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Abstract

Objective: This novel preliminary study sought to capture dynamic changes in heart rate 

variability (HRV) as a proxy for cognitive workload among perfusionists while operating the 

cardiopulmonary bypass (CPB) pump during real-life cardiac surgery.

Background: Estimations of operators’ cognitive workload states in naturalistic settings have 

been derived using noninvasive psychophysiological measures. Effective CPB pump operation by 

perfusionists is critical in maintaining the patient’s homeostasis during open-heart surgery. 

Investigation into dynamic cognitive workload fluctuations, and their relationship with 

performance, is lacking in the literature.

Method: HRV and self-reported cognitive workload were collected from three Board-certified 

cardiac perfusionists (N = 23 cases). Five HRV components were analyzed in consecutive 

nonoverlapping 1-min windows from skin incision through sternal closure. Cases were annotated 

according to predetermined phases: prebypass, three phases during bypass, and postbypass. Values 

from all 1min time windows within each phase were averaged.

Results: Cognitive workload was at its highest during the time between initiating bypass and 

clamping the aorta (preclamp phase during bypass), and decreased over the course of the bypass 

period.

Conclusion: We identified dynamic, temporal fluctuations in HRV among perfusionists during 

cardiac surgery corresponding to subjective reports of cognitive workload. Not only does cognitive 

workload differ for perfusionists during bypass compared with pre- and postbypass phases, but 

differences in HRV were also detected within the three bypass phases.

Application: These preliminary findings suggest the preclamp phase of CPB pump interaction 

corresponds to higher cognitive workload, which may point to an area warranting further 

exploration using passive measurement.

Keywords

physiological measurement; patient safety; physiological psychology; wearable devices; surgical 
care and procedural technologies

INTRODUCTION

Heart rate variability (HRV) is defined as the measure of fluctuations in consecutive 

heartbeat intervals (Malik et tal., 1996). As such, HRV provides insight into interactive 

physiological systems modulating heart rhythm (Rajendra Acharya et al., 2006) and has 

been used for decades as an unobtrusive measure of physical and psychological states. 

Conditions associated with HRV levels include stress (Kim et al., 2018), self-regulatory 

Kennedy-Metz et al. Page 2

Hum Factors. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strength, effort, fatigue (McCraty & Shaffer, 2015; Segerstrom & Nes, 2007), changes in 

task complexity/demands (Luque-Casado et al., 2016), and cognitive load (Hughes et al., 

2019; McDuff et al., 2014). The concept of measuring cognitive performance via HRV 

capture, in particular, is supported largely by the theory behind and empirical evidence 

generated from the neurovisceral integration model (Thayer et al., 2009, 2012).

Critically, different approaches to analyzing the electrocardiogram (ECG) yield distinct HRV 

components, which can be categorized as time-domain, frequency-domain, and nonlinear 

measures depending on the analytic approach employed (Shaffer & Ginsberg, 2017). Since 

HRV is indicative of the interplay of physiological systems, including the sympathetic and 

parasympathetic nervous systems (SNS and PNS, respectively), distinct HRV components 

can be leveraged to infer specific changes in SNS or PNS activity. Specific components that 

are known to be parasympathetically driven and reliable indicators of a healthier 

physiological state include time-domain measures such as the root mean square of the 

successive differences (RMSSD) and percentage of normal-to-normal peaks differing by at 

least 50 ms (pNN50); and the frequency-domain measure log of the high frequency power 

band (HF log). Because these measures reflect parasympathetic activity, higher values reflect 

a more desirable physiological state. This is also true of the average interval duration 

between consecutive R-peaks (mean RR), which provides the inverse of the average heart 

rate (HR).

HRV measurement and analysis in monitoring psychophysiological changes of operators 

working in high-consequence domains are increasingly being investigated (Frazier & Parker, 

2019). However, of the 22 articles included in this prior systematic review, only two of those 

captured physiological responses in naturalistic, real-world settings, and most adopted 

retrospective analytical approaches. In particular, this illustrates a gap in the literature related 

to the knowledge about using physiological signals, and specifically of HRV, as measures of 

operator performance in the wild. With its complex sociotechnical nature, operative surgery 

is an ideal environment for the application of HRV. HRV is a particularly strong candidate 

for physiological monitoring given it is continuous, passive, unobtrusive, and noninvasive 

(Kennedy et al., 2018) and the most frequently utilized measure of physiological fluctuations 

during actual and simulated surgical procedures (Dias et al., 2018). Within the domain of 

surgery, cardiac is an especially compelling setting given its multilayered teams including 

surgeons, cardiac anesthesiologists, operating room (OR) nurses, and perfusionists.

