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Cardiac cell type–specific gene regulatory programs 
and disease risk association
James D. Hocker1,2,3, Olivier B. Poirion4†, Fugui Zhu5†, Justin Buchanan4, Kai Zhang3, 
Joshua Chiou2,6, Tsui-Min Wang7, Qingquan Zhang5, Xiaomeng Hou4, Yang E. Li3, 
Yanxiao Zhang3, Elie N. Farah2,5, Allen Wang4, Andrew D. McCulloch7,8, Kyle J. Gaulton6,9, 
Bing Ren3,4,9,10*, Neil C. Chi5,10*, Sebastian Preissl4*

Misregulated gene expression in human hearts can result in cardiovascular diseases that are leading causes of 
mortality worldwide. However, the limited information on the genomic location of candidate cis-regulatory ele-
ments (cCREs) such as enhancers and promoters in distinct cardiac cell types has restricted the understanding of 
these diseases. Here, we defined >287,000 cCREs in the four chambers of the human heart at single-cell resolu-
tion, which revealed cCREs and candidate transcription factors associated with cardiac cell types in a region- 
dependent manner and during heart failure. We further found cardiovascular disease–associated genetic variants 
enriched within these cCREs including 38 candidate causal atrial fibrillation variants localized to cardiomyocyte 
cCREs. Additional functional studies revealed that two of these variants affect a cCRE controlling KCNH2/HERG 
expression and action potential repolarization. Overall, this atlas of human cardiac cCREs provides the foundation 
for illuminating cell type–specific gene regulation in human hearts during health and disease.

INTRODUCTION
Disruption of gene regulation is an important contributor to car-
diovascular disease, the leading cause of morbidity and mortality 
worldwide (1). Cis-regulatory elements such as enhancers and pro-
moters are crucial for regulating gene expression (2–5). Mutations 
in transcription factors and chromatin regulators can result in heart 
disease (6, 7), and genetic variants associated with risk of cardiovas-
cular disease are enriched within annotated candidate cis-regulatory 
elements (cCREs) in the human genome (8). However, a major bar-
rier to understanding the genetic and molecular basis of cardiovas-
cular diseases is the paucity of maps and tools to interrogate gene 
regulatory programs in the distinct cell types of the human heart. 
Recent single-cell/nucleus RNA sequencing (RNA-seq) (9–11) and 
spatial transcriptomic (12) studies have revealed gene expression pat-
terns in distinct cardiac cell types across developmental and adult-
hood stages in the human heart, including some that display gene 
expression patterns that are cardiac chamber/region specific (10, 11). 
However, the transcriptional regulatory programs responsible for 
cell type–specific and chamber-specific gene expression, and their 
potential links to noncoding risk variants for cardiovascular diseases 
and traits, remain to be fully defined.

cCREs have been annotated in the human genome with the 
use of chromatin immunoprecipitation sequencing (ChIP-seq), 
deoxyribonuclease sequencing (DNase-seq), assay for transposase- 
accessible chromatin using sequencing (ATAC-seq), global run-on 
sequencing, etc. in a broad spectrum of human tissues including 
in bulk heart tissues and in purified cardiomyocytes (2–5, 13–18). 
These maps have provided important insights into dynamic gene 
regulation during heart failure (15, 16, 18) and begun to shed 
light on the function of noncoding cardiovascular disease variants 
(8, 13, 16, 18, 19). However, major limitations of these studies 
including their focus on particular chambers/regions of the heart 
and failure to interrogate cis-regulatory elements across all dis-
tinct cardiac cell types have restricted their utility in understand-
ing how specific gene regulatory mechanisms may affect distinct 
cell types and regions of human hearts in health and disease. Al-
though recent single-cell genomic tools provide the opportunity 
to interrogate cis-regulatory elements at single-cell resolution 
(20–23), their application to mammalian hearts has been limited 
to one single-cell ATAC-seq dataset from adult mouse heart (24), 
fewer than 200 total cells from mouse fetal hearts (25), and fetal 
human heart (26). Thus, to comprehensively investigate cis-regulatory 
elements in the specific cell types of the adult human heart, we 
profiled chromatin accessibility in ~80,000 heart cells using single- 
nucleus ATAC-seq (snATAC- seq) (21, 27) and created a com-
prehensive cardiac cell atlas of cCREs annotated by cell type and 
putative target genes. Integration of these data with single-nucleus 
RNA-seq (snRNA-seq) datasets from matched specimens re-
vealed gene regulatory programs in nine major cardiac cell types. 
Using this human cardiac cCRE atlas, we further observed the 
remodeling of cell type–specific candidate enhancers during heart 
failure and the enrichment of cardiovascular disease–associated 
genetic variants in cCREs of specific cell types. Last, we showed 
that a cardiomyocyte-specific enhancer harboring risk variants 
for atrial fibrillation (AF) is necessary for cardiomyocyte KCNH2 
expression and regulation of cardiac action potential repolarization.
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RESULTS
Single nucleus analysis of chromatin accessibility 
and transcriptome in adult human hearts
To assess the accessible chromatin landscape of distinct cardiovas-
cular cell types, we performed snATAC-seq (27), also known as 
sci-ATAC-seq (21), on all cardiac chambers from four adult human 
hearts without known cardiovascular disease (table S1). We ob-
tained accessible chromatin profiles for 79,515 nuclei, with a median 
of 2682 fragments mapped per nucleus (Fig. 1, A and B; fig. S1; and 
table S2). We also performed snRNA-seq for a subset of the above 
heart samples to complement the accessible chromatin data and 
obtained 35,936 nuclear transcriptomes, with a median of 2184 
unique molecular identifiers and 1286 genes detected per nucleus 
(Fig. 1, A and C; fig. S2, A to F; and table S3). Using SnapATAC (28) 
and Seurat (29), we identified nine clusters from snATAC-seq 
(Fig. 1B) and 12 major clusters from snRNA-seq (Fig. 1C and fig. 
S2, G and H), which were annotated on the basis of chromatin ac-
cessibility at promoter regions or expression of known lineage- 
specific marker genes, respectively (Fig. 1, D and E, and table S4) 

