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Abstract

Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only 

adversely affect our physical and mental health but also our relationships with family, friends, and 

coworkers. In this paper, we present a model to automatically detect stressful conversations using 

wearable physiological and inertial sensors. We conducted a lab and a field study with cohabiting 

couples to collect ecologically valid sensor data with temporally-precise labels of stressors. We 

introduce the concept of stress cycles, i.e., the physiological arousal and recovery, within a stress 

event. We identify several novel features from stress cycles and show that they exhibit 

distinguishing patterns during stressful conversations when compared to physiological response 

due to other stressors. We observe that hand gestures also show a distinct pattern when stress 

occurs due to stressful conversations. We train and test our model using field data collected from 

38 participants. Our model can determine whether a detected stress event is due to a stressful 

conversation with an F1-score of 0.83, using features obtained from only one stress cycle, 

facilitating intervention delivery within 3.9 minutes since the start of a stressful conversation.
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1 INTRODUCTION

Stress is unavoidable in our everyday life. There are several reasons for stress (i.e., 

stressors), such as long-standing pressures at work, deadlines, test-taking, conflict in 

conversations, financial difficulties, health issues, care-giving, etc. Prior work has 

investigated and organized different types of stressors. For example, 1,031 participants were 

studied in [4]. They observed 4,000 stressful events from the daily life of these participants 

and organized the stressors in seven broad categories — interpersonal argument and 

tensions, work, home related stress, finances, health, networking, and miscellaneous. Among 

them, interpersonal argument and tensions occur most frequently (50% of the time) as 

people interact with partners, friends, family members, colleagues, and supervisors 

regularly. This is followed by work-related stress (13.4% of the time) including work 

demand, overload, technical issues, and job security. Another study with 225 graduate 

students found that academic or professional demands, interpersonal demands, financial 

strains, and commuting were the most common stressors [22].

As interactions with partner, family, friends, and colleagues are a fundamental aspect of our 

daily life, stressful interaction is a major daily stressor for a large population. Healthy 

interactions can provide happiness, social support, and cause fewer health issues [25, 51]. 

But, stressful interactions such as conflicts may lead to deleterious consequences to physical 

and psychological health (e.g., depression, anxiety, and substance abuse) and may affect the 

relationship quality, happiness, and overall life satisfaction [12, 17, 23, 49]. Moreover, 

stressful conversations at work can adversely impact productivity, job performance, and job 

satisfaction [53].

Therefore, it is important to understand the timing, frequency, and duration of stressful 

conversations to reduce their harmful effect in daily life. Sensor-based automated detection 

of stressful conversations from the natural environment can be used by researchers to 

investigate the antecedents, dynamics, and consequents of stressful conversations, 

potentially leading to novel therapies and interventions. Moreover, real-time detection of 

such conversations can be used to trigger just-in-time mobile interventions for deescalating a 

tense situation and for pacifying the users so that they can recover and cope better with the 

situation.

In this paper, we demonstrate the feasibility of detecting stressful conversations from stress 

time-series data. In particular, we show that by analyzing the dynamics of stress time series, 

we can detect whether the current stress event is due to interpersonal interaction or other 

stressors such as commuting or work related stress. To develop a model for automatic 

detection of stressful conversations using wearable sensors, we need carefully labeled sensor 

data with unambiguous and temporally-precise labels (i.e., tight time-synchronization 

between event labels and sensor data) that mark the timing, duration, and the reason for the 

stress, all collected from real-life.

The traditional approach is to request users to proactively provide labels by manually 

keeping a dairy [3], retrospectively via an interview [4], or ecological momentary self-

reports [20, 22]. However, these methods lack the temporal resolution and reliability needed 
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to develop a sensor-based model successfully [35]. Alternatively, an observer can be 

assigned to follow each participant in their daily life. However, this approach involves 

significant expense, burden, and may still not capture several real-life scenarios in order to 

respect participants’ privacy.

We designed and conducted a lab study and a field study to collect ecologically valid data 

(i.e., data representing events expected in the daily life) with unambiguous and temporally-

precise labels. Stressful conversations usually involve two (or more) parties, all of whose 

consent is needed, especially for capturing sensor data during stressful conversations. As 

cohabiting couples typically spend a lot of time together, we recruited couples to wear 

sensors and collect data concurrently. We adapted the model presented in [45] to find the 

start and end times of stress events from the sensor data. We developed an automated stress 

visualization system utilizing Day Reconstruction Method (DRM) [24] to present the 

detected stress events to users with surrounding contexts (i.e., conversation, location, and 

physical activity). The goal was to help users confirm or refute a detected stress event and 

recall the reason for the confirmed stress events, providing us labels of stressors for each 

identified and confirmed stress event. Finally, as automated detection of conversations from 

audio or respiration data is limited to an F1 score of around 0.7 [6], we collected high-

quality raw audio to verify the presence of conversations via human annotation. As 

collection of raw audio poses privacy concern and burden because the participants need 

consent from anyone they talk to, we limited the data collection with each couple to one full 

day, similar to other studies that also recruited couples and collected wearable sensor and 

audio data from them [18, 55]. To increase between-person and between-situation diversity 

in the data, we recruited 38 participants (19 cohabiting couples) in the field.

To understand the nature of physiological response during stressful conversations, we 

conducted a lab study with 12 participants (6 cohabiting couples) that was structured to 

trigger stressful conversations among couples. The lab study ensures control of other 

potentially confounding events in the field that may affect physiology, allowing us to 

discover the unique patterns of stress response in sensor data during stressful conversations.

In the lab data, we observe that the stress time-series follows a cyclical pattern that likely 

results from the interplay between the sympathetic and parasympathetic nervous system 

during a stress response, similar to that found in physiological response during stress [26, 

57]. Next, we develop a method to automatically identify this cyclical pattern or cycles in 

the stress time-series data. We use these cycles as a dynamic, natural window to segment the 

stress time series during a stress event. We then identify discriminative features from each 

stress cycle and train a machine learning model to determine whether a stress event is due to 

stressful conversations.

We show that using features from one stress cycle, the model can identify whether a stress 

event is due to stressful conversation with an F1 score of 0.74. We also observe distinct 

patterns in hand gestures during stressful conversations. By augmenting the model with hand 

gesture features (derived from wrist-worn inertial sensors) within each stress cycle, the F1 

score improves to 0.83. A stressful conversation usually consists of multiple stress cycles. 
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Using all cycles improves the F1 score to 0.89, providing a trade-off between accuracy and 

how rapidly from the start of a stressful conversation an intervention can be delivered.

2 BACKGROUND ON PHYSIOLOGICAL RESPONSE TO STRESSORS

A stressor presents a challenge, opportunity, or threat to users. To help users prepare for 

stress response, their autonomic nervous system (ANS) activates their physiology, including 

the cardio-respiratory system (i.e., heart and lungs), endocrine system (e.g., hormone 

secretion), and the thermoregulatory system (e.g., temperature and sweating). ANS 

comprises the sympathetic nervous system (SNS) and the parasympathetic nervous system 

(PNS) [47]. The SNS elevates the physiology, preparing the body for a ‘fight-or-flight’ 

response. To provide the needed energy, SNS stimulates several physiological parameters 

(e.g., heart rate, respiration rate, blood volume, body temperature, etc.). To limit any damage 

to the end organs, PNS acts as a counterbalance mechanism to restore calm and thus 

maintain homeostasis. Its strength is usually proportional to the increase caused by SNS, and 

it eventually brings the physiology back to a resting state.

