
Joint-Based Velocity Feedback to Virtual Limb Dynamic 
Perturbations

Eric J. Earley [Student Member, IEEE],
Department of Biomedical Engineering, Northwestern University, and the Center for Bionic 
Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611

Kyle J. Kaveny,
Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611

Reva E. Johnson [Member, IEEE],
Department of Mechanical Engineering, Valparaiso University

Levi J. Hargrove [Member, IEEE],
Center for Bionic Medicine, Shirley Ryan AbilityLab, and the Departments of Physical Medicine & 
Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL 60611

Jon W. Sensinger [Senior Member, IEEE]
Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB Canada

Abstract

Despite significant research developing myoelectric prosthesis controllers, many amputees have 

difficulty controlling their devices due in part to reduced sensory feedback. Many attempts at 

providing supplemental sensory feedback have not significantly aided control. We hypothesize this 

is because the feedback provided contains redundant information already provided by vision. 

However, whereas vision provides egocentric, position-based feedback, sensory feedback tied to 

joint coordinates may provide information complementary to vision. In this study, we tested if 

providing audio feedback of joint velocities can improve performance and adaptation to dynamic 

perturbations while controlling a virtual limb. While subjects performed time-controlled center-out 

reaches, we perturbed the dynamics of the system and measured the rate subjects adapted to this 

change. Our results suggest that initial errors were reduced in the presence of audio feedback, and 

we theorize this is due to subjects identifying the perturbed limb dynamics sooner. We also noted 

other possible benefits including improved muscle activation detection.

I. Introduction

For many upper-limb amputees, myoelectric prosthetic devices represent the current 

standard of restoring functionality. Recent studies have focused on extending myoelectric 

control to simultaneous movements of multiple degrees of freedom (DoFs) through pattern 

recognition or regression algorithms [1], [2]. However, these controllers are initially difficult 

to use and require a period to learn how to control the device [3]. Part of this learning is 
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associated with making repeatable contractions [4]; however, it is likely that this learning is 

also partly attributed to the users recognizing the dynamical properties of the device. 

Reduced sensory feedback due to missing or damaged sensory organs (e.g. proprioceptors, 

mechanoreceptors, nociceptors) may contribute to this difficulty [5].

There have been several attempts to provide feedback via sensory substitution to improve 

performance, though few were successful in doing so with vision feedback present [6]. For 

example, Ninu et al. showed that grasping force, commonly studied in sensory substitution, 

can be estimated with vision alone by watching the velocity of the closing prosthesis [7]. 

Successful studies are able to improve performance by providing complementary sensory 

information not provided by vision, such as tactile information [8]. Additionally, studies 

suggest that providing feedback in a discrete fashion may be more beneficial for some tasks, 

confirming completion of a task more clearly than continuous feedback [9]. Effective 

sensory substitution requires not just providing a stimulus, but also consideration of how it 

will be interpreted by the user. For example, it is important for stimuli provided for one task 

to allow users to generalize their performance to other tasks [10]. Sensory substitution 

should also provide information not available to, or with similar or lesser variance than, the 

other intact senses, most notably vision [11].

Vision can be an extremely precise feedback modality, and is the most relied upon modality 

for amputees performing tasks [12]. Vision provides feedback in a global, egocentric 

reference frame [13]; therefore, less precise sensory substitutions providing feedback in the 

same global reference frame do not significantly improve control. However, the same 

sensory substitution providing feedback in a local, joint-based reference frame may provide 

information complementary to vision; one study suggests that joint-based velocity 

information is more relevant when users are less certain about control of their bodies than 

about the external environment [14]. Additionally, vision provides more precise feedback 

with position information [15], but is less precise with velocity information [16]; thus, 

sensory substitution encoding velocity information may also complement existing visual 

feedback.

