) [4], recurrent neural network (RNN) [5, 6], and evolutionary search algorithm
such as grammatical evolution (GE) model [7] also have been proposed for BG level
prediction. Furthermore, CGM measurements combined with machine-learning ap-
proaches have been applied to predict real-time hypoglycaemia events in types 1 and
2 diabetes [8, 9] and hyperglycaemia events in type 1 diabetes [10]. Nevertheless, it
remains challenging to predict BG levels using CGM and other physiological and
clinical data due to the imperfections of patient monitoring and intermittent sampling
rates of biosignals [11]. Unexpected malfunction of monitoring devices and unreliable
self-reporting causes data gaps, thus limiting the accuracy of predicting future BG
levels. Imputing missing values with reasonable estimates and extracting informative
features from physiological and self-reported features can improve prediction accuracy
of BG levels.

This study is an extension of the work originally reported at the 3rd International
Workshop in Knowledge Discovery in Healthcare at IJCAI 2018, in which we explored
and compared multiple machine-learning and deep-learning methods to predict BG
levels at a 30-minute horizon and found that a gradient-boosted regression tree
(XGBoost) model showed the best performance compared to Random Forest and a
simple 2-layer LSTM models [12]. Our predictive model achieved competitive perfor-
mance at the workshop [13]. From the study, we realized that unexpected malfunction
of monitoring devices and unreliable self-reporting causes data gaps, thus limiting the
accuracy of predicting future BG levels. Furthermore, a key challenge to blood glucose
prediction was that not all conventional missing value imputation methods were
compatible with online BG level prediction. Specifically, imputation methods that
involve both boundary points of the data gap (i.e. interpolation) cannot be used in a
realistic online setting, since one boundary point lies in the future. Here, we
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investigated the importance of physiological and monitoring features with respect to
BG level prediction, explored various imputation methods on the training set of each
patient in the OhioT1DM cohort, and compared the prediction accuracy on the test set
for each imputation method. We measured the accuracy under two distinct conditions: a
batch-mode scenario (conventional train-test setting) and an online deployment setting
(where future points are unknown). Finally, we chose the five most effective methods
for imputing missing data, trained BG level predictors under each imputation method,
and built an ensemble model by combining their predictions. The ensemble model
outperformed individual predictive models in both conventional and realistic settings.

2 Methods

2.1 Dataset and Preprocessing

The OhioT1DM cohort was used to evaluate imputation methods and build predictive
models [14]. The dataset comprised 19 features collected over an 8-week period from 6
people with T1D, as detailed by Marling et al. [15]. The features in the dataset either
were self-reported (and recorded intermittently) or were recorded at 5-minute intervals
from devices: an insulin pump, continuous glucose monitor, and a fitness band
(Supplementary Table 1). We grouped features according to their sampling frequency,
denoting one-off features as signals that were recorded intermittently with no fixed
sampling frequency and quasi-continuous features as signals that were continuously
monitored and aggregated at 5-minute intervals. One-off features included finger-stick
glucose, insulin bolus time and dose, sleep times and quality, work intensity, exercise
intensity and duration, meal type and carbohydrate content, hypoglycaemic events,
illnesses, and stressors. Quasi-continuous features included continuous glucose monitor
(CGM) glucose level, basal and temporary basal rates of insulin infusion, heart rate,
steps taken, galvanic skin response, skin temperature, and air temperature. Due to
intermittent measurements with no fixed measuring frequency or duration of one-off
features and occasional missing values, the feature vector at any given timestamp was
not guaranteed to contain values for all fields. Therefore, we resampled our data to 5-
minute intervals, reflecting the 5-minute aggregation frequency of the quasi-continuous
variables, and realigned each resampled series to the nearest multiple of 5 minutes.
Within each 5-minute resampling window, we then aggregated each feature using the
mean within the last 5 minutes for quasi-continuous features, the last valid value for
one-off features and the maximum value within the last 5 minutes for finger-
stick glucose to capture probable diabetes signal. We assumed that missing
values (or rather, unavailable values) in work intensity, exercise intensity, sleep
quality, illness, stressors, hypoglycaemic events, and meals represented the true
absence of these signals (e.g. wakefulness and non-illness) and filled data gaps
in these variables with zeros. Two separated datasets were provided by IJCAI
2018 challenge organizers. One was for the training (first 46 days of record),
and the other was for the testing (last 10 days of record). This longitudinal
dataset enabled us to measure the accuracy of blood glucose level prediction
using measuring root mean square error (RMSE), mean absolute error (MAE),
and Pearson’s correlation coefficient (PCC).
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2.2 Feature Engineering, Feature Expansion, and Dataset Generation