The interplay of SNS and PNS systems can be illustrated by considering their impact on the 

cardiovascular system. In response to a stressor, the SNS increases the heart rate (HR). Once 

the threat is over, the PNS reduces HR, bringing it back to a resting state [11]. Heart rate 

variability (HRV) is a measure commonly used to quantify the interaction of SNS and PNS. 

The HRV is defined as the variation in the beat-to-beat intervals. An increased/decreased 

HRV indicates increased activity of the PNS/SNS, respectively. Therefore, HRV is a simple 

measure to quantify the contributions of the PNS/SNS and has traditionally been used to 

estimate stress response. Heart rate variabilities have been found to follow cyclical patterns 

in lab settings [26, 57]. De Geus et. al., showed that the heart rate increases when users face 

stressors [13]. For stressors, they used a tone avoidance task, a memory search task, and a 

cold pressor test. They found that the heart rate remains high as long as the stressor is 

present and it goes back to the pre-stress level with the removal of stressors, resulting in a 

cyclical pattern.

The stress response can also be explained in terms of endocrine response to stress, i.e., 

salivary cortisol levels. In [38], authors investigated the cortisol level in 124 heterosexual 

dating couples during a conflict negotiation task. Cortisol was assessed at 7 points before 

and after the task, creating a trajectory of stress reactivity and recovery for each participant, 

resulting in a cyclical pattern.

The interplay of SNS and PNS can be distinct when presented with different stressors 

because the persistence of stress stimuli can differ. For example, during a cold pressor test, 

the initial stress response can be high due to shock from cold temperature, but physiology 

can gradually recover as the body gets used to the temperature difference. But in a stressful 

conversation, there can be highly stressful moments that may be followed by either further 

escalation or de-escalation, dynamics which can drive the activation of SNS and PNS 

differently than from a cold pressor test. In fact [7] showed that the stress responses to three 

different stressors (i.e., cognitive, emotional, and physical) are sufficiently distinct that they 

can be detected using a machine learning model. In another recent work, [27] showed that 
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respiration pattern during stressful conversation is different than that during a stressor not 

involving conversation (i.e., cognitive). Both of these works used controlled lab experiments 

to show the distinction in stress response due to stressful conversations when compared with 

that due to other stressors. We build upon these works to observe the physiological responses 

to various naturally-occurring stressors in real-life and develop a model that can successfully 

identify when a stress response is due to astressful conversation.

3 RELATED WORKS

Prior works on the detection and characterization of conversations has largely used audio, 

with recent works using microphones in smartphones. They show that audio data collected 

by smartphones can be used to automatically detect the occurrence of a conversation [28], 

measure the frequency and duration of conversations [14], identify the speaker [42], count 

the number of parties involved in a conversation [59], and quantify the contribution of 

conversation partners and their turn-taking behaviors [21, 28]. In addition, prior work has 

also developed algorithms to detect stress from audio data captured using smartphones [30], 

assessed the correlation between speech characteristics and stressful situations such as job 

interview or public speaking, and investigated correlations between vocal characteristics and 

social stress for adolescents with autism spectrum disorder [9]. As detection of stress from 

audio data can usually be done only when the user is speaking, works on detecting stress 

from audio data do not explore how to distinguish stressful conversation from other 

stressors. Further, despite the richness of audio data in detecting and characterization 

conversations, audio applications have been limited in real-life due to privacy concerns, 

despite development of algorithms that make inferences from audio data with privacy-

preserving features [58]. Therefore, models have been developed to detect conversation from 

physiological signals (e.g., breathing) [6, 15, 39, 43], to obviate the need for collecting audio 

data. But none of these works explore the feasibility of detecting stressful conversations 

from physiological or inertial sensor data.

Separately, physiological sensors such as ECG and respiration have been extensively used in 

detecting stress, first in the lab settings [2], gradually moving to the field environment via 

ambulatory Holter Monitors in backpacks [34], then to selected tasks in the field 

environment with wired wearable sensors [19], and finally to the free-living environment 

with wireless sensors [20, 37]. Recent works use pulse plethysmograph (PPG) sensor in 

conveniently-worn wrist devices [10, 36]. They use diverse lab stressors, e.g., using a cold 

pressor as a physical stressor, mental arithmetic as a cognitive stressor, and public speaking 

as a social stressor. The focus of the machine learning models in these works has been to 

detect stress irrespective of the type of stressor by extracting commonality in stress response 

captured by sensor data so that a single trained model can detect all stress events. Our goal 

instead is to discover uniqueness in the stress responses due to stressful conversations.

A recent work [27] collected respiration data in the lab settings, where they included a non-

verbal relaxer (watch 10 minutes neutral movie), a verbal relaxer (talk in mother tongue for 

5 minutes on a chosen topic), a verbal stressor (prepare for and participate in an interview), 

and a non-verbal stressor (take part in a cognitive task). In order to improve the accuracy of 

stress detection, they developed a two-stage model. In the first stage, they detect whether a 
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conversation is taking place, and depending on the outcome, they apply different stress 

models to detect whether the signals exhibit a stress response. They show that using a two-

stage classifier, they achieve 83% accuracy compared to 76% when using a one-layer 

classifier that does not detect conversations, demonstrating that stress response in respiration 

is different during stress events with or without a conversation. As their goal was to improve 

the detection of stress model similar to other works in stress detection, they did not address 

the issue of distinguishing verbal stressors from non-verbal stressors on their lab dataset. In 

Section 6.4, we construct a baseline model motivated by this work that uses an automated 

detection of conversation and automated detection of stress and combines both to detect 

stressful conversations. We find the best performance from such a model is limited to an F1 

score of 0.6.

Finally, [55] showed the feasibility of detecting whether an interpersonal conflict occurred in 

each hour (reporting an accuracy of 69.2%) using wearable sensor and audio data for that 

hour from romantic couples who wore sensors for a day in field. As the focus of this work 

was to detect for each hour whether any conflict occurred or not, they did not present any 

model to distinguish among different stressors. In summary, to the best of our knowledge, 

our work is the first attempt at demonstrating that stressful conversations can be detected 

automatically from wearable physiological sensors in daily life, without the need for audio 

data.

4 STUDIES TO COLLECT ECOLOGICALLY VALID SENSOR DATA WITH 

PRECISE LABELS

We designed and conducted a lab and a field study to understand the nature of stress patterns 

during stressful conversations and collect ecologically valid sensor data with precise labels 

for model development. Both studies were approved by the Institutional Review Board 

(IRB), and all participants provided written consent. We first describe the study 

requirements before describing the details of both studies.

4.1 Study Requirements

We sought a study design that satisfies the following requirements to produce the necessary 

sensor data and associated labels for our model development.

1. Ecologically Valid Sensor Data: The study should capture physiological sensor 

data from the field environment during real-life stressors of different types. 

(Section 4.2)

2. Stress Event Localization: The start and end times of each stress event should 

be located precisely in the sensor data stream. (Section 4.3)

3. Stressor Labels: Each stress event should have an assigned label of reason, i.e., 

stressor. (Section 4.4)

4. Resolving Ambiguity in Stressor Labels: Each detected stress event, especially 

stressful conversations, should be independently confirmed so as to remove any 
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ambiguity due to machine learning models or recall errors by the participants. 