Research into HRV fluctuations among cardiac surgery team members has mainly focused 

on surgeons, medical students, anesthesiologists, or nurses (Dias et al., 2018) with 

comparatively less attention to perfusionists (Wadhera et al., 2010), despite their critical role 

during cardiopulmonary bypass (CPB). The successful execution of CPB necessitates 

multiple interfaces between the perfusionist and the bypass machine, and human interaction 

with team members (surgeons, anesthesiologists, nurses); as such, CPB is subjectively 

determined to be the most cognitively demanding phase of open cardiac surgery for 

perfusionists (Dias et al., 2019; Wadhera et al., 2010) and the CPB pump can be considered 

a multifaceted machine requiring constant operator interaction. In particular, the initiation 

and termination of the bypass phase were shown to induce more stress for perfusionists 

compared with the stable period in the middle of the bypass phase, according to eye-
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tracking, pupillometry, and the NASA Task Load Index questionnaire (NASA-TLX; Hart & 

Staveland, 1988) in a recent study (Merkle et al., 2019).

Detailed cardiac surgery process models have been rigorously and iteratively developed with 

subject matter experts by our group (Avrunin et al., 2018) and utilized to identify key tasks 

and duties of the perfusionist during each phase of surgery; these include pre- and 

postbypass phases in addition to CPB itself. During the prebypass phase, perfusionists 

primarily set up CPB pump lines, establish baseline laboratory values, and calculate the 

appropriate drug dosages for delivery (e.g., heparin).

Once bypass has been initiated, during the particularly short period of time before placing 

the aortic cross-clamp (preclamp phase during bypass), perfusionists have multiple primary 

tasks to ensure successful transition to CPB. These include managing the pump temperature, 

line pressures, and flow and venous drainage; perfusionists also monitor arterial, cerebral, 

and venous saturations and prime the cardioplegia lines at this time. This necessitates 

continuously closed-loop communication with surgeons and anesthesiologists.

Once the aorta is cross-clamped (clamp phase during bypass), critical tasks include general 

management of CPB flow, oxygen delivery to the tissues, cardioplegia delivery, and 

monitoring of pressure, temperature, and hematocrit levels. This “clamp phase,” usually 

extending past an hour, tends to span the longest period of time. After the aortic cross clamp 

is removed, and before terminating bypass (postclamp phase during bypass), perfusionists 

continue to monitor venous return and hemodynamic stability; they also prepare to wean the 

patient off extra-corporeal support. Upon terminating bypass (postbypass), tasks that follow 

include calculating and communicating protamine dosage for heparin reversal and managing 

the system used to salvage cardiotomy blood from surgery.

The present study used a preliminary approach to investigate the dynamic fluctuations in 

HRV among perfusionists before, during, and after the bypass phase of elective, common 

cardiac surgery procedures. Given the high potential for cognitive overload during the 

bypass phase of open cardiac surgery while perfusionists toggle between human-machine 

interaction and team-based communication, this is a critical task for perfusionists and the 

patients under their care. The role of perfusion is commonly underappreciated, and the 

scarcity of empirical literature reporting perfusionists’ cognitive workload changes during 

cardiac surgery illustrates a critical knowledge gap. Beyond the scope of surgery, there is 

also a notable gap in the collection of physiological signals representative of changing 

cognitive workload states in naturalistic settings and a lack of validation of those signals 

against self-reported perceptions.

The aims of this exploratory study were to (a) describe dynamic changes in cognitive 

workload among perfusionists during cardiac surgery; (b) demonstrate the utility and 

sensitivity of HRV, as a proxy for cognitive workload, in capturing dynamic fluctuations 

over time in a naturalistic setting; and (c) fill an existing knowledge gap by illustrating both 

subjective and objective estimates of cognitive workload. We hypothesize that the bypass 

phase of cardiac surgery will elicit higher self-perceived reports of cognitive workload 

compared with pre- and postbypass phases, which would urge further investigation into HRV 
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changes during the bypass phase in particular. We also hypothesize that earlier phases of 

CPB may reveal HRV indices representative of higher cognitive workload compared with 

later phases of CPB, given the greater degree of overall demands earlier during the bypass 

period. With the neurovisceral integration model in mind, we believe that dynamic 

fluctuations, if detected, could be indicative of objective and temporal changes in 

perfusionists’ high-level cognitive functioning during perfusionist-CPB pump machine 

interaction.

