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Abstract

We propose a method called integrated diffusion for combining multimodal data, gathered via 

different sensors on the same system, to create a integrated data diffusion operator. As real world 

data suffers from both local and global noise, we introduce mechanisms to optimally calculate a 

diffusion operator that reflects the combined information in data by maintaining low frequency 

eigenvectors of each modality both globally and locally. We show the utility of this integrated 

operator in denoising and visualizing multimodal toy data as well as multi-omic data generated 

from blood cells, measuring both gene expression and chromatin accessibility. Our approach better 

visualizes the geometry of the integrated data and captures known cross-modality associations. 

More generally, integrated diffusion is broadly applicable to multimodal datasets generated by 

noisy sensors collected in a variety of fields.

Index Terms—

manifold learning; data diffusion; multimodal data; dimensionality reduction; data denoising

1. INTRODUCTION

Technological advances have allowed for multimodal instruments to provide information 

on the same system in parallel. Now, computational approaches must also incorporate 

the maximum amount of information from all modalities in order to perform a wide 

variety of downstream tasks, such as integrated visualization, denoising, and cross-modality 

correlations between features. In the past, solutions have been based on the assumption 

that naive concatenations of features obtained from unique measurements, or a subset of 

selected features, can offer viable solutions [1, 2]. Other neural network based approaches 
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have been proposed as well; for instance, domain transfer autoencoders and cycle GANs 

[3]. However these approaches are sensitive to the scale of and noise present in each feature 

space. This problem is particularly present in high throughput biomedical data, such a single 

cell RNA-sequencing and single cell ATAC-sequencing, which have entirely different scales 

and suffer from differing degrees of noise and sparsity. In order to address these concerns, 

we turn to the framework of data diffusion that was developed by [4].

According to the data diffusion framework, we can learn the intrinsic space of the data 

by powering a Markov transition matrix to a power t, which implicitly calculates a t-step 

random walk on the data graph. This process accumulates probabilities in paths that 

traverse through relatively dense regions of the data and diminish in sparse outlier regions, 

inherently denoising the matrix towards predominant axes of variation represented by the 

low frequency eigenvectors as shown by [5]. In [4], the powered diffusion operator is 

eigendecomposed to uncover intrinsic data dimensions. Since that seminal work, the Markov 

matrix, also known as a data diffusion operator, has been shown to be useful in many data 

processing tasks [6], including denoising [5] and dimensionality reduction [7].

Here, we define an integrated diffusion operator for multiple data modalities. First, we 

emphasize dominant directions at a local level in each modality by using a multiscale 

spectral denoising method to denoise each data modality before modality specific diffuion 

operator calculation. These diffusion probabilities are then integrated by taking several steps 

in the data graph from one modality, and several steps on the data graph defined by the 

other modality. The number of steps is carefully chosen based on spectral entropy of each 

modality. Both of these steps help address modality specific sources of noise both at the 

local and global levels (Fig. 1). Empirically we show that our method yields more accurate 

visualizations and more faithful denoising on both datasets where ground truth is known 

and in exploratory biomedical datasets, as compared to a variety of alternative methods for 

combining multimodal data.

2. BACKGROUND

2.1. Manifold learning via data diffusion

Intuitively, while measurement strategies often produce high dimensional observations, their 

intrinsic dimensionality, or number of degrees of freedom, is relatively low. In [4], diffusion 

maps were proposed as a robust way to capture intrinsic manifold geometry in dataset 

by eigendecomposing diffusion operators. Using t-step random walks that aggregate local 

affinity, nonlinear relations are revealed in data, which allows their embedding in low 

dimensions. These local affinities are commonly constructed using a Gaussian kernel

K xi, xj = exp −
xi − xj 2

ε , i, j = 1, …, N (1)

where K is an N × N Gram matrix whose (i, j) entry is denoted by K(xi, xj) to emphasize the 

dependency on X, based on bandwidth parameter ε that controls local neighborhood sizes. A 

diffusion operator is defined as the row-stochastic
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P = D−1K, (2)

where D is diagonal matrix: D xi, xi = ∑jK xi, xj .

The matrix P, or diffusion operator, defines single-step transition probabilities for a 

time-homogeneous diffusion process, or a Markovian random walk, over the data. The 

eigenvectors of P, denoted Φ = ϕ0, ϕ1, …, ϕn, represent frequency harmonics over the graph 

based on equivalence to eigenvectors of a normalized graph Laplacian. The eigenvalues Λ = 

λ1, λ2, λi … λn directly indicate frequencies, as they are related to the eigenvectors.