(Section 4.6)

5. Coverage of Stressful Conversations: The study should have appropriate 

consent and sensor data available from both the conversing partners, including 

during stressful conversations. (Section 4.5)

6. Confounder-free Data: As field-collected data can be affected by confounding 

events that can affect physiological signals (e.g., due to physical activity), clean 

data should also be collected during stressful conversations that are largely free 

from other confounders, to seed the model development. (Section 4.7)

In the following, we describe how our study design satisfied each of these requirements.

4.2 Wearable Devices for Ecologically Valid Sensor Data

Participants wore the AutoSense chest band with Electrocardiogram (ECG) and respiration 

sensors [16] to capture physiological data in their daily life. To capture physical activity that 

can confound the inference of stress form physiological sensors and to provide physical 

activity context surrounding stress events, the chestband included 3-axis accelerometer 

signals. The participants also wore a wristband consisting of a 3-axis accelerometer and a 3-

axis gyroscope on their dominant hand to capture hand gestures during conversations. They 

wore a LENA audio recorder [1] to capture high-quality audio that could be used to 

unambiguously verify the occurrence and timing of stressful conversations. They were 

instructed to carry the recorder in a pouch placed around the waist to reduce occlusion of the 

microphone and to increase the likelihood of capturing high quality audio.

Each participant was provided with an Android smartphone that collected GPS-traces from 

which location cues can be inferred. For time synchronization among all sensor signals, the 

smartphone also received and stored data from all wearable sensors. Participants were asked 

to carry all the devices during their waking hours except during showers and contact sports, 

to maximize the opportunity to capture sensor data during stress events.

4.3 Stress Detection and Stress Event Localization

We employed previously validated algorithms on the collected sensor data to meet the 

requirements of precisely locating the start and end times of stress events. We first use the 

cStress model [20] to obtain a stress state from each minute of ECG and respiration signals 

that represent the physiological response to a stressor. The model outputs a probability 

measure of stress scaled between 0 and 1, termed ‘stress likelihood’ as shown in Figure 1. 

From ECG, the model computes the mean, median, 20th, and 80th percentiles of heart rate, 

variance, and quartile deviation of HRV and energy of HRV in different frequency bands 

(0.1–0.2Hz, 0.2–0.3Hz, 0.3–0.4Hz). From the respiration signal, it computes mean, median, 

80th percentile, and quartile deviation from inhalation (I), exhalation (E) duration, ratio 

between I/E, stretch, and inspiration volume, computed in each breath cycle within a minute. 

In cross-subject validation using SVM on lab data, the cStress model classified stress and 

non-stress minutes with an F1 score of 0.81 in (n = 21) participants who were subjected to 

three validated stressors — public speaking, mental arithmetic, and cold-pressor tasks. When 

tested on a dataset from another group of participants (n = 26) subjected to the same lab 
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stress protocol, the model was able to classify stress and non-stress minutes with an F1 score 

of 0.9. The model was also evaluated against self-reports collected in the field. In the first 

study of (n = 20) healthy adults who provided 1,060 self-reports in a 7-day study, the model 

reported an F1-score of 0.71 for the median participant. On a second field study with (n = 

38) polydrug users who wore the sensors for four weeks, the model reported a median F1 

score of 0.72 [45]. In a third field study of (n = 53) newly-abstinent smokers who wore the 

sensors for 4 days, the model reported a median F1 score of 0.65 [44].

The cStress model only provides a stress likelihood for each minute, which does not indicate 

the start and end time of a stress event. To obtain stress events from the noisy and largely 

discontinuous (due to missing data or confounding from physical activity) time series of 

stress likelihoods, we apply the stress event detection model presented in [45]. This model 

first generates stress likelihood in minute-windows using the cStress model, but sliding 

every 5 seconds, to reduce the noise in the stress likelihood time series. Second, it excludes 

any data when participant may be recovering from physical activity (after accelerometer 

signals show no activity). Third, it uses k-nearest neighbor approach to impute any missing 

values of stress likelihood that is ‘missing at random’. Fourth, it applies a moving average 

convergence divergence (MACD) method to find the cross over points that partition the 

continuous stress likelihood time-series into stress events, clearly marking the start and end 

times, as shown in Figure 1. Fifth, it excludes any windows that have more than 50% of 

stress likelihoods imputed. Finally, it applies a density threshold (to the area under the stress 

likelihood curve) to decide which windows are stressful events. In the field-collected data, 

between 2 and 4 stress events per day were detected [45].

4.4 Context Inferences and Visualization for Stressor Labeling

To aid the participants in recalling the stressor for each detected stress event, we detected 

several cues such as location from GPS, conversation from respiration, and activity from 

accelerometers. This information surrounding each stress event was presented to the 

participants so they could reconstruct those moments to confirm or refute the detection of 

these stress events and to recall the stressor responsible for that stress event. We first 

describe how we process the sensor data to obtain the surrounding contexts and then present 

the visualization.

4.4.1 Inferring Significant Locations Using Historical Map-Based 
Visualization: Location is an important memory cue. When it is annotated with a time 

range, this information can help users to reconstruct their day and facilitate self-reflection 

[46]. Locations of interest are places where a user spends a significant amount of time. We 

adopted the spatio-temporal clustering algorithm from [31] to infer significant locations, 

arrival time, departure time, duration of stay, and sequence and frequency of location visits 

throughout the day, all from GPS traces. A distance threshold of 100 meters and a time 

threshold of 10 minutes were used to find the spatio-temporal clusters.

We utilized a map-based visualization technique (as shown in Figure 2) developed in [54] to 

observe the location clusters on Google Earth. Labeling of the location clusters was semi-

automated. The two most common location clusters, home and work, were automatically 
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labeled based on the address provided by the participants at the beginning of the study. To 

label the remaining location clusters, the participants were asked to provide the semantic 

labels during the data review session. This helped resolve ambiguities for co-located places 

(e.g., grocery store and a restaurant). Distinct semantic locations thus obtained included: 

own home, parent’s home, others home, work, restaurant, store, grocery, religious place 
(e.g., church, mosque), and recreation center (e.g., gymnasium).

4.4.2 Inferring Commute: Driving episodes are detected from GPS-derived speed by 

applying a threshold for maximum gait speed of 2.533 meters/second [8]. A driving session 

is composed of driving segments separated by stops, e.g., due to a traffic light. The in-

between stops usually are of short duration unless there is traffic congestion. The end of a 

driving session is defined as a stop (i.e., zero speed) for more than two minutes. Driving 

segments, separated by less than two-minute stop, are considered to be part of the same 

driving episode [56].

4.4.3 Inferring Physical Activity: For activity inference, we use the on-body 

accelerometer based activity detection approach presented in [41]. The pre-processing steps 

include filtering of raw data and removal of gravitational acceleration and drift from the 

filtered data. Finally, we compute the standard deviation of the magnitude of acceleration 

amag = ax2 + ay2 + az2 , which is independent of the orientation of the accelerometers.

4.4.4 Inferring Conversation Episodes: For detecting conversations from respiration 

data, we used the method proposed in [40]. This model extracts features in respiration cycles 

in each 30 second window, trains a machine learning model to produce speaking, listening, 

or quiet states, and then applies a Hidden Markov Model (HMM) to construct the 

conversation status for each 30 seconds window of respiration data. It achieves 87% 

accuracy in distinguishing conversation from non-conversation.

4.4.5 Contextualized Timeline Visualization to Assist in the Recall of 
Stressors.—We developed a contextualized timeline visualization by building upon stress 

visualizations presented in [48]. In order to help the participants reconstruct the moments 

surrounding a stress event, we made several adaptations in the visualization, guided by the 

Day Reconstruction Method (DRM) [24].