The purpose of this study is to determine if continuous, local reference frame-based velocity 

feedback improves performance even in the presence of vision. This study is in contrast to 

prior works that have used discrete feedback or provided sensory substitution in global 

reference frames [6]. Our hypothesis was tested using a continuous joint-based, velocity-

based feedback paradigm when controlling a 2-DoF myoelectric interface with control 

perturbations. The virtual limb was inspired by the control of a trans-humeral prosthesis 

consisting of an elbow and wrist. Subjects performed time-constrained center-out reaches 

[17] with and without audio feedback, during which the dynamics of the virtual limb were 

perturbed at discrete intervals. We tested the hypothesis that providing joint- and velocity-

based audio feedback during these reaches would improve the rate of adaptation to 

perturbations to the virtual limb dynamics, and that this improved adaptation would 

generalize to multiple target locations.
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II. Methods

A. Subjects

Ten right hand-dominant, non-amputee participants were recruited for this study, which was 

approved by the Northwestern University Institutional Review Board. All subjects provided 

informed consent before starting the study.

B. Experimental Protocol

Subjects participated in two experimental sessions, separated by at least one day: one session 

with no audio feedback, and one session with joint- and velocity-based audio feedback 

provided. The order of these sessions was randomized across subjects using balanced block 

randomization.

Subjects were seated in front of a computer monitor with their right arm placed in a rigid 

forearm brace clamped to a table, affixing the elbow and wrist positions. Four Delsys 

Bagnoli electromyographic (EMG) sensors were placed on the subject’s arm: over the biceps 

and triceps on the upper arm, and over the flexor and extensor compartments of the forearm. 

Reference electrodes were placed over the olecranon, and the electrode sites were wrapped 

with an elastic cohesive bandage [see Fig. 1(a)].

Subjects used arm and forearm EMG from isometric muscle contractions to control a virtual 

two-link arm. EMG from elbow flexion applied a counter-clockwise torque to the proximal 

linkage; EMG from elbow extension, clockwise torque. EMG from wrist flexion applied a 

counter-clockwise torque to the distal linkage; EMG from wrist extension, clockwise. Links 

were simulated with a length of 10 cm, a mass of 5 kg, and a damping coefficient of 1.5 

Ns/m.

During the audio feedback session, subjects wore a pair of noise-canceling headphones 

(Bose Corporation, Framingham, MA). Audio feedback consisted of two pitches whose 

volumes were proportional to the speed of the two virtual linkages; the speed of the 

proximal linkage determined the amplitude of a 200 Hz pitch, and the speed of the distal 

linkage determined the amplitude of a 300 Hz pitch.

Subjects completed the following experimental tasks [see Table I]:

1) System Tuning—EMG gains and dead zones were tuned during a free exploration 

session lasting only a few minutes, where subjects were permitted to control the virtual arm 

and explore the workspace with no objective, allowing users to become familiar with the 

dynamics of the system.

2) Free Training—Subjects completed 100 free training trials; during free training, 

subjects performed center-out reaches towards one of four 2 cm diameter targets located 14 

cm from the home position (25 reaches towards each target, in randomized order) [See Fig. 

1(b)]. When the cursor of the arm stopped within the target, the arm was reset to the starting 

position and a new target was presented.
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3) Familiarization—Subjects completed 100 familiarization trials introducing them to 

the protocol of the testing blocks. The protocol was similar to free training (25 reaches 

towards each of four targets); however, subjects were instructed to reach the target at 1.5 

seconds after leaving the 5 cm diameter home circle [17]. This time-constrained task was 

used to ensure similar movement profiles across trials. A ball was shown above each target, 

and began dropping at a constant speed when the cursor left the home circle [see Fig. 1(b)]. 

This ball would align concentrically with the target at 1.5 seconds, thus indicating when the 

subject was to reach the target. If the subject moved for longer than 2 seconds, the trial was 

marked as timed out. Subjects were also instructed to complete the reach in a single fluid 

movement; if the cursor speed dropped below 1 cm/s, the trial ended, the arm was reset to 

the starting position, and a new target was presented. After completing 100 familiarization 

trials, if subjects did not stop within a ±0.25 second time window for at least 40% of the 

trials, or if they desired additional practice, they completed a second set of 100 

familiarization trials.

4) Testing Blocks—Subjects performed 40 baseline reaches towards the four targets (10 

reaches towards each target, in randomized order) to provide a baseline performance, before 

making 20 reaches towards the far-right target (no perturbation trials). The dynamic 

properties of the simulated arm were then perturbed by reducing the damping coefficient of 

each linkage to 0.5 Ns/m; this perturbation was used to promote adaptation to an intrinsic 

disturbance [14]. Subjects performed 20 additional reaches towards the far-right target with 

the new dynamics (perturbation trials). Following this, subjects performed 20 reaches 

towards the top-left target (left generalization) and 20 reaches towards the top-right target 

(right generalization), for 120 total trials.