METHODS

Participants

This research complied with the American Psychological Association Code of Ethics and 

was approved by the Institutional Review Board at VA Boston Healthcare System and 

Harvard Medical School (IRB#3047). Informed consent was obtained from all participants, 

which included patients and OR staff involved with the procedure. Data were collected 

during isolated aortic valve replacement (AVR) or isolated coronary artery bypass graft 

(CABG) procedures in the cardiac OR of a tertiary teaching hospital between January 2017 

and November 2018. Data from 23 cases were collected during the study period. Experience 

of the three perfusionists involved in the 23 cases can be found in Table 1. Overall, the 

distribution of participation was relatively equal (nine, eight, and six cases) across the three 

participants.

Equipment

Data sources included two GoPro HERO4 Black Edition cameras (San Mateo, CA) for video 

capture of (a) the entire OR and (b) the surgical field; 1 Sony ICD-PX440 audio recorder 

(Tokyo, Japan) for audio capture of the primary perfusionist; one Polar V800 chest strap 

with H10 sensors (Kempele, Finland) for HR capture of the primary perfusionist; and three 

self-report cognitive workload indices to retrospectively measure perceived cognitive 

workload (a) before going on bypass, (b) while on bypass, and (c) after going off bypass.

Self-reported cognitive workload was assessed using a modification of the Surgery Task 

Load Index (SURG-TLX; Wilson et al., 2011) introduced by Yu et al. (2016). This modified 

form includes five dimensions of cognitive workload sensitive to intraoperative demands: 

mental demand, physical demand, task complexity, distractions, and degree of difficulty. 

Using five visual analog scales ranging from 0 to 100, respondents subjectively assess their 

perceived cognitive load across each dimension. Higher ratings on these dimensions indicate 

higher levels of perceived demands, with the highest possible perceived cognitive workload 

corresponding to a rating of 100.

Study Setup and Environmental Conditions of the Operating Room

A bird’s-eye view of the typical OR configuration across the cases analyzed can be found in 

Figure 1. This figure illustrates where each of the cameras were located, locations of 

personnel, and an indication of the number of people in the OR on average. Though the 

cameras were not concealed during data collection, they were small enough to go largely 

unnoticed by personnel, minimizing the potential to induce the Hawthorne effect.
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In general, the number of individuals present in the OR during AVR and CABG procedures 

tends to range between 9 and 15 providers. The minimum requirement of personnel at a 

given time (nine) includes teams of surgeons (attending and trainee), anesthesiologists 

(attending and trainee), perfusionists (primary and secondary), nurses (circulating and scrub 

tech), and a physician assistant. The highest number of staff in the OR across all 23 cases 

analyzed was 15, which included additional team members (i.e., a second attending 

surgeon), medical students, vendors, and/or observers and researchers.

Ambient lighting and OR room temperature tended to be stable across cases, with minimal 

variation overall (room temperature range: 65–69°F). Background noise varied moderately, 

but based on preliminary inspection of auditory files, the pre- and postbypass phases were 

consistently louder than the bypass phase, in all 23 cases. During times requiring a high 

degree of communication (i.e., separating from bypass), noise in the OR was highest, 

reaching up to 0.030 RMS on average. This can be compared with analogous periods of time 

selected from the middle of the corresponding bypass phases (average = 0.022 RMS). 

Analyses of these data were not incorporated in the original study design, providing 

contextual but not necessarily robust post hoc analysis.

Finally, the possibility that organizational pressures could influence the OR environment was 

considered. All 23 cases included in analysis were completed while at least one additional 

case was underway in another OR at our hospital (total ORs = 6). On average, 3.7 of the 5 

remaining ORs were being used concurrently during the analyzed cases. Common 

concurrent surgeries include those conducted by neurosurgery, urology, vascular surgery, and 

obstetrics and gynecology departments.

Given the focus on cognitive workload in the operative setting, it is critical to consider the 

design and functionality of the CPB pump that perfusionists interact with. The design of the 

Sorin S5 CPB pump machine model in the present study was manufactured by Stöckert 

(Munich, Germany; seen in Figure 2). The complexity of the design is illustrated by the 

number of components competing for the perfusionist’s attention, with a compact 

configuration of 13 displays, all displaying critical information regarding patient parameters. 