We incorporated three design qualities for effective health data representation [52]. (1) the 

design must feel familiar to users, mirroring their own experience, (2) creating designs that 

leave space for users’ own interpretation of their bodily data, and (3) the modalities used in 

the design do not contradict one another, but instead harmonize, helping users to make sense 

of the representation.

We created a stacked timeline visualization shown in Figure 3 for each user. We used 

horizontal and vertical placement along with color coding as our visual encoding channel as 

these channels are most effective in supporting the comparison of multiple data streams [33]. 

In the timeline, the horizontal axis shows the time of day, and vertical axes is divided into 

four channels that represent location, conversation, activity, and stress likelihood. We use 

hue as the color component to code different levels of stress — green represents no stress, 

BARI et al. Page 9

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2021 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yellow stands for medium, and red indicates high levels of stress likelihood (based on 

perceived stress categories reported in [32]). Deeper shades of color for conversation and 

activity time series show the occurrence of conversation and physical movement, 

respectively, and grey color indicates the absence of conversation or absence of movement. 

Significant locations are marked with corresponding labels. If a transition between locations 

takes place using a motorized vehicle, then the transition is labeled as commuting. For all 

the four data streams, the presence of a gap implies missing data for that time period. 

Aligning all data streams using the same timeline facilitates understanding of the role of 

different contexts such as location or conversation on stress events.

It is difficult to pinpoint a stressful event when the data is on the scale of several hours (e.g., 

over 12 hours of data was collected per day). Therefore, we provided users the ability to 

zoom in and out at different temporal resolutions. By providing details-on-demand, we 

allowed users to view precise stress likelihood levels and associated contexts (e.g., location, 

conversation, and physical activity status). To help them in recalling a specific event, we 

used tool-tip texts displayed at the time of occurrence of each event.

4.5 Participant Selection and Protocol To Capture Real-Life Stress Events

We recruited couples to wear sensors and collect data concurrently to maximize the coverage 

of stressful conversations. The field study included 38 individuals (19 pairs of cohabiting 

couples). Field study participants included 20 women (mean age: 28.53 ± 4.89 years) and 18 

men (mean age: 28.92 ± 2.10 years). Eighteen participants were Caucasian and the rest were 

Asian. Twenty participants (10 pairs) participated during weekdays and the rest participated 

during weekends.

The field study consisted of three phases — (1) an enrollment session, (2) free-living data 

collection, and (3) a data review session to label detected stress events using the 

visualization. During the enrollment session, participants gave consent and completed a 

demographic questionnaire, a dyadic adjustment scale [50], and a pre-study questionnaire. 

Participants were shown an example visualization generated from previously collected 

sample data. This was designed to help them understand how the field data collected would 

help them understand their own stress patterns and identify daily stressors for potential stress 

management in daily life. This orientation was also designed to motivate the participants for 

careful data collection when they were in free-living condition.

Afterward, participants were shown how to wear the sensors and monitor the status of sensor 

data collection. They then proceeded to collect sensor data in the field. After completing at 

least 24 hours with the sensors since the start of the data collection, both partners came back 

to the lab next day to review stress visualizations generated from their own data and annotate 

the automatically detected stress events captured in the field.

Because the field study involved collection of continuous audio, location, and physiological 

data from the participants, they were given an option to pause data collection during their 

private moments. They could proactively pause data collection using the “Stop” button in the 

smartphone software during data collection in the field. Also, they were given the option to 

retroactively delete data during private moments during the data review session. The data 
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collection was limited to 24 hours to reduce privacy concerns associated with the raw 

recording of audio data in the natural environment; participants were instructed to get verbal 

consent from conversation partner(s) other than their romantic partner before recording 

audio conversation involving them. If any partner(s) declined the request, participants were 

instructed to stop recording the audio.

4.6 Stressor Labels Collected and Confirmed

The participants were asked to confirm each stress event in the visualization of their data. 

This was done to resolve any ambiguity in stress event detection due to the usage of machine 

learning models from sensor data, including the elimination of any false detection. To further 

confirm and contextualize the stress events, several follow up questions were asked such as 

“what’s going on?”, “ where were you?”,“who were you with?”.

Participants were asked to rate the usability of the visualization interface on a 5-point Likert 

scale. All the participants either strongly agreed (32 out of 38) or agreed (6 out of 38) when 

asked if the interface was “Easy to understand”. Nineteen participants strongly agreed (out 

of 38) and 14 agreed (out of 38) when asked if “they thought that most people would learn to 
use the visualization quickly”. When asked an open ended question: “What things did you 

Like and Dislike in the study”, 20 participants (out of 27 who responded to this question) 

mentioned that they liked the stress visualization system. For example, C4F commented, “[I] 
Liked visualization of the day, disliked wearing all the sensors”.

After reviewing the visualization, participants were able to recall 125 (out of 137) detected 

stressful events. Sensor data was fully available and not confounded by physical activity for 

the 97 confirmed events that were used for our modeling (see Table 1). For 12 events, they 

either disagreed with the visualization output or could not confirm whether the stress event 

occurred. In addition, we asked all the participants whether they recalled any stress event 

that happened during the study that was not identified by the system (false negative). Two 

participants (out of 38) reported three such false negative events (over 38 person days of data 

collection). The stress events missed by the sensors were not included in our model training 

or testing as the start and end times of these events could not be determined precisely 

because they were missed by the sensors.

Participants recalled several reasons for stress events (i.e., stressors) such as meeting with a 

supervisor, having deadlines at work, job interviews, conflict with their partner, driving on a 

busy road, assignment deadlines, etc. We find that the detected and confirmed stress events 

belong to three major categories — stressful conversations, commute, and work-related 

stress. Table 1 shows the number of stress events in each category with their average 

duration and what was happening at the time. In our data set, we find that 53 stressful events 

(i.e., 54% of all confirmed stressful events) were due to conversations with partner, friends, 

parents, colleagues, supervisors, etc.

We resolved any ambiguity in the start and end times of stressful conversations by listening 

to the raw audio before, during, and after each event. We find that each stress event 

attributed to stressful conversations were correctly labeled. It may be because of our 

contextualized visualization that showed the participants whether they were having 
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conversations at the time of a detected stress event and where they were, e.g., at home or 

office.

We also found 30 stressful events during commute and 14 events due to work. Any stress 

event that involved a conversation whether at home, work, or anywhere else, is included in 

the category of stressful conversation. The same would be the case for work-related stressor, 

unless it involved a conversation, in which case it belongs to the stressful conversation 

category. We note that the percentage of stress events in each category matches with that 

reported in [4]. The distribution of stress events in our dataset in these three categories is 

shown in Figure 4.

Out of 125 confirmed stress events, 28 were only partially observed by sensors (due to 

missing data and overlapping physical activity) and hence their start and end times could not 

be precisely determined. Therefore, they were excluded from our modeling. These events 

included several stressors that did not belong to the above three categories. They included 

household chores (8), stress during shopping or grocery (5), and miscellaneous (15) stress 

events that included feeling sick, a sick family member, worrying about the partner, water 

leak in the house, cleaning the house, etc.