Starting with 19 variables including CGM-monitored glucose levels (as provided by the
OhioT1DM dataset), we expanded our feature set by adding missing value indicators,
lagged-time features, time indicators, and glucose-related features. Missing value
indicators represented the presence or absence of missing values in 14 features (e.g.
1 = observed value; 0 = missing value that was imputed). It has been shown that
missing value indicator helped to improve prediction performance for multivariate time
series [16]. For time-lagged features, we generated 12 lagged versions of each feature
(lagged at 5-minute intervals up to 1 hour before the current timestamp, in total 216
features). We did not generate lagged versions of stressors, illness, and hypoglycaemic
events, since these occurred infrequently. The 31 time indicators represented day of
week (7 days) and time of day (24 hours). We also generated glucose-related features
(e.g. differences of glucose levels between timestamps and finger-stick glucose level
since last measurement) as described previously [12]. In total, we derived a feature set
consisting of 320 features. They were used to select the optimal imputation methods
and generate predictive models for BG levels (Supplementary Table 1).

To evaluate the ability of different imputation methods to predict future BG levels
and maximize the information content of predictive models, remaining missing values
of quasi-continuous features and one-off features were imputed using 16 imputation
methods described in Section 2.3. To avoid intervals of intermittent data availability at
the start and end of each training and test set, we trimmed each data period to span from
00:00:00 (midnight) on the first full day to 11:55:00 on the last full day. Preprocessed
training and test sets were composed of 44 days (mean 12,672 timestamps) and 8 days
(mean 2304 timestamps) of record per patients, respectively. To examine the effect of
trimmed test sets on prediction accuracies, we also generated untrimmed test sets,
which were composed of values that were observed between the first timestamp and
last timestamp that CGM values were reported. Prediction accuracies in trimmed and
untrimmed test sets were significantly similar (Supplementary Table 2). RMSE mea-
sured from trimmed and untrimmed test sets showed PCC of 0.9 (P-value = 2.21 ×
10−24). To compare prediction performance across the same range of time points across
patients, we reported prediction accuracies on trimmed test sets.

2.3 Imputation Methods

Missing values were filled with reasonable values using 11 imputation methods for a time
series dataset. Linear interpolation (LI) and spline interpolation (SPI) replace missing data
with fitted values from a linear polynomial model and a special type of piecewise polyno-
mial (spline) model [17], respectively. Kalman smoothing with structural model (KS) and
Kalman smoothing with auto-ARIMA model (KA) estimate a joint probability distribution
over the variables for each timeframe and produce estimates of missing data. For the
estimation, KS used a structural model fitted by maximum likelihood and KA used the
state space representation of ARIMA model [18]. Moving average (MA) fills missing data
using the moving average computed over four timestamps. Average of all observed values
(mean) and randomly selected values (random) were also used for imputation. All of the
imputation methods mentioned above were implemented using the R package imputeTS (v.
2.7) [19]. Stineman interpolation (STI), which replaces missing data using Stineman’s
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algorithm-based piecewise rational function [20], last observed carried forward (LOCF), and
k-nearest neighbour (KNN)methodswere implemented using stinepack (v. 1.4) [21], zoo (v.
1.8.4) [22], and fancyimpute (v. 0.5.2) [23], respectively. KNN finds the K closest neigh-
bours for missing data from observed data [24]. For KNN imputation, we tested 2 (KNN-2),
4 (KNN-4), 6 (KNN-6), 8 (KNN-8), and 10 (KNN-10) nearest neighbours.

In addition to the methods listed above, we developed an empirical imputation
method (Emp) which filled a given data gap with values from the training set, observed
at the same timestamps as the data gap. For each missing value timestamp, we collected
all values from the training set observed within ±5 minutes of the missing value’s
timestamp. This gives us the historical distribution of observed feature values for a 10-
minute time period, within which the missing test value is encountered. Given this
temporally constrained empirical distribution of feature values, we imputed the missing
value with either the mean of the distribution (Emp-mean) or a randomly chosen value
(Emp-random) from the distribution. For example, we collected all observed values
between 2:30 pm and 2:40 pm of each day in a training set and assigned the average
value to a data gap at 2:35 pm. In total, we tested 16 imputation methods (Table 1).

Table 1 Implemented imputation methods

Method Abbreviation Additional scheme Description

Linear interpolation LI - Line fit between end points

Spline interpolation SPI - Spline curve fit between end points of
missing data gap

Stineman interpolation STI - Stineman cubic curve fit between end
points of missing data gap

Kalman smoothing with
structural model

KS - Kalman smoothing using a structural model
fitted by maximum likelihood estimated

Kalman smoothing with
auto-ARIMA model

KA - Kalman smoothing using the state space
representation of ARIMA model

Last observed carried
forward

LOCF - Missing values are replaced with last
observed values

Average value based
imputation

Mean - Missing values are replaced with average of
all observed values

Moving average MA - Missing data filled in using the moving
average computed over four timestamps

K-nearest neighbours KNN KNN-2, KNN-4,
KNN-6, KNN-8,
and KNN-10

Missing values are replacedwith the K-nearest
neighbours for missing values from ob-
served values. 2, 4, 6, 8, and 10 nearest
neighbours are considered for imputation.