In reference to Figure 1, it is also worth noting that in addition to the multiple displays 

competing for attention, perfusionists are also tasked with communication hindrances when 

the attending surgeon and trainee switch positions. In this configuration, the attending 

surgeon and perfusionist rely on verbal communication alone, without the opportunity to 

integrate nonverbal cues.

Procedure

Data collection began prior to the patient’s arrival into the OR to ensure minimal 

interference with sterile prepping procedures, and ended at the patient’s departure from the 

OR. Following each case, all audio, video, and physiological recordings were manually time 

synced and integrated by one researcher (LKM). Data were analyzed from the time the 

patient was transferred onto the operating table until the end of sternal closure. Phases 

within the procedure were annotated as (a) prebypass (skin incision—initiating bypass), (b) 

preclamp (initiating bypass—clamping the aorta), (c) clamp time (clamping the aorta—

unclamping the aorta), (d) postclamp (unclamping the aorta—terminating bypass), and (e) 
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postbypass (terminating bypass—sternal closure). Identification and annotation of surgical 

phases was done manually by one coder (LKM).

Within the HRV data collected, we were specifically interested in vagally mediated 

indicators of cognitive workload, including: RMSSD, HF log, index of the parasympathetic 

nervous system activity (PNS index), pNN50, and mean RR (Shaffer & Ginsberg, 2017). 

Although short-term HRV analysis has traditionally been limited to 5-min intervals (Malik et 

al., 1996), more recent evidence supports the accuracy and reliability of calculating HRV on 

ultra-short time scales, using time windows as narrow at 10 s (Baek et al., 2015; Munoz et 

al., 2015; Nussinovitch et al., 2011; Salahuddin et al., 2007; Schaaff & Adam, 2013; Shaffer 

et al., 2016; Thong et al., 2003). In an effort to capture dynamic fluctuations occurring on 

short time scales, our analysis involved calculating the ultra-short-term time window of 1 

min.

HRV was analyzed by calculating values for each consecutive, nonoverlapping 1-min time 

window within each surgical phase using Kubios HRV software (Tarvainen et al., 2014), and 

averaging all 1-min windows within a phase to result in one value for each HRV component 

per phase. This approach was originally proposed by the Task Force of The European 

Society of Cardiology and The North American Society of Pacing and Electrophysiology to 

minimize error arising from data segmentation into very short time windows. Thus, the 

average of all inclusive 1-min calculations within a given phase represent the HRV value for 

the duration of that phase.

Statistical Analysis

Statistical analysis was conducted using SPSS version 26.0 (Armonk, NY). Initial 

calculations were conducted to evaluate intra-class correlations (ICCs) within perfusionists 

for all SURG-TLX dimensions and all HRV components. Multilevel modeling (MLM) was 

additionally utilized to determine the degree of variability in HRV measures accounted for 

by fixed factors for every level of the model (Level 1: intraoperative phases; Level 2: cases; 

Level 3: perfusionists).

RESULTS

Specific SURG-TLX dimensions, including mental demands, task complexity, and degree of 

difficulty, varied similarly according to bypass phase, considering aggregated measures 

across perfusionists. In each of these dimensions, the bypass phase was perceived to be more 

demanding than the pre-or postbypass phases of surgery (Figure 3). Table 2 lists means and 

standard errors of the mean.

Because these data are not independent and yielded high ICCs (mental demand ICC = .844; 

physical demand ICC = .711; task complexity ICC = .871; distractions ICC = .807; degree 

of difficulty ICC = .896), we considered the trends across individual perfusionists (Figure 4) 

to gain more insight into individual patterns of change. In the three dimensions showing the 

most notable trends in Figure 3 (mental demand, task complexity, and degree of difficulty), 

we see main effects of the individual, and at the same time consistent trends across bypass 

phases and individual perfusionists. Perceived physical demands and distractions did not 
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follow a consistent pattern across individual providers. Due to high ICCs and a low sample 

size, we did not run statistical calculations (Musca et al., 2011) but can appreciate the similar 

pattern of change nonetheless.