4.7. Lab Study to Collect Confounder-free Data

We designed a lab study to collect clean data during stressful conversations that could be 

used to find any distinguishing patterns in the stress signals. The lab tasks were designed to 

create difficult communication situations and thus induce interpersonal conflicts. We 

recruited 12 individuals (6 pairs of cohabiting couples) from students and employees (both 

full-time and part-time) at a university. Participants included 7 women (mean age: 29.9 ± 7.4 

years) and 5 men (mean age: 27.2 ± 2.9 years). They wore the AutoSense chest band [16] to 

collect ECG and respiration signals and wore a headset microphone and a throat microphone 

to capture audio. Each couple took part in several interaction tasks in a sitting position with 

limited or no movement. To produce baseline measures, participants remained seated face-

to-face in a comfortable chair silently for five minutes. Next, they took part in a ‘Scripted 

Dialogue’ task and then recreated a map [5] to elicit goal-oriented conversation, and finally, 

they engaged in spontaneous conversation for approximately 15 minutes. During Map Tasks 

[5], both participants were given maps that have been used in prior literature, one presenting 

a pre-printed route with a starting and finishing point for the Instruction Giver and the other 

presenting a map with only a starting point for the Instruction Receiver. The Instruction 

Receiver attempted to recreate the Instruction Giver’s pre-printed route based on verbal 

directions from the Instruction Giver. In the maps, several mismatches in the route between 

the two partner’s map were intentionally included to induce conflict between them. A 

(blocking) screen was placed between them for visual separation. They then switched roles 

and were given another set of maps to generate another conversation to complete the Map 

Task 2. After that, participants took part in a five minute debriefing conversation, as the 

nature of the map tasks tended to induce some informational conflict between partners that 

they needed to resolve during this session.
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5 MODEL DEVELOPMENT

In this section, we describe how we extract distinguishing patterns from the stress event 

along with the wrist motion sensor data to detect stressful conversations. First, we describe 

our proposed method to identify cyclical pattern in a stress event followed by wrist motion 

patterns. Second, we describe feature extraction from the stress and wrist motion data to 

train a machine learning model for detecting stressful conversations. Finally, we evaluate our 

models and discuss implications of the models.

5.1 Key Ideas and Overall Approach

Input to the model is a continuous stress likelihood time-series that is annotated with the 

start and end times of stress events. The goal of the model is to determine which stress 

events are due to stressful conversations.

5.1.1 Key Ideas.—Our model development is based on three key ideas. First, we notice 

that stress time-series signal during stress events is episodic and often periodic, exhibiting 

peaks and troughs that can be used to naturally segment the stress data. Second, we identify 

several novel features from these cycles. Third, we observe that the pattern of hand gestures 

when stress occurs due to stressful conversations is distinct in nature, as compared to when 

stress is due to work or commute. With the increasing adoption of smartwatches and fitness 

trackers, it is increasingly feasible to capture hand movement patterns continuously. We also 

note that with recent improvements in optical sensing in smartwatches, stress may also be 

detected from smartwatches [10, 36], making for a ubiquitous device on which our model 

can be implemented.

5.1.2 Overall Approach.—Our model development consists of the following major 

steps.

1. Cyclical Pattern Identification: Cyclical patterns in stress events are different 

than those in regular physiological signals such as respiration cycles. Respiration 

cycle is well defined by inhalation and exhalation phases associated with each 

breath, but the cyclical pattern in stress events does not have any such naturally 

defined phases. They are generated by the interplay of the SNS/PNS system. 

Therefore, existing methods for detecting peaks and troughs are not directly 

applicable to stress event cyclical pattern identification. We propose a new 

method to detect cycles in the stress likelihood timeseries and characterize 

portions of interest from which distinguishable features can be computed.

2. Intra-cycle Feature Extraction: Unlike respiration, there is no natural 

phenomenon of inspiratory and expiratory time. Therefore, we discover new 

features that can characterize and interpret each stress cycle.

3. Inter-cycle Feature Extraction: To capture any patterns that span multiple 

stress cycles within a stress event, potentially covering all stress cycles within a 

stressful event, we compute features spanning multiple stress cycles.

4. Wrist Motion Features: Wrist motion sensors data have been researched 

extensively for activity and posture detection. We compute these features within 

BARI et al. Page 13

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2021 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each stress cycle to determine their utility in capturing the distinct signatures of 

hand gestures observed during stress events, to improve the accuracy of detecting 

stressful conversations.

5.2 Observation and Characterization of Cyclical Patterns in Stress Likelihoods within 
Stress Events

As described in Section 2, we expect the physiological response during a stress event to 

exhibit a cyclical pattern. To investigate whether we observe a cyclical pattern during 

stressful conversations, we analyzed the physiological data collected during the lab study 

(see Section 4.7), where stressful conversations took place and the physiological data was 

mostly free of any confounders. As described in Section 4.3, we apply the cStress model on 

physiological data to convert the physiological sensor data into stress likelihoods (in sliding 

minute-windows, starting every 5 seconds) as shown in Figure 1. We also mark the start and 

end of stress events.

We observe that the cyclical patterns previously observed in the physiological response (see 

Section 2) during stress tasks (due to the interplay between SNS and PNS) is also observed 

in the stress likelihood time series within a stress event. The activation of SNS results in the 

elevation of physiological arousal which is captured by an increase in the stress likelihood 

produced by the cStress model. We define this point as stress ‘Rising point’ where stress 

arousal starts to elevate from its pre-stress condition, i.e., an average of daily stress 

likelihood as shown in Figure 1. Concurrently, each time SNS activates, the PNS gets 

activated as well to provide the corresponding counterbalance so as to keep the physiology 

in homeostasis balance. When the influence of PNS exceeds that of SNS, then it reaches a 

‘Saturation point’, after which the stress arousal starts to decay, indicated by the ‘Decay 

point’ when the effect of stressor starts to mitigate. Finally, it reaches the pre-stress value or 

below the daily average of stress likelihood denoted by the ‘Recovery point’. We define this 

structure as a ‘stress cycle’, where stress cycle begins at a ‘Rising point’ and ends at a 

‘Recovery point’.

The cycle repeats if the current episode continues to produce new stress triggers (e.g., 

conflicting words spoken by the conversation partner). A stress event may consist of one or 

more stress cycles depending on the repetition of stress triggers within a stress event. In 

Figure 1, the depicted stress event consists of three stress cycles.

We illustrate the cyclical patterns in the stress likelihood time-series data during lab tasks in 

Figure 5a. It shows that stress likelihood was low during the baseline session. Stress 

likelihood rises during the scripted dialogue task as the individual was waiting for his/her 

turns, and they were focusing on their performance to make the dialogues look more natural. 

As the nature of the map tasks tended to induce some informational conflict between 

partners, we see high arousal stress cycles during Map Task 2 and during the debrief session 

when they were trying to resolve their conflict. Stress arousal in Map Task 1 is not as visible 

due to missing data.

We observe a similar cyclical pattern during stress events in the field data. Figure 5b depicts 

the stress arousal of a participant in the field during two separate conversational interactions 
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at two different times. The first interaction (left portion) was a non-stressful conversation, 

where stress likelihood remains below the daily average. The second interaction (right 

portion) presents a stressful conversation, where we observe several stress cycles that rise 

above the daily average of stress likelihood. This particular stressful conversation consists of 

five stress cycles. We next describe how we identify stress cycles automatically from the 

stress time-series data.

5.3 Stress Cycle Identification Algorithm

We propose a moving average-based method to identify each stress cycle with all four 

interesting points — stress rising, saturation, decay, and recovery point. We build upon the 

cycle identification model used to detect physiological phenomena such as breathing cycles 

[6]. Breathing signal follows some specific structure with inspiration and expiration phases 

driven by the physiological phenomenon. However, the stress cycle is guided mostly by the 

stressful situation and may not have any specific rules. Hence, the method developed for 

breathing cycle identification is not directly applicable to stress cycle identification. 