Empirical imputation Emp Emp-mean and
Emp-random

Observed values within a specific ±
5-minute windows for all days in the
training set were collected. Missing
values were filled in with the mean
(Emp-mean) or selected randomly from
the corresponding window’s distribution
(Emp-random)

Random assignment Random - Randomly selected value from within the
feature value range

Journal of Healthcare Informatics Research (2020) 4:71–90 75



2.4 Model Training and Evaluation

We generated personalized XGBoost models for BG level prediction, which were
specific for individual patients and used all 320 features. XGBoost comprised an
ensemble of decision trees, combined in a gradient boosting framework. This model
is known for its high predictive performance, robustness to outliers and unbalanced
classes, and efficient split finding through parallel training [25]. XGBoost has been
broadly applied to various healthcare-related time series forecasting and classification
problems, including epilepsy patient identification [26] and sleep stage determination
[27]. A prime advantage of using XGBoost is that the importance of each feature that is
required to make a prediction can be estimated. This is contrast to deep-learning
models, where it can be difficult to interpret why the model made a particular
prediction. For the performance evaluation of predictive models, RMSE, MAE, and
PCC were computed.

To generate an ensemble model, we selected a set of imputation methods that
yielded the best performance to predict BG levels under identical gradient boosting
platform. We first trained predictive models using training sets that were imputed by 16
different imputation methods. To examine overall prediction accuracies of imputation
methods, we generated a cluster map between imputation methods and three evaluation
metrics (RMSE, MAE, and PCC). We then selected one cluster showing higher overall
accuracy across all three metrics (i.e. cluster was enriched with low RMSEs, low
MAEs, and high PCCs). Next, we measured accuracy variances of seven imputation
methods across patients (variances of RMSEs, MAEs, and PCCs across patients).
Small variance indicated that a given imputation method achieved high prediction
accuracies in all patients. Rank product (geometric mean of accuracy variances) was
used to compute an aggregate rank across observed rankings of RMSE variances, MAE
variances, and PCC variances. Finally, the top five imputation methods (LOCF, SPI,
STI, KS, and LI) were selected based on rank product.

Hyperparameter optimization for these five predictive models was performed to find
an optimal set of XGBoost parameters; learning rate (eta), maximum tree depth
(max_depth), and loss reduction (gamma), and number of rounds for boosting
(num_round). For this, we followed a standard grid-search procedure. Three eta values
(0.05, 0.1, and 0.2), three max_depth values (3, 5, and 10), and four gamma values (0,
0.5, 1, and 5) were used to find optimized parameter combination. In total, 36
parameter combinations (3 eta × 3 max_depth × 4 gamma) were generated. For the
optimization, we used cross-validation with 10 blocked subsets, a variant of k-fold
cross-validation adapted for time series dataset (tenfold blocked cross-validation) [28].
The training set was divided into ten blocks maintaining time ordering (without
shuffling). Nine blocks were used to train a model, and one block was used to measure
prediction accuracy. Ten resulting RMSEs were averaged using the mean to calculate
the final cross-validation RMSE. The number of rounds for boosting was optimized
automatically during the cross-validation. We selected the parameter combination
showing the lowest cross-validation RMSE to build patient-specific predictive models.
The average percent difference in RMSE between the best and worst parameter
combination was 9%. We fit the model to the data a1, a2,. . . , at and assume ât + 1 is
the predicted next observation. Error was calculated between the actual and predicted
values (e*t + 1 = at + 1 – ât + 1). We then repeated fitting step for t = m,. . . , n-1 where m is
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the minimum number of observations needed for fitting the model and compute the
RMSE from e*m + 1…e*n. Five models were built using their optimized parameters, and
individual model predicted BG levels at each timestamp. Finally, we averaged the
predictions across the five models to get consensus BG level at each timestamp.
Additionally, we generated weighted average-based ensemble model and compared
prediction performance between two types of ensemble models (general average vs.
weighted average). The reverse rank product of each imputation method (1/rank
product) is considered as a weight. Two ensemble models showed compatible perfor-
mance in all three testing scenarios (Supplementary Table 3). The performance of
average-based ensemble models was used for further analyses.

For each patient, a model was trained, using the optimal set of parameters, over the
entire training set. Next, we generated three types of test sets to simulate both a
conventional batch train-test approach and online prediction, where missing values
can only be imputed using past data. Of the imputation methods being evaluated,
LOCF and Emp-mean support use in an online setting.