To investigate concordance between subjective (SURG-TLX) and objective (HRV) data, we 

similarly visualized the prebypass, during bypass, and postbypass phases across the HRV 

measures analyzed. Two components (RMSSD and PNS index) showed the lowest HRV 

values observed during bypass, with higher values observed during the pre- and postbypass 

phases (Figure 5). This corresponds to the self-report data, suggesting that the lower 

RMSSD and PNS index values observed during bypass may be indicative of higher 

cognitive workload levels.

Due to the pattern of increased perceived cognitive workload and decreased RMSSD and 

PNS index values during the bypass phase compared with pre- and postbypass phases, we 

sought to characterize fluctuations in HRV on a more granular scale. To accomplish this, we 

further subdivided the bypass phase into three separate phases: preclamp, clamp, and 

postclamp. Given the variety of tasks involved with different bypass steps, calculating the 

average over the entire bypass period has a high potential to dilute important fluctuations 

over time.

Analysis of each HRV component included (RMSSD, HF log, PNS index, pNN50, and 

mean RR) revealed the same pattern across the three bypass phases. In each case, HRV 

values were at their lowest during the preclamp phase of bypass (indicative of lower 

parasympathetic tone), increased in value during the clamp phase of bypass and increased 

further during the postclamp phase of bypass (Figure 6). Table 3 shows the means and 

standard errors of the means for each component.

Due to high ICCs across perfusionists for each HRV component (RMSSD ICC = .849; HF 

log ICC = .953; PNS index ICC = .938; pNN50 ICC = .973; mean RR ICC = .982), 

statistical calculations were deemed inappropriate and therefore not conducted.

MLM was conducted to explore the degree of variation between the level 3 unit of analysis 

(perfusionists) that could be accounted for by previously collected fixed variables (Peugh, 

2010). A three-level MLM was built according to available data sources corresponding to 

each of the levels, and incorporated the following predictors: Level 1 (intraoperative phases) 

included phase duration; Level 2 (cases) included patient age, procedure duration, bypass 

duration, and procedure type; Level 3 (perfusionists) included perfusionist’s age and 

perfusionist’s level of postgraduate training (Supplemental Table S1 and S2). Results 

showed that perfusionist’s age was a negative estimate, accounting for significant variation 

in objective outcome variables (all HRV components: p < .001) and perfusionist’s 

experience was a positive estimate, accounting for significant variation in objective outcome 

variables (all HRV components: p < .001). Refer to Supplemental Tables S3a–S3e for 

detailed information on the estimates of fixed effects for each of the HRV parameters 

analyzed.
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DISCUSSION

We have demonstrated through this preliminary work a general concordance between 

specific HRV components (RMSSD and PNS index) and subjective perceptions of specific 

cognitive workload dimensions (mental demands, task complexity, and degree of difficulty) 

in perfusionists during real-life cardiac surgery, suggesting that cognitive workload changes 

are mirrored by HRV fluctuations over time. In doing so, our findings support HRV 

collection as an unobtrusive and continuous reflection of dynamic cognitive workload states 

in the naturalistic setting of surgery.

The hypothesis-generating work described in this manuscript represents the first study in the 

literature focusing on human-machine interaction of cardiac perfusionists and objective, 

continuous indicators of their cognitive workload while operating the CPB pump machine in 

the context of a cardiac surgery team. Through this novel work, we investigated the patterns 

of change, according to cognitive workload demonstrated by HRV fluctuations, as 

perfusionists interacted with the CPB pump machine on a highly sensitive temporal scale. 

According to RMSSD, HF log, PNS index, pNN50, and mean RR, results showed that the 

time between initiating bypass and clamping the aorta (preclamp phase during bypass) 

induced higher cognitive workload (evidenced by lower values) compared with the time on 

clamp (clamp phase during bypass) and the time between unclamping the aorta and 

terminating bypass (postclamp phase during bypass). Of course, interpretations must be 

limited due to the small sample size, individual differences driving results, and a lack of 

statistical testing.

Nonetheless, it appears that the multiple, and often simultaneous, actions required by the 

perfusionist during this preclamp phase, with both the CPB pump machine and other 

members of the surgical team, may be further exacerbated by the short time window in 

which this typically occurs. In the 23 cases analyzed in this project, the average duration of 

the preclamp phase was 6 min and 48 s (range 2:37–19:42). In 83% of the cases analyzed, 

the preclamp phase spanned less than 10 min. The added pressure of temporal demands is 

unique to this phase, with the next shortest phase averaging at 24 min and 7 s, the postclamp 

phase, followed by the postbypass phase (57:54), the clamp phase (1:04:12), and the 

prebypass phase (1:13:20).