Therefore, we modify the algorithm to identify stress saturation and decay point.

First, we smooth the stress likelihood time-series using a 15 seconds moving average to 

remove spikes. Then another moving average centerline (MAC) curve is computed using a 

moving average of 2 minutes. The MAC appears as a center line (shown as a red dotted line 

in Figure 6a) that intercepts each stress cycle twice, once in the rising trend and then in the 

falling trend. Next, we identify the up and down intercepts where the MAC curve intercepts 

the rising and falling branch of smoothed stress time-series, respectively. The ‘rising point’ 

is the rightmost local minimum that lies below daily average found between consecutive 

down and up intercept pair. From this point, the signal rises monotonically towards 

saturation point.

The ‘saturation point’ lies between the up intercept and the following peak of that cycle 

where the rising trend reaches the peak. This point is the leftmost local maximum and must 

be above up intercept and MAC curve line.

‘Decay point’ lies between the saturation point and the following down intercept when the 

signal starts monotonically decreasing. This point is detected as the rightmost local 

maximum and must lie above the following down intercept and the MAC line. The falling 

trend reaches a recovery point when it decreases to the first local minimum value below the 

daily average of stress likelihood.

We annotated 160 stress cycles from several stress events, including stressful conversation, 

work, and commute related stress. We use the following metrics to evaluate the performance 

of the algorithm — the percentage of actual cycle detected, percentage of extra or spurious 

cycle found, and error in cycle duration due to mis-located rising and/or recovery point. Two 

coders independently labeled all the interesting points of a cycle. Inter-rater reliability was 

around 0.9 between the coders. The algorithm identified 96% cycles accurately and detected 

3% cycles as extra or spurious. The mean absolute error in identifying cycle start or rising 

point is 8.86 seconds. The mean absolute error in identifying recovery point is 6.9 seconds. 

Therefore, mean error in cycle duration is 8.16 seconds. The rationale for calculating error in 
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cycle duration is that even if a rising or recovery point is identified correctly, their respective 

temporal position in the signal may introduce error in the resultant duration.

After applying this algorithm on all the annotated stress events, we find the average number 

of stress cycles per stress event are 4.42, 3.6, and 2.9 for stressful conversation, work, and 

commute, respectively, as depicted in Figure 6b. Number of cycles per stress event for 

stressful conversation is significantly higher compared to both work and commute related 

stress at 5% significance level (using t-test). But, no significance difference is found between 

work and commute related number of stress cycles per stress event. Average stress cycle 

duration is 3.7, 4.8, and 4.02 minutes for stressful conversation, work and commute, 

respectively depicted in Figure 6b (right portion). The cycle duration for stressful 

conversation is significantly lower compared to work related cycle duration with a p-value of 

0.002 (using t-test).

5.4 Distinguishing Patterns in Wrist Motion Sensors

Researchers have studied the role of gestures during conversational interaction in assessing 

stress. The more stressful the situation, the higher the proportion of speech that is 

accompanied by hand gestures [29]. We observe similar distinct patterns in the wrist-worn 

motion sensor signals (accelerometer and gyroscope) during stressful conversations 

compared to other stressful events such as work and commute. We observe that the 

frequency of wrist movement is higher during stressful conversations. While someone is 

working at a computer, the motion will be more guided towards typing or mouse movement. 

Similarly, hand motion during driving is expected to be dominated by the steering wheel 

movement. On the other hand, wrist motion is more random during an interaction, possibly 

due to communicative gesturing. Based on these insights, we extracted motion sensor 

features under each stress cycle to compare those differences to detect stressful 

conversations in daily life.

5.5 Feature Computation

To capture differences in stress cycle characteristics during stressful conversations compared 

to other daily stressors, we identify new features from each stress cycle. From each cycle, 

we compute features from stress likelihood time-series and those from wrist-worn inertial 

sensors. In addition to computing features from individual cycles, we also compute features 

from two or three consecutive cycles, and all cycles in a stress event.

5.5.1 Features from Individual Stress Cycle.—We compute the following features 

from each stress cycle of a stress event: fractional rising and fractional falling time, rising 

and falling normalized area, ratio of rising and falling normalized area, elevation above daily 

average, rising and falling slopes and intercepts, skewness, kurtosis, and entropy. We now 

describe these features and how they are computed.

To compute these features, we first extract the following duration measurements from each 

stress cycle — stress cycle duration, saturation duration, and successive cycle distance as 

depicted in Figure 7a, where we show two stress cycles. Let Sj be the stress likelihood at 

time tj with new values produced every Δt = tj − tj − 1 = 5 seconds. A stress cycle is defined 
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by four 2D points, i.e., Ci = ri, si, di, ric  (as shown in 7a). Here, 

ri = tri, Sri , si = tsi, Ssi , di = tdi, Sdi , and ric = tric, Sric .

Stress cycle duration (CDi):  Stress cycle duration is defined as the temporal distance 

between stress rising and recovery point, i.e., CDi = tric − tri.

Saturation duration (SDi):  Saturation duration is the duration when the stress likelihood 

time-series stays in the upper region after reaching the saturation point before starting to 

decay, i.e., SDi = tdi − tsi.

Successive cycle distance (SCDi):  Successive cycle distance is the distance between ending 

of one cycle and starting of next cycle, i.e., SCDi = tri + 1 − tric.

With these duration measurements, we compute the following features from each stress 

cycle.

1. Fractional rising and falling time: Fractional rising time is defined as the ratio of 

rising duration to stress cycle duration where rising duration is defined as the 

temporal distance between stress cycle start and saturation point. Similarly, 

fractional falling time is defined as the ratio of falling duration to stress cycle 

duration. Falling duration is the temporal distance between decay and recovery 

points. More specifically, trisei = tsi − tri /CDi and tfalli = tric − tdi /CDi.

2. Rising and falling normalized area, Ratio of rising and falling normalized area: 
Rising normalized area is computed as the area under rising region divided by 

the rising duration. Similarly, falling normalized area is computed as the area 

under falling region divided by the falling duration. We also use the ratio of these 

two values as a feature. The variation of this feature values are depicted in Figure 

7b for different stressors, Arisei =
∑k = ri

si Sk
trisei

and Afalli =
∑k = di

ric Sk
tfalli

.

3. Elevation above daily average (Ei): The amplitude difference between maximum 

value or the peak of a cycle and the daily average is defined as elevation above 

daily average. Peak amplitude of a cycle Ci is peakAmpi = max Sri, Sri + 1, …, Sric . 

Then, elevation above daily average is Ei = peakAmpi − Avg Sj, ∀j .

4. Rising and Falling slopes and intercepts: We fit a least square regression line in 

the rising phase. That is, we find slope and intercept c of equation y = mx + c
using the sequence of points tk, Sk between tri and tsi. Similarly, falling slope and 

intercept are computed in the decay region. The variation of intercept values are 

depicted in Figure 7c for different stressors.

5. We also compute skewness, kurtosis, entropy for each stress cycle. Since, a stress 

cycle is defined by four points, i.e., Ci = ri, si, di, ric  therefore all the stress 
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likelihood within the cycle Sri, Sri + 1, …, Sric. More specifically, skewness is 

∑i = ri
ric Si − S 3

ric − ri * std3  and kurtosis is 
∑i = ri

ric Si − S 4

ric − ri * std4 .