(1) Conventional train-test setting (test-full) – Batch: all test points were known
beforehand, and predictions were made on the entire test set as a batch. In this
setting, all 16 imputation methods were applied for imputing missing values in the
test set.

(2) Realistic deployment setting (test-partial) – Online: the temporal order of points in
the test set was maintained. The last observed value was carried forward (LOCF)
to impute missing values encountered in the test set.

(3) Realistic deployment setting (test-empirical) – Online: given the timestamp of a
missing value in the test set, we impute the missing values using Emp-mean.

2.5 Statistical Analysis and Data Visualization

To build predictive models, XGBoost (v. 0.81) [25] was used in a Python (v. 3.7.0)
environment. SciPy (v. 1.1.0) [29], NumPy (v. 1.15), and scikit-learn (v. 0.21) [30]
were used for statistical analyses and measurements of RMSE and MAE. Seaborn
(v. 0.9.0) [31] and matplotlib (v. 3.0) were used for data visualization.

3 Results

3.1 Feature Ablation Analysis

To understand the properties of physiological and monitoring features with respect to
BG level prediction, we conducted an ablation study. First, 19 variables, which were
originally provided by the OhioT1DM dataset, were divided into 4 groups: (1) self-
reported features (S; meals, finger-stick glucose, illness, stress, exercise, and work), (2)
basis peak band features (B; heart rate, galvanic skin response, skin and air temperature,
steps, and sleep), (3) insulin pump features (P; basal and temporary basal infusion rates,
bolus doses, and types), and (4) continuous glucose monitoring feature (G; blood
glucose level). Next, we generated 15 combinations of the S, P, B and G feature
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groups, used them to build XGBoost-based predictive models for BG levels, and
measured prediction accuracy (Supplementary Table 4). We found that S + G showed
slightly better overall prediction performance compared to other feature groups. How-
ever, its prediction accuracy was inconsistent across patients (i.e. S + G did not have the
smallest variance) suggesting that patients have different routines and styles to report
their health condition, and this inevitable and self-biased information would play
differentially to predict blood glucose level. Indeed, models trained on S and P, which
required manual operation (injecting extra bolus doses), and feature combinations with
S or P were likely to have high prediction variance and low prediction accuracy across
patients. Meanwhile, models trained on G alone outperformed those without G, and
prediction accuracy was likely to be improved when other feature groups were added to
G. Taken together, our results indicated that blood glucose level could be affected by
physiological signal (B and P) and patient condition (S) though their importance for the
prediction would be different depending on patients, and therefore considering all
feature groups for subsequent experiments would be helpful to avoid potential loss of
information that could improve BG level prediction in a patient-specific manner.

3.2 Comparison of Methods for Missing Data Imputation

From the time period of OhioT1DM dataset, we found that, on average, ~ 30% of
quasi-continuous feature values and ~ 9% of BG level were missing. Meanwhile, more
than 90% values of one-off features were unavailable due to their intermittent mea-
surement. The number of missing values necessitated the use of effective imputation
methods of missing values in both quasi-continuous and one-off features to train
reliable predictors of BG levels.

We first examined the similarity of imputed values in a training set. Finger-stick
glucose level was used for this comparison, since this feature was one of the
one-off features showing a large fraction of missing values, and finger sticks
provided an accepted standard measurement of BG levels. We imputed missing
values for finger-stick glucose level using each of the imputation methods.
Then, we computed pairwise RMSEs between the imputed finger-stick values.
From hierarchical clustering analysis, we found that certain imputation methods
showed similar imputation behaviours (Fig. 1a). Although the order of imputa-
tion methods in a cluster is different, there was a set of imputation methods
that shared similar imputation profile across patients. For example, KNN-based
methods shared similar imputed values regardless of the number of neighbours.
Kalman smoothing-based (KS and KA), interpolation-based (LI, SPI, and STI),
and moving average-based (MA) methods were likely to generate similar
imputation profiles (Supplementary Fig. 1).

Fig. 1 Imputation profiles of features. Euclidean distance was used to compare the similarity between two
variables, and average linkage method was used to calculate clusters and generate cladogram. a Agreement
between 16 imputation methods. Blue indicates small RMSE, and light green indicates large RMSE between
imputed finger-stick glucose levels, respectively. Comparison of Patient 575 was shown. b Associations
between BG levels and imputed feature values. Z-score normalized RMSEs (norm-RMSEs) between BG
levels and their imputed counterparts were presented. GSR indicated galvanic skin response. Associations of
Patient 575 was shown. c Normalized RMSE between BG levels and finger-stick glucose levels of patients
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In addition, we examined the associations between imputed values of each feature
and observed BG levels. To do this, we performed z-score-based normalization of BG
levels and feature values so that they have similar value range, and measured their
relative RMSEs. Individual features showed different levels of associations with BG
levels (Fig. 1b and Supplementary Fig. 2). Quasi-continuous features tended to have
better associations with BG levels than one-off features except finger-stick glucose
level. In fact, finger-stick glucose level showed the strongest association in all patients
regardless of imputation methods (Fig. 1c). Meanwhile, one-off features that were
composed of binary events (0 = no event and 1 = event; e.g. hypoglycaemia) showed
a weak correlation with BG potentially due to the small number of events or limited
binary information.