The eigenvectors of the diffusion operator are equivalent to those of the normalized graph 

Laplacian L = I − P = D−1Lu = D−1(D − K), where I is the identity matrix, D is the degree 

matrix, K is the kernel affinity, Lu is the unnormalized graph Laplacian. Graph Laplacian 

eigenvectors have been shown to be equivalent to graph frequency harmonics [8]. Thus, 

signal loadings on to diffusion eigenvectors create a graph Fourier transform defined as ΦT f 
for a graph signal f.

Signals can be filtered using the graph Fourier transform by altering their loading 

coefficients on to eigenvectors of the graph Laplacian. Thus, a graph filter can be defined as

ℎ(f) = Φℎ(Λ)ΦTf (3)

using a slight abuse of notation with Λ being a diagonal matrix of eigenvalues. Here, h 
rescales the eigenvalues to modulate frequency components of f. In [4], powers Pt of the 

diffusion operator, for t > 0, not only simulate t step random walks over the data, but can 

also be seen as soft low-pass graph filters ℎ λi, t = λi
t, which diminish higher frequency 

noise components more rapidly than lower frequency informative components. In [5], such 

filters were used on biological data to denoise single cell RNA sequencing measurements by 

simply applying the powered diffusion operator (or diffusion filter) to the data as

X = PXX, (4)

thus avoiding eigendecomposition.

2.2. Alternating diffusion

Recently, alternating diffusion has been proposed to combine diffusion operators created 

from multimodal data [9]. Intuitively, this generalizes the random walk to “hop” between 

different metric spaces by taking a matrix product of the Markov transition matrices

P xi, xj = PiPj (5)

Finally, the resultant alternating diffusion operator P is powered to stimulate “hopping” 

across modalities. While this approach is able to construct a joint diffusion operator, it 

is sensitive to local and global noise found in each dataset creating a joint manifold that 

represents not only modality specific sources of information, but also noise.
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3. METHOD

3.1. Problem formulation and approach

Let X ⊆ ℝDX and Y ⊆ ℝDY  be two datasets generated by measuring the same system 

with two sets of sensors in different metric spaces. Each of these datasets contains 

nonoverlapping features with different scales, and is subject to differing degrees of noise. 

Here, we propose an approach for generating an integrated diffusion operator that selects 

information from both modalities at multiple scales. Our approach is based on the idea that 

frequency components of the diffusion operator can be low-pass filtered using particular 

powers of this operators. By using multiple scales, we perform both local and global 

denoising of the data modalities to a degree where highly relevant information is retained in 

the joint integrated operator. This integrated diffusion operator can then be used to visualize 

and denoise both datasets (Fig. 1).

3.2. Neighborhood reconstruction via multiscale spectral denoising

Specific areas of each modality’s data manifold can contain different amounts of noise that 

may obscure structure in joint embeddings. Therefore, we translate the global denoising idea 

from [5] to local regions and multiple scales by creating and applying hierarchical sets of 

diffusion operators as described in Alg. 3.2. This recursive approach calculates increasingly 

local diffusion operators and denoises the original modality-specific data at multiple scales. 

At each scale, the original input data, represented in by X (see Alg. 3.2), is averaged with 

the denoised data X. Each scale of the hierarchy contributes half as much correction as the 

previous scale, with the overall effect summing to one. We apply this modality specific local 

denoising approach to correct all data modalities before integrating them. It should be noted 

that the filter we use from Eq. 4 can be replaced with a more general filter, i.e., any filter that 

takes the form of Eq. 3.

3.3. Global denoising via spectral entropy

In addition to correcting for varying local noise within a single modality, it is crucial to 

only maintain the most globally important eigenvectors in each data modality. While [5] 

did globally denoise by taking the diffusion operator powers Pt, the methodology used there 

for tuning t essentially required manual trial and error. Such tuning is crucial here as a 

small t could incorporate significant modality specific noise, while a high t could improperly 

diminish the effect of informative eigenvectors. Therefore, we propose to select t for each 

data modality separately by using spectral entropy to evaluate how much information it 

encodes in the diffusion operator for each candidate value of t. We can then methodically 

tune t to be a scale where the information loss stabilizes, with the reasoning that signals are 

harder to remove than the noise.
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Spectral entropy is defined as the Shannon entropy of normalized eigenvalues, i.e.,

S(P, t) = − ∑
i

ψitlog ψit , (6)

which in this context quantifies the spread of information throughout the eigenspectrum of 

the diffusion operator. We reason that innumerable noise dimensions will quickly drop off 

while informative dimensions are harder to remove. Hence, we choose the elbow of this 

curve to find an inflection point k in the spectral entropy S(p) as can be seen in Fig. 4C.