5.5.2 Wrist Motion Features in Each Stress Cycle.—From inertial sensor data 

coinciding with each stress cycle, we compute several time domain features from both 

accelerometer and gyroscope signals — mean, median, standard deviation, quartile 

deviation, skewness, and kurtosis of three axes of accelerometer and gyroscope. For wrist 

orientation features, we compute roll, pitch, and yaw that provide information about the 

orientation of the wrist with respect to gravity on the window of data. We also computed 

energy as the magnitude of the accelerometer and magnitude of the gyroscope, i.e., 

amag = ax2 + ay2 + az2 and gmag = gx2 + gy2 + gz2.

5.5.3 Whole Stress Event Features.—To compute features from the entire stress 

event, we compute — number of stress cycles per event, duration of stress cycles per minute, 

and average stress likelihood across the entire event.

5.5.4 Features from Multiple Stress Cycles.—We compute features from 

consecutive stress cycles (i.e., two cycles or three cycles) to determine the degree of 

performance improvement with more information. We note that using features from the 

entire event may delay the detection of stressor until after the stress event is over. The 

combination features include differential features from successive individual stress cycle 

features and statistical features such as mean and standard deviation across selected number 

of cycles. For wrist motion features, we compute only statistical features across selected 

number of cycles.

5.6 Model Selection and Training

We group the stress events into two categories — stressful conversation and non-stressful 

conversation. The non-stressful conversation group includes all the stress events due to other 

common daily stressors, i.e., work and commute. Our aim is to identify whether a stress 

cycle is induced due to stressful conversation related activity. To do so, we identify each 

stress cycle automatically from the continuous stress time-series using the previously 

mentioned stress cycle algorithm. Next, we compute the features from each stress cycle and 

train a machine learning model to identify whether the current stress event is due to 

interpersonal interactions.

In total, we obtain 13 features from each stress cycle and 42 features from the motion sensor 

data. To avoid over-fitting, we use selected features for modeling. The idea behind feature 

selection is to remove highly correlated and non-informative features. We use the 

Correlation-based Feature Selection (CFS) [45] to select a subset of 15 features. CFS selects 

features that are mutually uncorrelated but highly indicative of the interaction and non-

interaction classes.
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As the trained model to detect stressful conversations should be suitable for real-time 

implementation on smartwatches that already include sensors for both stress inference and 

wrist motion, we narrow down our choice of models to simple and efficient models. 

Therefore, we evaluate Logistic Regression (LR) for a linear model and Random Forest (RF) 

for a non-linear model to determine how much improvement in performance we can obtain 

by using a non-linear model. We assess the performance of the model using standard 

classification metrics such as precision, recall, and F1 score. We use labeled stress cycles to 

train the models.

6 PERFORMANCE EVALUATION

In this section, we compare the model performance when using stress cycle features only in 

each cycle, performance improvement when adding features from wrist-worn inertial 

sensors, and further performance gain when using features from the entire stress event. We 

then compare our model’s performance with a baseline model that is based on [27] and 

analyze the trade-off between accuracy and how many cycles to use for detection.

6.1 Performance with Individual Stress Cycle Features Only

We consider a stress cycle as the smallest unit for detecting an on-going stressful event. The 

Logistic Regression (LR) classifier can distinguish whether a stress cycle belongs to 

stressful conversation class with an F1 score of 0.77 using stratified 10-fold cross-validation 

method using stress cycle features from one cycle (see Figure 8a). Precision and recall 

values are 0.65 and 0.95, respectively. On the other hand, Random Forest (RF) classifier 

achieves precision, recall, and F1-score of 0.66, 0.85, and 0.74, respectively.

6.2 Performance Improvement from Using Wrist Motion Features

After fusing wrist motion features with individual stress cycle features, Logistic regression 

(LR) can classify with 0.75 precision, 0.89 recall, and 0.82 F1-score. The Random Forest 

(RF) model can classify the two classes with precision, recall, and F1 score of 0.78, 0.92, 

0.85, respectively. This shows that adding computationally inexpensive and less power-

hungry motion sensors, which are already part of wrist devices, can significantly improve 

the accuracy of detecting stressful conversation, especially with a random forest model.

6.3 Performance Improvement Using Stress Event Features

When we augment whole stress event features with the individual stress cycle features, the 

precision improves to 0.83, recall improves to 0.97, and F1-score becomes 0.89 using 

Random Forest (RF) model as shown in Figure 8b. The stress event features provide a 

significant improvement in classification performance. But, to achieve this performance 

gain, we need to observe the whole duration of the stressful event. We get fewer false alarms 

but at the cost of longer waiting times for interventions.

6.4 Comparison with a Baseline Model

To put the performance of our model in perspective, we construct a baseline model. We 

consider a natural model that compares the percentage of stress event duration that is 

detected to be spent in conversation by user from another data source motivated by the work 
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presented in [27]. To detect the start and end times of a conversation, we use an audio-based 

model available from LENA [1] and separately a respiration-based model from [6]. We find 

overlap duration between these two events that result in optimal performance (see Figures 9b 

and 9c).

We observe an F1-score of 0.51 for the audio-based model with around 32% overlap with 

the stress event and an F1 score of 0.60 for the respiration based model with 58% overlap 

with the stress event. Lower F1-scores for these two baseline models can be explained by the 

fact that models detecting conversations are not perfect (F1-score 0.7). Secondly, people 

usually multitask and therefore, even when a user may be in conversation during a stress 

event, (s)he might be stressed for other reasons. For example, a driver may be in 

conversation with a co-passenger during driving, but stressor can be traffic-related.

In addition to 15–30% performance improvement over baseline models, our model also has 

the advantage of detecting stressful conversation from the stress time series itself, without 

needing concurrent detection of potential stressors (e.g., conversation from audio, work 

status from computer logs, etc.).

6.5 Trade-offs for Delivery of Just-In-Time Stress Intervention

A just-in-time intervention needs information on most opportune moments for delivering the 

intervention. In this section, we investigate the trade-off between the accuracy of detecting 

the stressful conversation and how quickly since the start of the stress event, the stressful 

conversation can be detected.

The model performance is expected to improve when features are computed over longer 

intervals, but it also comes at the cost of delayed detection. We also observe that when we 

use features spanning multiple cycles (i.e., two cycles, three cycles), the number of instances 

for classification reduces and the model may tend to overfit. The total number of instances 

while taking features from one cycle, two cycles and three cycles are 346, 258 and 183, 

respectively. After computing features from three cycles, the dataset becomes too small to 

test any further combination of featureset. This issue does not arise when using whole event 

features as the unit of analysis is still each cycle within the stress event.

The F1-score using features from one cycle, two cycles, three cycles and whole stress event 

based featureset is 0.74, 0.78, 0.84, and 0.89, respectively. Fusing the wrist motion features 

with stress cycle features increases the F1-score to 0.83, 0.86, 0.88 and 0.89 for one cycle, 

two cycles, three cycles, and whole stress event based feature set, respectively. Figure 10b 

shows these results.

Stress intervention designers can consider the trade-offs between the timing of intervention 

and the accuracy of detecting stressful conversations based on one or multiple stress cycles. 