3.3 Association Between Lagged-Time-Based Features and Blood Glucose Levels

The continuous glucose monitors used in the OhioT1DM cohort recorded interstitial
glucose concentration, which lags behind capillary glucose concentration [32], which in
turn takes time to respond to carbohydrate intake, insulin infusion, and physical
activity. To understand the lagged associations between BG levels and the features,
we generated 12 time-lagged versions of each feature (at 5-minute intervals up to 1
hour before each timestamp) and examined the importance of each time-lagged feature
in predicting BG levels at the current timestamp. The feature importance was computed
using Random Forest algorithm, which measured how effective the feature was at
reducing variance when creating decision trees within Random Forests (the mean
decrease in impurity) [33].

We found that current BG level was associated with different time-lagged features,
with the strongest time-lag varying across both patients and features (Fig. 2a). For
example, finger-stick glucose level at current timestamp had the highest importance
score. Work intensity and exercise intensity both showed high feature importance at the
current timestamp as well as 1-hour prior (Fig. 2b and c). Interestingly, breakfast timing
affected patients’ BG levels differently. BG levels in patients 559, 570, 575, and 588
were associated with breakfast at larger time lags (up to 1-hour prior), whereas BG
levels in patients 563 and 591 were associated with breakfast at more recent time lags,
and these patterns persisted across different imputation algorithms (Fig. 2d). These
temporal variations were observed across features suggesting that time-lagged features
could play an important role in personalized BG level prediction.

Given the considerable variation in predictive importance of features and their
temporally lagged values across patients, we extended our feature space to include
12 time-lagged versions for individual features, binary missing value indicators,
glucose-related features, and time-related features (see Methods for details). In total,
320 features were generated and applied for BG level prediction (Supplementary
Table 1).

3.4 The Effect of Missing Data Imputation on BG Level Prediction

We measured the accuracy of each imputation method on BG level prediction. We
trained XGBoost models using training sets, which were imputed with different
imputation methods (see Methods for details). To examine different aspects of
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prediction accuracy, we used three evaluation metrics: RMSE, MAE, and PCC.
Overall, the models achieved RMSE of 16.13 ± 2.77 in a training set (MAE = 11.48
± 1.98 and PCC = 0.96 ± 0.01; Fig. 3a and Supplementary Table 5). The lowest RMSEs
were achieved with linear interpolation (LI, RMSE = 12.55 ± 3.18), Stineman inter-
polation (STI, RMSE = 13.23 ± 2.78), and Kalman smoothing with structural model
(KS, RMSE = 13.16 ± 3.53). As expected, random imputation methods showed the
largest RMSEs (random, RMSE = 21.09 ± 7.38; and Emp-random, RMSE = 21.80 ±
5.91; Supplementary Table 5).

To evaluate the performance of our predictive models in a test set, we compared
three possible testing scenarios, conventional train-test setting (test-full) and two
realistic deployment settings (test-empirical and test-partial). We observed that spline
interpolation (SPI) and Kalman smoothing with structural model (KS) generally
showed lower RMSE than other methods across all testing scenarios (Fig. 3b–d). Note
that in Fig. 3b, linear interpolation-based imputation methods perform best (RMSE =
19.07 ± 2.02; MAE = 13.47 ± 1.28; and PCC = 0.94 ± 0.02); however, they are not
compatible with realistic deployment, as interpolation-based methods would need a
point from the future to impute data gaps in the present. Interestingly, a model imputed
with LOCF also showed relative high prediction accuracy in test-empirical and test-
partial suggesting that carrying forward the last observed value led to better BG level
prediction. Potentially, consideration of more values from the past could help further
improve prediction in the presence of missing data.