Interactions between the surgeon and perfusionist during bypass, and specifically during 

cardioplegia administration, have been previously defined (Hazlehurst et al., 2007); however 

comprehensive analyses of the interactions among the perfusionist and CPB pump machine 

remain largely underexplored. This is a critical area of interest since perfusionists are 

primarily focused on the bypass pump during the majority of open cardiac surgery cases. 

Furthermore, while patients are on bypass, they are especially vulnerable to physiological 

variations with the potential to lead to adverse outcomes (Ottens et al., 2010).

Recent work has elucidated the ways in which cardiac surgery team members’ perceptions 

of cognitive workload vary over the course elective surgery (Dias et al., 2019). By dividing 

cardiac cases into three distinct phases and conducting a comprehensive cognitive task 

analysis (CTA), specific phases were identified as more demanding for distinct cardiac 
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surgery team members, including surgeons, anesthesiologists, and perfusionists, which 

complement previous findings of workload variation across cardiac surgery team members 

using self-report measures (Wadhera et al., 2010). Beyond the tailored approach to the 

cardiac surgical setting used in this prior work, CTA represents a highly informative 

approach to identifying cognitive factors contributing to successful task completion. The 

application of this approach, in conjunction with HRV analysis, can inform temporal 

relationships indicative of task performance.

Limited analysis of perfusionists’ cognitive workload states during perfusionist-CPB pump 

machine interaction exists, but more so in the form of subjective reports of workload 

(Wadhera et al., 2010). Wadhera et al. (2010) evaluated communication breakdowns during 

critical phases of CPB machine interaction before and after implementation of a protocol-

based communication tool intervention. These critical stages of a CPB were identified based 

on times when effective communication was determined to be critical to ensuring success. 

The only critical stage identified that presented communication breakdowns both prior to 

and following their intervention was placement of the cross clamp. Our findings from this 

study support that the time leading up to cross-clamp placement (preclamp) represents the 

highest degree of cognitive workload, demonstrated through HRV values.

Patterns of elevated cognitive workload leading up to cross-clamp placement suggested here, 

coupled with a high potential for communication breakdown (Wadhera et al., 2010), support 

further investigation into cognitive support for workload management during this time. The 

need for such investigation in the realm of perfusionist-CPB pump machine interaction is 

further warranted given that high cognitive workload is a long-documented and a well-

defined source of error during human-machine interaction (Card et al., 1983; Kieras et al., 

1988; Olson & Olson, 1990).

Monitoring for patient status changes in real time using dynamic interfaces, such as those 

equipped to the CPB pump machine, can enable more timely behavioral responses by the 

perfusionist operator (Ottens et al., 2010); this has been demonstrated in the cardiac surgery 

OR with prior studies (Beck et al., 2015). Although real-time monitoring tasks have the 

advantage of preventing adverse outcomes during the course of surgery, they also have the 

potential to produce fatigue or underload states for operators (Embrey et al., 2006). 

Comparably higher levels of vagally mediated HRV measures observed in this study during 

the clamp and postclamp phases, reflective of lower cognitive workload states, corroborate 

this further.

This study has a number of limitations. Ultimately, the most prohibitive limitation is that the 

participant pool was limited to only three individuals. Despite an otherwise adequate sample 

size of 23 total cases and the relatively even distribution of perfusionists across cases (nine, 

eight, and six cases for the three subjects), the nested nature of data along with high ICCs 

corresponding to individual perfusionists made statistical testing inappropriate. Trends 

observed may speak more to the idiosyncrasies of the individual perfusionists participating 

in this study, urging for a larger sample size for future work.
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Additionally, this evaluation included only HRV and SURG-TLX as the parameters of 

interest. Future work should aim to classify behaviors to investigate the correspondence 

between HRV and other psychophysiological measures, as well as observable patterns such 

as the taxonomy of nontechnical skills (communication, leadership, decision-making, 

teamwork; see Yule et al., 2008).

Finally, the types of procedures included in this analysis (namely AVR and CABG) exclude 

additional complexities that may be observed in more complex procedures (e.g., deep 

hypothermic circulatory arrest). Thus, these analyses may not be representative of or 

generalizable to higher complexity cases, which is an area that could benefit from similar 

investigation in the future.