For example, if a quicker intervention is called for, then they can consider intervening after 

one cycle, which will allow them to intervene within 3.9 minutes (on average) from the 

stress rising point with an F1-score of 0.83, when the stress cycle features are used with 

wrist motion features (see Figure 10b). To achieve higher accuracy, one can use the model 

that fuses two cycles together. In that case, the F1 score improves to 0.86, but the timing of 
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the delivery will be further delayed (on average, 9.3 minutes from the stress rising point 

shown in Figure 10a). We note that the best accuracy is achieved when using whole event 

features, but this will further delay the detection of stressor, to an average of 19 minutes. 

These analyses can help intervention designers find a suitable operating point.

7 LIMITATIONS AND FUTURE WORKS

There are several limitations to this work that can inspire future research.

First, this work used stress event detection from chest-worn ECG and respiration sensors. 

These sensors provide a firmer attachment than pulse plethysmography or electrodermal 

sensing from conveniently worn wrist devices. Wearing electrodes or a chest belt in the field 

for long term to monitor stress is burdensome and sometimes interferes with daily activities. 

Therefore, it is a challenge to deploy such systems in the field. However, smartwatches are 

becoming increasingly popular, and recent research work shows the feasibility of detecting 

stress from wrist-worn sensors. Future work can assess how well the presented model can be 

adapted to work with potentially noisier stress time series obtained from wrist-worn sensor 

data and test its real-time usage.

Second, this study used data from 38 participants, but the data was collected only for one 

full day (due to privacy concerns with audio capture in the natural environment). Future 

work can investigate the generalizability of the presented model on data collected in longer-

term studies and those involving a more general population.

Third, the limited size of dataset (in terms of number and diversity of detected stress events) 

in this work was insufficient to develop and test a three class classifier to distinguish 

interaction, work, and commute. In future, a larger dataset can enable identification of other 

stressors as well as support the construction of data-driven features in a deep learning model.

Fourth, in addition to stressful conversations, work, and commute, there are numerous other 

sources of stress such as financial difficulties, health issues, news about friends, family, 

colleagues, region, country, and the world, among others. Future work can investigate the 

possibilities of detecting these and other stressors, by potentially exploring novel methods to 

combine the data collected from other sources with the stress dynamics data.

Fifth, the labeling of stress events was done based on participants interviews. As we asked 

the participants to recall what was causing the stress after showing the detected stress events 

using the visualization, this may have introduced some bias. To better assess recall and 

detect false positives in stress event detection, a future study can present the surrounding 

contexts and time segments (both when stress is detected and not detected) without 

disclosing whether stress event was detected at those times. Another way to reduce bias may 

be to first let the participants recall major periods of stress and then show them the 

visualizations to verify the stress events.

Sixth, this work assigned each detected stress event to a single stressor. Some real-life 

situations involve multitasking, where a stress event may be due to the confluence of 
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multiple concurrent factors. Future work can investigate methods for detection of multiple 

concurrent stressors.

8 CONCLUSION

This work introduced the concept of stress cycles and presented an algorithm to identify 

them in a stress likelihood timeseries and characterize points of interest in them. It further 

showed that features derived from stress cycles have sufficiently distinct patterns to 

distinguish stressful conversations from other stressors (with improved accuracy when 

combined with features derived from hand gestures). This work opens the doors to future 

research that can collect larger datasets consisting of a large number of other daily stressors 

and develop models to identify each of them. Such models can be used to determine various 

sources of stress for each stress event detected by wearable sensors. This information can 

not only inform the timing of intervention delivery, but also the right content, the adaptation 

mechanisms for personalizing it to the individual and the user’s context, and selecting the 

right modality for delivery (e.g., smartphone or smartwatch).
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CCS Concepts:

• Human-centered Computing → Ubiquitous and Mobile Computing; • Information 
Systems → Data Mining;
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Fig. 1. 
Inferences of continuous stress likelihood using ECG and respiration signal.
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Fig. 2. 
The circles represent significant locations visited by a user in a day. At a given location, the 

thickness of the circle corresponds to the duration of time spent and its color indicates the 

intensity of the average stress. Significant places can be labeled by the user. Clicking on a 

pushpin displays the frequency of visit to the location, start and end times of the last visit, 

and the duration of time that the user was stressed at that location. Users can edit and relabel 

the unknown locations, as shown in the picture.
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Fig. 3. 
Stress timeline visualization consists of four channels of inferences. Significant locations are 

marked with corresponding semantic location labels (e.g., Home). Dark color represents the 

presence of conversation (blue) and activity (purple) and grey color implies its absence. The 

bar display for Stress has three colors (Green = No stress, Yellow = Medium stress, and Red 

= High stress). Gaps in any of the channel indicate unavailable data. The interface has zoom-

in (e.g., restaurant is zoomed-in in the lower figure) and zoom-out plus info-tip features 

(shown in black box with exact time in the lower zoomed-in part) to precisely pinpoint each 

stress events and corresponding contexts.
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Fig. 4. 
Distribution of stress events throughout the whole day.
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Fig. 5. 
(a) Cyclical pattern of stress likelihood observed in lab data. The vertical solid black and 

dotted red lines depict start and end times of each tasks, respectively. Stress cycles are 

visible during scripted reading, Map Task2 and debrief session. In between 15 and 25 

minutes, we observe a portion of missing data. (b) Variation in stress likelihood pattern 

during stressful and non-stressful conversations in field. The horizontal blue dotted line 

shows the daily average of stress likelihood. During stressful conversation, we observe 

several high arousal stress cycles.
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Fig. 6. 
(a) Moving average based cycle identification method to identify all four interesting points- 

(1) stress rising point; (2) stress saturation point; (3) stress decay point; and (4) stress 

recovery points are detected. (b) Summary of detected stress cycles for stressful 

conversation, work and commute related stress. Median numbers of stress cycles/event are 4, 

2.5 and 3 for stressful conversation, work and commute, respectively, where number of 

cycles/event is significantly higher for stressful conversation related stress compared to other 

two stressors. Median stress cycle duration’s are 3.5, 4.2 and 4.0 minutes for stressful 

conversation, work and commute related stress, respectively. Significant difference is found 

between stressful conversation and work related stress cycle duration.
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Fig. 7. 
(a) Several duration values from individual stress cycle. (b) Rising and falling normalized 

area. (c) Rising and falling intercepts of stress cycles.
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Fig. 8. 
(a) Performance of LR (Logistic Regression) and RF (Random Forest) models using 

individual stress cycle features and then fusing wrist motion features. (b) Performance using 

whole stress event features fusing with individual stress cycle features and wrist motion 

features.
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Fig. 9. 
(a) Whether a stress event is due to stressful conversation depending on the overlap ratio 

between detected conversation and stress events. Here conversation is measured from the 

LENA audio device. (b) If conversation is measured using respiration based model, then the 

accuracy of finding whether a stress event is due to interaction.
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Fig. 10. 
(a) Possible timing/points (P1, P2, P3 and Pn) of delivering intervention depending on 

features computed from one stress cycle or span of multiple stress cycles. d1, d2, d3 and dn 
are representing the temporal distances from stress escalation point or beginning of a stress 

event. (b) Trade-off between stressful conversation detection accuracy and timing of stress 

intervention delivery based on features computed from one stress cycle or features from 

multiple cycles.
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Table 1.

Stressors observed in participant’s daily life for which sensor data is fully available and usable for modeling.

Stressors Number of stressful 
events

Average event duration 
(Minute)

What was going on during stressful events

Stressful 
Conversations

53 22.68 (3.83) Conversations with partner, friends, colleagues, supervisor

Commute 30 12.74 (2.28) Time pressure, other driver’s behavior, construction on road

Work 14 18.23 (3.54) Deadline, answering work related email/text
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