Fig. 2 Feature importance depending on lagged-time points. Importance of a finger-stick glucose level, b
work intensity, c exercise intensity, and d breakfast indicator that were imputed by different imputation
methods were compared. Y-axis indicated 12 time-lagged versions of a given feature (at 5-minute intervals up
to 1 hour before each timestamp). X-axis indicated 16 imputation methods. Blue indicated a given lagged-time
was strongly associated with BG levels
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To identify generally effective imputation methods for BG level prediction, we first
grouped imputation methods based on their RMSEs, MAEs, and PCCs on training sets,
which were imputed by 16 different imputation methods (Fig. 4a). We identified one
cluster that showed high prediction accuracies regardless of evaluation metrics (i.e. the
cluster was enriched with low RMSEs, low MAEs, and high PCCs; red dashed box in
Fig. 4a). Next, we examined variances of prediction accuracies across entire patients in
training sets. Small variance indicated that a given imputation method achieved high
prediction accuracies in all patients. Finally, we selected the top five imputation
methods (STI, SPI, LOCF, KS, and LI) based on rank products, which were consensus
rankings across the observed rankings of RMSE variances, MAE variances, and PCC
variances (Fig. 4b). We considered these five methods as generally effective imputation
methods and used them for further analyses.

3.5 Building a Predictive Model for Blood Glucose Levels

Based on the observation that physiological measurements, monitoring signals, and
lagged-time features all play a part in determining BG levels in T1D patients, we built
five predictive models using XGBoost that used training data imputed by the top five
imputation methods. All 320 features were used to build XGBoost models with
hyperparameter optimization in the training set. From the hyperparameter optimization,
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Fig. 3 The performance of predictive models. Predictive models were trained using training sets that were
imputed by 16 imputation methods. The models were applied to a training set, b test-full set, c test-empirical
set, and d test-partial set. RMSE was used to measure the prediction accuracy
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we observed that the average percent difference in RMSE between the best and worst
parameter combination was 9% (minimum 4% and maximum 22%; Supplementary
Fig. 3).

We found that five predictive models showed competitive performance in any given
testing scenario (Fig. 5a). Predictive models showed overall RMSE of 19.02 ± 2.52 in a
test-full (conventional setting, MAE = 13.39 ± 1.46 and PCC = 0.94 ± 0.02), 21.29 ±
2.54 in a test-empirical (realistic setting, MAE = 14.96 ± 1.32 and PCC = 0.93 ± 0.02),
and 20.15 ± 2.20 in a test-partial (realistic setting, MAE = 14.41 ± 1.31 and PCC = 0.93
± 0.02; Table 2 and Supplementary Table 6). Moreover, patients showed similar
prediction performance across different test scenarios (Fig. 5b and Supplementary
Fig. 4). For example, predictive models for Patient 563, which were imputed by spline
interpolation, yielded RMSE of 18.63 (MAE = 13.11 and PCC = 0.92) in the test-full
scenario. The real-time BG level predictions showed similar RMSE of 18.64 (MAE =
13.09 and PCC = 0.92) in test-empirical and RMSE of 18.62 (MAE = 13.04 and PCC =
0.92) in test-partial (left panel in Fig. 5b). Interestingly, we found that, in the test-
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empirical setting (test set was imputed by Emp-mean), the predictive model produced
the most probable BG levels (right-middle panel in Fig. 5b) by using as much
information as possible from previously observed values. Meanwhile, in the test-full
setting (test set was imputed by SPI), the spline interpolation smoothly connected the

Fig. 5 Performance of predictive models. a RMSE of each patient was measured in different testing scenarios;
test-full, test-empirical, and test-partial. Blue and red represented small and large RMSE, respectively. b
Comparison between actual observed (red) and predictive (blue) BG levels. Timestamps which had missing
glucose levels were coloured as grey. Comparisons through entire tested timeframe (left) and ± 4 hours from
missing timestamps (right) were presented. Observed and predictive glucose levels of Patient 563 in different
testing scenarios were compared. Training set was imputed by spline interpolation. c and d Performance
improvement of ensemble models over individual models. Percentage of RMSE (c) and MAE (d) improve-
ment was measured from the comparison between the performances of ensemble models and those of five
individual predictive models
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start point to the end point of missing value period which could be artificially inflated
(right-top panel in Fig. 5b). In the test-partial setting (test set was imputed by LOCF),
the predictive model produced unrealistically constant BG levels, which could lead
prediction failure when signal was lost before a drop in BG levels (right-bottom panel
in Fig. 5b).