Beyond the specialty of perfusion and the realm of healthcare altogether, establishing a 

relationship between task, physiology, perceived cognitive workload, and operator 

performance in the wild can have broad implications. Robot-assisted surgery, for example, 

represents a rapidly expanding field within healthcare accompanied by high potential for 

cognitive overload (Sexton et al., 2018). Outside of healthcare, many high-risk, high-

consequence domains have already demonstrated an interest in investigating physiological 

parameters and their alignment with psychological variables and performance. A critical 

application upon acquiring knowledge of workload via these disparate sources is the use of 

biofeedback, a coping intervention employed in many domains (Kennedy et al., 2019), 

which is underinvestigated in healthcare settings. In all of these cases, the traditional NASA-

TLX or modified equivalent can be supportive of findings, but incorporating physiological 

variables such as HRV simultaneously presents the opportunity for a continuous view of 

changes on ultra-sensitive timescales.

RECOMMENDATIONS

Data from this preliminary study have demonstrated the diversity in individual physiological 

responses, despite a shared perception of certain dimensions of cognitive workload during 

surgery. Despite the small sample size of participants included in these analyses and 

necessity for future work to expand upon the current work, this particular finding 

emphasizes that individual differences are critical when developing interventions to address 

issues such as cognitive overload. Specifically, it is crucial to consider contributing factors 

such as age and level of experience in order to tailor approaches to specific individuals.

With objective knowledge of individuals’ cognitive workload levels over the course of 

interactions with the CPB pump machine, efforts can be taken to ensure appropriate 

workload management at critical stages, including the time leading up to placing the cross 

clamp. While providing additional sensory feedback through visual or auditory modalities 

may add further to workload levels at the moment, prior and/or post hoc briefing could be 

established as a training opportunity to increase self-awareness. The greatest value of such 

training would likely be for less experienced operators, but may also benefit experienced 

perfusionists who encounter unexpected low-frequency, high-consequence events 

intraoperatively. Deliberate design and positioning of the OR operators and machines has 

also shown to contribute to enhanced situational awareness and communication.
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CONCLUSIONS

The results of this exploratory study suggest that cognitive workload, according to subjective 

reporting through the SURG-TLX questionnaire, was notably elevated during the bypass 

phase of cardiac surgery compared with pre- and postbypass phases. Analysis of various 

objective components of HRV supports that within the bypass phase, cognitive workload 

was highest during the time between initiating bypass and clamping the aorta (preclamp 

phase) compared with other phases of cardiac surgery. Given the complexity associated with 

this surgical phase, both in terms of technical-based perfusionist-CPB pump machine 

interaction and communication-based perfusionist-surgeon and perfusionist-anesthesiologist 

interaction, cognitive overload during this time has a high likelihood of occurrence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS

• The exploratory work described in this manuscript represents the first study in 

the literature focusing on perfusionists and objective, continuous indicators of 

their cognitive workload while operating the CPB pump in the context of a 

cardiac surgery team during real surgical procedures.

• Vagally mediated measures of HRV suggest higher cognitive workload during 

the time between initiating bypass and placing the aortic cross clamp 

compared with other phases.

• Due to the additional susceptibility to communication breakdown leading up 

to clamp placement, the preclamp phase during CPB could be a worthwhile 

target for cognitive support aimed at managing workload levels during 

perfusionist interaction with the bypass machine.

• Interpretation of these results should be taken with caution, given the small 

sample size and large degree of ICC among perfusionists.

• HRV is a sensitive measure able to capture temporal fluctuations in cognitive 

workload during human-machine interaction in a socio-technically complex 

naturalistic setting.

Kennedy-Metz et al. Page 15

Hum Factors. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Typical operating room configuration, including GoPro cameras and their field of view for 

data collection and key personnel involved. Att. = attending; Train = trainee; Anes = 

anesthesiologist; Surg = surgeon; Perf = perfusionist; Circ = circulating; CPB = 

cardipulmonary bypass.
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Figure 2. 
Stöckert Sorin S5 Heart Lung Machine including the following components: 1) arterial 

pump module, 2) secondary arterial pump module, 3) pump sucker/vent controls, 4) Viper 