3.4. Fusion of operators

While the spectral entropy heuristic is used to compute t for each modality independently, 

it cannot directly be used to tune timescales across modalities to combine their diffusion 

operators together. Since noise may be inherently present in the system being measured, 

and therefore be present in both datasets, the integrated operator must again be used by 

taking its powers to a given time scale. Powering directly by t1, t2 and tintegrated would 

lead to an oversmoothing effect that would eliminate information from the low frequency 

eigenvectors in the final computed manifold, effectively collapsing independent informative 

data points together. To alleviate this concern, we raise each modalities diffusion operator 

to the lowest possible multiple of the ideal view-specific t. This means we can write our 

integrated diffusion operator, J, to reflect the differing levels of global information between 

views as

J = P1
t1P2

t2 (7)

where t1 and t2 are integer values obtained from the reduced ratio as described above, and 

P1 and P2 are modality specific diffusion operators. This integrated diffusion operator can be 

applied directly to one of the data modalities as a low pass denoising diffusion filter as done 

in Eq. 4 or can be powered and embedded using the methods of [4] or [7].

4. EXPERIMENTAL RESULTS

In the following experiments we evaluate the ability of integrated diffusion to visualize 

and denoise high-dimensional multimodal data. We first simulate global noise using the 

MNIST handwritten digits dataset. We generate multiple modalities of MNIST handwritten 
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digits by adding Gaussian noise to the images, where each pixel value pi′ = pi + N(ν), where 

ν changes based on the level of noise. To showcase the ability of our method to handle 

modalities with significant differences in global noise, we add a fixed amount of Gaussian 

noise to simulate one data modality and increasing amount of Gaussian noise to simulate the 

second data modality (Fig. 2A). Next, we generate multiple modalities of high dimensional 

artificial trees with varying amounts of local noise to specific branches. Similar to our 

MNIST multimodal datasets, we add a small amount of fixed noise to each tree before 

adding increasing amounts of noise to differing branches (Fig. 2B). Finally, we apply our 

integrated diffusion approach to real world single cell biological data from RNA-sequencing 

(gene expression) and ATAC-sequencing (chromatin accessibility). With these datasets, we 

compare integrated diffusion to other multimodal learning approaches on visualization and 

denoising tasks.

4.1. Visualization

To quantify the differences in visualizations produced from differing multimodal integration 

strategies, we compared the first 20 diffusion map components computed from diffusion 

operator constructions based off of multimodal feature concatenation, distance addition, 

affinity addition, affinity multiplication and alternating diffusion, to integrated diffusion. 

We also performed ablation studies, comparing these techniques to various diffusion 

operators: alternating diffusion with local correction and alternating diffusion with modality 

specific powering of diffusion operators via spectral entropy ratio. We also compared to non-

diffusion based embeddings produced by cycle GANs, autoencoders and domain transfer 

autoencoders. For our MNIST comparisons, we train a kNN-classifier to predict MNIST 

digit of origin from the embedding trained from each technique. For our tree comparisons, 

with branches with differing amounts of local noise, we try to determine how successful 

our embeddings are using DeMAP (Denoised Manifold-Affinity Preservation) proposed in 

[7]. DeMAP computes geodesic distance between all data points in a noiseless dataset and 

correlates it with distance between these data points in an embedding. This method tries to 

determine if the embedding accurately maintains ground truth point to point distances in 

compressed space.

All strategies performed comparably when both modalities had a similar degree of local 

and global noise. As the difference in global noise increased in our MNIST embedding 

classification task, strategies that powered the diffusion operators to account for global noise 

outperformed strategies that did not (Fig. 2C). When embedding trees with varying degrees 

of local branch specific noise, methods that perform local correction with multiscale spectral 

denoising significantly outperformed methods that did not (Fig. 2D).

4.2. Denoising

Previous work in diffusion filters has shown that low pass filtering can correct many types 

of noise present in real world datasets, allowing for downstream analysis [5]. Here, we 

compare several methods for data denoising with our integrated diffusion approach. As done 

previously, we created multimodal MNIST data by adding differing amounts of global noise. 

After computing the integrated diffusion operator with each of these comparison methods, 

we filter the noisier MNIST modality as done previously [5] and as can be seen in Fig. 
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3A. To get quantitative results, we train a kNN-classifier on the denoised pixel values to 

determine how well each operator is able to predict the digit (Fig. 3). As shown in Fig. 

3B, across all denoising comparisons, classification accuracy on increasingly noisy MNIST 

digits were best recovered by integrated diffusion followed by alternating diffusion with 

modality specific view powering, both methods account for global information within each 

noisy modality.