It has been well known that combining multiple prediction models can yield more
accurate and generalizable forecasts. We therefore decided to build an ensemble model
by integrating the five previously generated predictors for the generalized prediction of
BG level at each timestamp. The ensemble model outperformed individual predictive
models (Fig. 5a). The ensemble model achieved RMSE of 18.45 ± 2.55 (MAE = 12.94
± 1.42 and PCC = 0.94 ± 0.02, test-full), 20.61 ± 2.55 (MAE = 14.49 ± 1.14 and PCC =
0.93 ± 0.02, test-empirical), and 19.59 ± 2.20 (MAE = 13.99 ± 1.11 and PCC = 0.94 ±
0.02, test-partial; Table 2 and Supplementary Table 6). Overall, the ensemble model
improved RMSE and MAE up to 22% compared to five individual predictors in all
three test settings (Fig. 5c and d). Ensemble model delivered prediction improvement of
4–8% compared to more than half of individual predictors when we measured RMSE
and MAE as evaluation metrics. PCC showed relatively less improvement
(Supplementary Fig. 5) since individual predictors already achieved strong correlation
(Pearson’s r > 0.9) between observed and predicted BG levels in test sets. Ensemble
models showed competitive performance in both realistic deployment settings (test-
empirical and test-partial) and conventional setting (test-full; box plots in Fig. 5c and
d). These results indicated that the ensemble models could provide reliable BG levels in
real-time prediction settings.

3.6 Characterization of Relevance of Features to Predict Blood Glucose Level

Given the diversity of features originated from physiological measurements and mon-
itoring signals, we examined their importance to predict BG levels. We measured the
feature importance of all 320 features using the Random Forest algorithm and priori-
tized them using recursive feature elimination (RFE) [34]. Feature importance implied
the ability of individual features to predict BG levels. We found that in all patients,
features derived from quasi-continuous features were more likely to be important for
BG level prediction compared to one-off features (Fig. 6a). Overall, BG level-related

Table 2 Prediction accuracy of 30-minute BG level for the top five imputation methods and ensemble models

Imputation method Test-full Test-empirical Test-partial

Last observed carried forward (LOCF) 19.38 ± 2.53 20.74 ± 2.63 19.38 ± 2.53

Kalman smoothing with structural model (KS) 19.09 ± 3.11 21.16 ± 2.63 20.49 ± 2.20

Stineman interpolation (STI) 18.92 ± 2.69 22.20 ± 2.37 20.83 ± 1.90

Spline interpolation (SPI) 19.32 ± 2.55 20.20 ± 2.92 19.20 ± 2.59

Linear interpolation (LI) 18.39 ± 2.51 22.16 ± 2.38 20.86 ± 1.82

Overall performance of individual models 19.02 ± 2.52 21.29 ± 2.54 20.15 ± 2.20

Ensemble model 18.45 ± 2.55 20.61 ± 2.55 19.59 ± 2.20

*average RMSE ± standard deviation of RMSEs were tabulated
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features such as time-lagged glucose levels, difference of glucose levels between
timestamps, and finger-stick glucose level were ranked within the top 50 important
features in all patients. Meanwhile, one of one-off features, area under the graph of
insulin bolus dose (bolus square), showed patient-specific importance. In Patient 570,
insulin bolus dose was more important in predicting BG levels compared to in other
patients (Supplementary Fig. 6). Other one-off features such as exercise intensity and
work intensity showed relatively less importance to predict BG levels in all patients.

To examine whether only a set of relevant features were enough to predict BG
levels, we sequentially selected the top 5 to 50 most important features, trained models
on each subset, and compared RMSEs with that of the all-feature model. We found that
although the all-feature-based model still achieved the best performance, top-N-feature-
based predictive models had competitive prediction abilities, and model performance
approached the original model with increasing N (Fig. 6b). On average, the top-5
feature model showed a 4% difference from the all-feature based model (0.96-fold
change). Top-25- and top-50-feature models achieved RMSEs 3% (0.97-fold change)
and 1% (0.99-fold change) worse than the all-feature based model, respectively.
Interestingly, using Emp-mean values for test set imputation performed slightly better
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than LOCF imputation when using top-5 to top-50 features to build XGBoost BG level
predictors. These findings suggest that about 15% (50 out of 320 features) of relevant
features could be sufficient to capture key information to predict BG levels.

4 Discussion

While currently available imputation methods can be readily applied to training data,
imputation on test sets is unconventional due to the temporal nature of time series
features. Thus, imputing test sets requires careful consideration of applicability in
realistic online prediction settings. In a realistic setting of BG level prediction (e.g.
online monitoring and prediction), unexpected events, such as loss of signal, sensor
malfunction, power loss of monitoring devices, and human error, may throw predic-
tions off-targets. These missing values potentially cause inaccurate prediction of BG
levels and restrict to identify hypo- and hyperglycaemia. Therefore, appropriate missing
value imputation would be essential for the successful management of data and
accurate model generation based on machine-learning and deep-learning algorithms.
It has been shown that missing values and imputation methods can affect the training of
a neural network when using backpropagation [35]. It would be possible that multi-
plying missing values with a weight and adding a bias during backpropagation would
make a poor predictive model. Other studies which used deep-learning algorithms have
noted the inability of artificial neural networks to handle incomplete data for the
prediction [36] and imputed missing values using interpolation and extrapolation-
based imputation methods [4, 6]. Also, adding a missing value indicator (e.g. 1 =
observed value and 0 = missing value that was imputed) improved prediction of patient
mortality and their diagnostic category [16]. Although machine-learning and deep-
learning-based approaches have been broadly applied to various predictive models, the
effect of imputation on prediction performance has not yet been fully explored.