C. Performance Metrics

Two performance metrics were calculated for each trial: Euclidean distance between the 

cursor and the target at 1.5 seconds (when the timing ball was concentrically aligned with 

the targets), and the average cursor speed during the 1.5 seconds of movement. Both metrics 

were adjusted by subtracting the average from the baseline trials to account for varying 

accuracy and speeds to different targets. From these performance metrics, adaptation during 

perturbation, left generalization, and right generalization trials were calculated for each 

subject by fitting the data to an exponential decay function (ae−λx), where a, the exponential 

decay gain, represents the overall magnitude of error, and λ, the exponential decay rate, 

represents the adaptation rate. Additionally, experiments were video- and screen captured, 

allowing for subsequent observation of subject performance.

III. Results

Sample data from a representative subject are shown in Figure 2. Reaches towards the far-

right target during no perturbation trials (black) are consistent and accurate. However, when 

movement dynamics are perturbed (grey), movement becomes more erratic [see Fig. 2(a)]. 

This can be seen in the increase in distance from the target and average movement speed 

immediately after trial 60 [see Fig. 2(b)]. However, subjects typically quickly adapted to this 

change and restored their performance to baseline levels. Furthermore, while we expected to 
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see an increase in error during initial reaches towards both generalization targets, these 

initial reaches were often near baseline performance.

A. Euclidean Distance

During no perturbation trials, Euclidean distance was unchanged from the baseline trials, as 

expected [see Fig. 3(a)]. After the system dynamics were perturbed, there was a trend to an 

increase in Euclidean distance error during the first few perturbed trials, especially when 

audio-feedback was not provided. This is supported by the exponential fit gains, which are 

lower on average with audio feedback present [see Table II]. This increase tapered to 

baseline values within the first few trials. There were no clear trends during either of the 

generalization blocks, which may indicate that subjects were capable of adapting their 

control over the entire movement space.

B. Average Cursor Speed

As with Euclidean distance, during no perturbation trials the average cursor speed was 

unchanged from baseline trials [see Fig. 3(b)]. After the system dynamics were perturbed, 

cursor speed increased due to the reduced damping term in the dynamics of the limb. This 

speed increase appears to be greater in the absence of audio feedback, as shown both in the 

figure and in the increased exponential fit gains [see Table II]. Similar to Euclidean distance 

error, these increases lessened over time, generally returning to baseline levels after a few 

trials. However, unlike trends for Euclidean distance, there appeared to be a second spike in 

cursor speed during initial reaches towards the left generalization target, with similar 

adaptation profiles as subjects adjusted their movements; furthermore, this error spike 

appears smaller during audio feedback blocks. There was no clear increase in speed during 

right generalization trials.

IV. Discussion

Two of the most desirable features of trans-humeral prostheses are the simultaneous and 

proportional control of multiple joints to perform coordinated movements, and a reduction in 

visual attention required to perform certain functions [18]. Sensory feedback and 

proprioception of the prosthetic limb are key components to addressing these limitations, but 

restoring these senses remains a major challenge facing myoelectric prostheses [5]. Closed-

loop control for prosthetic devices is a vital part of correcting for errors, and plays an even 

greater role in learning unintuitive or arbitrary control mappings [19]. If sensory feedback 

provides the same information as intact senses (such as vision) but with greater uncertainty, 

this redundant feedback has little effect on the final state estimate [20].

In this study, we investigated a joint- and velocity-based feedback paradigm’s effect on 

subjects’ myoelectric control of a 2-DoF virtual limb to determine if sensory feedback 

provided in a local reference frame complemented visual feedback provided in a global 

reference frame. The dynamics of the virtual limb were perturbed during use to calculate 

performance impact and adaptation to the new dynamics (perturbation trials), and to 

determine if this adaptation was in a local or global frame (generalization trials).
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These preliminary results suggest that, while subjects were able to adapt both their 

movement errors and movement speed to the perturbed dynamics of the virtual limb over 

time and return to baseline performance, initial errors were smaller when audio feedback 

was present. We theorize that this reduction is because the feedback was providing joint-

based and velocity-based, rather than Cartesian-based, information continuously throughout 

the movement, allowing subjects to identify earlier within the trial that the dynamics were 

perturbed and facilitated earlier adaptation. This hypothesis is supported by the increase in 

average speed over the first few perturbation trials; because vision is relatively imprecise in 

determining speed [16] compared to position [15], providing separate channel of feedback 

encoding the velocity of the virtual limb should improve subjects’ control over limb velocity. 