5. BIOLOGICAL APPLICATIONS

New methods allow for the measurement of tens to hundreds of thousands of features 

in single cells, allowing for unprecedented insight into biological and cell type specific 

processes. Until recently, only a single modality could be measured in each cell, be it 

expression of genes through RNA sequencing or the accessibility of chromatin regions 

through ATAC sequencing. Now novel techniques allow for the measurement of different 

modalities at single-cell resolution. Increasingly commonly, individual cells are measured 

with a combination of chromatin accessibility and RNA expression [10, 11]. This new type 

of data is powerful, as it not only allows for the study of each modality independently, but 

also allows for the discovery of regulatory mechanisms between modalities. Currently, no 

computational techniques are capable of modelling and predicting these dynamics as there 

are no strategies that integrate different modalities of data to jointly visualize and denoise 

multimodal single-cell data.

We apply integrated diffusion to multimodal single cell data of 11,909 blood cells, 

visualizing the integrated manifold and uncovering key cross modalities interactions. 

Visualizing each modality, gene expression and chromatin accessibility, independently 

reveals similar overall structure, but different resolutions. Chromatin accessibility data, when 

compared to gene expression data, is incredibly sparse and generally considered to be far 

more noisy. When computing the spectral entropy of each modality, we can clearly see that 

the chromatin accessibility diffusion operator has a far fewer informative dimensions than 

the gene expression operator. The alternating diffusion approach, which does not account for 

modality specific sources of noise creates an embedding that blends the distinct structure 

of gene expression data with the less informative structure of chromatin accessibility data. 

Integrated diffusion, however, appears to better resolve differences in information across 

datasets, producing a visualization that contains sharper borders between populations and 

displays clear structure when visualized with PHATE (Fig. 4A–B).

A major issue in single cell data is sparsity, which makes it very difficult to measure and 

model cross modality interactions. Theoretically, if a gene is expressed, then the chromatin 

encoding that gene must be accessible. With this understanding of the data, we try to recover 

these known associations between gene expression and chromatin accessibility (Fig. 4D). 

Due to sparsity, there is no association as computed by mutual information between these 

variables without denoising with Eq. 4. There are several strategies to recover these cross 

modality interactions: denoising each modality with modality-specific diffusion operators, 

denoising with a single alternating diffusion operator or denoising with a single integrated 

diffusion operator. Using the integrated diffusion operator appears to best recover known 

gene expression and chromatin accessibility associations as shown in genes CD19, CD14 
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and CD4 (Fig. 4D). We then computed these associations across all genes with each of our 

denoising strategies. Across 18,659 genes, integrated diffusion recovered significantly more 

information between a gene’s accessibility and its expression than alternating diffusion and 

modality-specific diffusion (Fig. 4E).

6. CONCLUSION

We introduce the integrated diffusion operator for learning an integrated data geometry as 

described by multiple data measurement modalities applied to a single system. We show its 

improvement over more naive methods on synthetic and biological datasets. We apply our 

method in biomedical setting to a multiomic dataset, where we generated rich integrated 

manifolds and recover cross modality gene-chromatin associations. Our flexible framework 

is extendable to multiple modalities and we expect it will allow for successful integration 

and analysis of massive datasets in a wide variety of fields.
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Fig. 1. 
Workflow of integrated diffusion. We denoise each modality to local low frequency 

eigenvectors with multiscale spectral denoising. Next, we calculate and compare the intrinsic 

dimensionality of each dataset via spectral entropy ratio to determine the ideal number of 

t-steps to place in each modality in an alternating random walk. The resulting diffusion 

operator can help denoise and visualize data.
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Fig. 2. 
Generation of multimodal data from ground truth MNIST and artificial tree data as well 

as visualization comparisons. A) Gaussian noise is added to the entire MNIST datasets to 

simulate global noise as visualized by PHATE [7]. B) Gaussian noise is added to branches 

of the artificial tree dataset to simulate local noise as visualized by PHATE. C) Classification 

accuracy for predicting MNIST digits from integrated embeddings created by a variety of 

techniques with increasing differences in global noise. D) DeMAP correlations between 

ground truth tree distances with integrated embedding distances created by a variety of 

techniques with increasing differences in local noise.
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Fig. 3. 
A) Denoising of MNIST data with alternating (middle row) and integrated (bottom 

row) diffusion operators. B) MNIST denoised pixel classification accuracy with differing 

diffusion-based multimodal denoising strategies. As above, data was generated by adding 

differing amounts of random gaussian noise to MNIST pixels.
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Fig. 4. 
Application of integrated diffusion to multimodal single cell data. A) Visualization of gene 

expression and chromatin accessibility manifolds as well as B) alternating and integrated 

manifolds via PHATE. Points colored by annotated cell type. C) Visualization of spectral 

entropy of each modality. D) Mutual information between the expression of a gene and 

it’s accessibility across differing denoising strategies. E) Average mutual information for 

differing denoising strategies across all gene expression-gene accessibility pairs.
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