In this study, we investigated the importance of physiological and monitoring
features to predict BG level and expanded on our work in discerning which imputation
methods could have potential benefits in both the training and the testing/deployment
phases. We also developed a novel imputation method for time series dataset, Emp, and
found that this method can impute the most probable BG levels at a given timestamp.
Furthermore, we investigated the effect of various imputation methods on BG level
prediction and identified an optimal set of imputation methods that can improve the
prediction accuracy. Finally, we demonstrated that ensemble models improved predic-
tion accuracy over individual predictive models (Supplementary Table 2) and models
from our previous approach (Supplementary Table 7): ensemble model improved
prediction accuracy by about 5% and 1% in both conventional and realistic settings
(for the fair comparison, prediction performances on untrimmed test sets were com-
pared). Furthermore, accuracies of the ensemble model on untrimmed test sets were 2%
to 16% higher than those of other deep-learning-based works also trained on the
OhioT1DM datasets [1, 4, 6, 7]. We suspected that the lack of interpretability of
deep-learning models would limit to explain why the model predicted a particular
glucose value. Meanwhile, decision tree-based model (e.g. XGBoost) enabled us to
determine the plausible precisions made by the model in order to generate a predictive
value.
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For the ensemble modelling, we selected top five predicted models that were
imputed by linear interpolation (LI), last observed carried forward (LOCF), spline
interpolation (SPI), Kalman smoothing with structural models (KS), and Stineman
interpolation (STI). We further examined the prediction accuracy of ensemble models
by selecting top seven to two imputation methods (reducing the number of imputation
methods based on rank product). We observed that, regardless of the number of
selected imputation methods, ensemble models generally showed higher prediction
accuracy compared to a single predictive model. Meanwhile, the number of imputation
methods that showed the highest accuracy was different depending on testing scenarios
and patients (Supplementary Table 8). Taken together, ensemble modelling could
improve both accuracy and generalizability of blood glucose level prediction, and these
benefits were realized from analysis of only six patients. Use of additional patients,
who have different level of missing values, may refine the assessment of imputation
methods and ensemble model and increase the accuracy of blood glucose level
prediction.

Across different patients, we found variations in which time-lagged features within
the past hour most strongly impacted the current glucose level. We reasoned that
different lifestyle behaviours, living environments, and genetic background would
affect these varying associations between BG level and time-lagged features. It has
been shown that long-term dietary treatment with fibre-rich foods improved blood
glucose control through the fast reduction of blood glucose after meal intake, and the
restoring time of BG level to its normal range differed depending on meal type (e.g.
breakfast, lunch, and dinner) in T1D patients [37]. Also, more than 20 genetic loci have
been identified to contribute to T1D susceptibility [38], showing that T1D is a
heterogeneous and polygenic disorder. Taken together, we believe that time-lagged
versions of features could be key factors for building personalized predictors of BG
levels.

The last decade has seen tremendous advances in elucidating genetic factors and
epidemiology and developing clinical interventions in type 1 diabetes. The improve-
ment of treatment options to control BG level such as continuous glucose monitoring
and insulin pump therapy has helped clinicians and patients to manage the disease and
control insulin administration. Despite these efforts, there remains an urgent need for
accurate prediction of blood glucose level for T1D patients in both conventional and
especially realistic settings. Examined features in our study which were derived from
health monitoring and wearable devices can act as partial surrogates for genetic and
physiological testing, and incorporating these features into common clinical practice
could improve the risk assessment, treatment, and control of type 1 diabetes.

5 Conclusion

This study described a machine-learning approach using XGBoost to predict blood
glucose levels on a 30-minute horizon. We explored the effectiveness of missing data
imputation methods in both training and test settings. Our experiments demonstrated
that the top five imputation methods for BG level prediction were carrying forward the
last observed value, linear interpolation, spline interpolation, Stineman interpolation,
and Kalman smoothing with structural models. Predictive models were benchmarked in
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three testing scenarios; one train-test conventional setting and two realistic deployment
settings.

While individual models using different imputation methods performed well, en-
semble models that aggregated predictions from all five models showed ~ 10%
improvement in RMSE in realistic settings over any model alone. We investigated
feature importance across current and past feature values and demonstrated that time-
lagged features are important features for building personalized BG level predictors.
Finally, we trained top-N-feature-based predictive models, showing that significantly
smaller feature sets yielded competitive prediction abilities and providing promising
results for future deployment of lightweight BG prediction models.
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