Data Management System, 5) Cardioquip heater/cooler, 6) MPS Cardioplegia delivery 

system, 7) CDI 550 blood gas monitor, 8) isoflorane vaporizer, 9) oxygen monitor, 10) pump 

timers, 11) pump pressure sensors, 12) gas blender, and 13) blood reservoir.
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Figure 3. 
Self-reported perceptions of cognitive workload dimensions according to the SURG-LX, 

completed retroactively to indicate cognitive workload levels prior to going on bypass, 

during bypass, and after bypass. SURG-TLX = Surgery Task Load Index.
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Figure 4. 
Self-reported perceptions of cognitive workload dimensions according to the average 

SURG-TLX ratings across 23 cases, broken down by individual perfusionist. SURG-TLX = 

Surgery Task Load Index.
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Figure 5. 
Aggregated values of RMSSD and PNS index during prebypass, bypass, and postbypass 

phases, collapsed across all three perfusionists throughout 23 total cases. PNS = 

parasympathetic nervous system; RMSSD = root mean square of the successive differences.
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Figure 6. 
Average HRV values for RMSSD, HF log, PNS index, pNN50, and Mean RR during 

prebypass, preclamp, clamp, postclamp, and postbypass phases, collapsed across all three 

perfusionists during 23 total cases. HF = high frequency power band; HRV = heart rate 

variability; mean RR = average interval duration between consecutive R-peaks; pNN50 = 

percentage of normal-to-normal peaks differing by at least 50 ms; PNS = parasympathetic 

nervous system; RMSSD = root mean square of the successive differences.
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TABLE 1:

Participant Characteristics of the Perfusionists Recorded in the 23 Cases Analyzed

Sex: Male (%) 3 (100)

Age: Average (range) 46 (32–60)

Years of Experience (Post-training): Average (range) 19.33 (9–32)

Cardiac Surgeries Performed (Approx.): Average (range) 1933 (700–3500)
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TABLE 2:

Descriptive Statistics for SURG-TLX Dimensions Over the Three Bypass Phases

N Mean Standard Error

Mental demands prebypass 23 35.87 4.42

Mental demands during bypass 23 55.65 3.70

Mental demands postbypass 23 34.35 3.70

Physical demands prebypass 23 39.35 4.39

Physical demands during bypass 23 41.74 2.82

Physical demands postbypass 23 46.30 5.08

Task complexity prebypass 23 31.96 3.81

Task complexity during bypass 23 52.17 3.16

Task complexity postbypass 23 32.39 3.14

Distractions prebypass 23 36.74 4.83

Distractions during bypass 23 40.87 2.57

Distractions postbypass 23 33.48 3.15

Degree of difficulty prebypass 23 33.70 4.04

Degree of difficulty during bypass 23 50.87 3.34

Degree of difficulty postbypass 23 35.22 4.35

Note. SURG-TLX = Surgery Task Load Index.
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TABLE 3:

Descriptive Statistics for HRV Components Over the Five Intraoperative Phases

N Mean Standard Error

RMSSD prebypass 23 41.35 7.34

RMSSD preclamp 23 32.94 4.13

RMSSD clamp 23 37.54 4.18

RMSSD postclamp 23 40.56 4.24

RMSSD postbypass 23 42.79 6.54

HF log prebypass 23 5.70 0.27

HF log preclamp 23 5.64 0.23

HF log clamp 23 5.86 0.21

HF log postclamp 23 6.06 0.20

HF log postbypass 23 5.83 0.26

PNS index prebypass 23 −0.92 0.27

PNS index preclamp 23 −1.27 0.21

PNS index clamp 23 −0.83 0.22

PNS index postclamp 23 −0.72 0.20

PNS index postbypass 23 −0.88 0.26

pNN50 prebypass 23 16.13 3.29

pNN50 preclamp 23 14.55 3.33

pNN50 clamp 23 17.52 3.35

pNN50 postclamp 23 18.65 3.34

pNN50 postbypass 23 17.82 3.53

Mean RR prebypass 23 738.65 20.56

Mean RR preclamp 23 712.89 19.48

Mean RR clamp 23 779.21 21.85

Mean RR postclamp 23 783.69 20.30

Mean RR postbypass 23 742.50 19.45

Note. HF = high frequency power band; HRV = heart rate variability; mean RR = average interval duration between consecutive R-peaks; pNN50 = 
percentage of normal-to-normal peaks differing by at least 50 ms; PNS = parasympathetic nervous system; RMSSD = root mean square of the 
successive differences.
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