Providing continuous joint- and velocity-based feedback also serves to provide, in essence, 

an efference copy of control inputs resulting in limb movements. By directly providing this 

efference copy through a different sensory modality, our feedback paradigm enables subjects 

to develop a better feedforward model of the prosthesis control [21], ultimately resulting in 

an improved ability to adapt to perturbations and to generalize this improvement across the 

entire workspace.

When asked to provide subjective feedback, several subjects commented that the audio 

feedback helped them to recognize when they were unintentionally contracting their 

muscles, allowing them to relax their muscles to prevent the virtual arm from making 

unintended movements, particularly between trials while waiting for the target to appear. 

These comments appear to support the results of Cipriani et al. [9], who found that humans 

are capable of integrating feedback of discrete events, such as finger contact with grasped 

objects, into their sensorimotor control. One can argue that the binary state of muscle 

activation (below- or above movement threshold), and the corresponding continuous audio 

feedback (below- or above hearing threshold) are discrete events, and thus subjects may have 

been incorporating these discrete events in their control of the virtual limb during this study. 

In addition to the tested hypothesis, there are several other possible benefits of sensory 

feedback that were not investigated during this study. One such benefit is prosthesis 

embodiment. Studies have shown that providing sensory feedback with prosthesis use, 

regardless of modality, can improve the user’s embodiment of the prosthesis and make them 

feel more connected to the device [8], [22], [23].

We originally expected that the perturbation would influence the generalization trial 

performances more than what was observed. We believe that this was likely due to our 

choice of perturbation. The change in damping uniformly affected the workspace. If we 

were to have implemented a curl field or other external perturbation [10], we may have 

found greater differences at the generalization targets. We also did not expect that subjects 

would adapt before the first trial was completed. However, upon examining video capture of 

subjects performing the task, the within trial adaption was apparent.

Sensory feedback remains an expansive field of study with many challenges yet to be 

overcome. However, addressing these challenges will give us an improved understanding of 

how humans incorporate multiple sources of sensory inputs, ultimately leading to improved 

prosthetic devices capable to restoring greater functionality and quality of life.
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Figure 1. 
Experiment Layout. (a) Experiment setup. The hand was immobilized in a forearm brace. 

EMG Electrodes placed over the upper arm and forearm controlled the virtual arm displayed 

on the screen. (b) Virtual environment. The cursor of the virtual arm would begin each trial 

at the home position (blue circle). One of four random targets would appear (green +), and 

subject would reach for the target (faded blue). During familiarization trials and the testing 

blocks, a ball (grey circle) would appear above the target; once the arm cursor left the home 

circle, the ball would drop, aligning with the target 1.5 seconds after dropping.

Earley et al. Page 9

IEEE Int Conf Rehabil Robot. Author manuscript; available in PMC 2021 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Sample data from representative subject. (a) Individual subject movement profiles during 

testing block, starting at trial 41. Subject was provided audio feedback in this testing block. 

Trace colors represent no perturbation (black), perturbation, left generalization, and right 
generalization (grey) trials. (b) Individual subject performance during testing blocks. 

Vertical dashed lines separate between testing block subsections. Horizontal dashed lines 

indicate mean ± standard deviation for the corresponding target during baseline trials. 

Example exponential decay curves are fit to the data.
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Figure 3. 
Baseline-adjusted performance during testing blocks. Baseline values are subtracted from 

raw metrics. Bold lines represent trial mean and dashed lines represent trial standard error, 

averaged across subjects. No perturbation and perturbation trials are reaches towards the far-

right target. Left and right generalization trials are reaches towards the top-left and top-right 

target, respectively. (a) Baseline-adjusted Euclidean distance during testing blocks. (b) 

Baseline-adjusted cursor speed during testing blocks.
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