(10, 11). For example, chromatin accessibility and gene expression 
of atrial and ventricular cardiomyocyte markers such as NPPA and 
MYH7 (30) were used to classify these two cardiomyocyte subtypes 
(Fig.  1, D and E). Although gene expression patterns of lineage 
markers strongly correlated with accessibility at promoter regions 
across annotated cell types (Fig. 1F) and single-cell integration anal-
ysis (29) revealed 93% concordance in annotation between snATAC- 
seq and snRNA-seq datasets (fig. S3 and table S3), some cellular 
subtypes identified from snRNA-seq including endocardial cells and 
myofibroblasts were not detected by snATAC-seq (Fig. 1F). Nota-
bly, cluster correlation and integration analysis showed that these 
cell types are present within the snATAC-seq data as part of the 
endothelial and smooth muscle clusters, respectively (Fig. 1F, fig. 
S3, and table S3). The discrepancy in clustering may be attributable 
to the conservative snATAC-seq clustering parameters or the sparse 
nature of snATAC-seq data (31). In addition, atrial and ventricular 
cardiomyocyte nuclei from the left and right regions of the heart 
could be further clustered by transcriptome but not chromatin ac-
cessibility (fig. S2, I and J). We noted that cell type composition 
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Fig. 1. Single-nucleus chromatin accessibility and transcriptome profiling of human hearts. (A) snATAC-seq and snRNA-seq were performed on nuclei isolated from 
cardiac chambers from four human donors without cardiovascular pathology. snATAC-seq: n = 4 (left ventricle), n = 4 (right ventricle), n = 3 (left atrium), and n = 2 (right 
atrium); snRNA-seq: n = 2 (left ventricle), n = 2 (right ventricle), n = 2 (left atrium), and n = 1 (right atrium). (B) Uniform manifold approximation and projection (UMAP) (108) 
and clustering analysis of snATAC-seq data reveal nine clusters. Each dot represents a nucleus colored by cluster identity. (C) UMAP (108) and clustering analysis of 
snRNA-seq data reveal 12 major clusters. Each dot represents a nucleus colored by cluster identity. Nerv., nervous. Art. sm. musc., arterial smooth muscle. (D) Genome 
browser tracks (141) of aggregate chromatin accessibility profiles [scale: reads per million (RPM)] at selected representative marker gene examples for individual clusters 
and for all nuclei pooled together into an aggregated heart dataset (top track, gray). Black genes below tracks represent the indicated marker genes, nonmarker genes 
are grayed. (E) Dot plot illustrating expression of representative marker gene examples in individual snRNA-seq clusters. (F) Heatmap illustrating the correlation between 
clusters defined by chromatin accessibility and transcriptomes. Pearson correlation coefficients were calculated between chromatin accessibility at cCREs within 2 kbp of 
annotated promoter regions (76) and expression of the corresponding genes for each cluster.
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varied substantially between biospecimens and donors, highlighting 
the importance of single-cell approaches to limit biases due to cell 
proportion differences in bulk assays (fig. S4 and tables S2 and S3). 
In summary, we identified and annotated cardiac cell types using 
both chromatin accessibility and nuclear transcriptome profiles.

Identification of cCREs in distinct cell types 
of the human heart
To discover the cCREs in each cell type of the human heart, we ag-
gregated snATAC-seq data from nuclei comprising each cell cluster 
individually and determined accessible chromatin regions with 
MACS2 (32). We then merged the peaks from all nine cell clusters 
into a union of 287,415 cCREs, which covered 4.7% of the human 

genome (Fig. 2A and table S5). Sixty-seven percent of the cCREs 
identified in the current study overlapped previously annotated cCREs 
from a broad spectrum of human tissues and cell lines (fig. S5A) (5), 
and the union of heart cCREs captured 98.6 and 95.4% of candidate 
human heart enhancers reported in two previous bulk studies (fig. S5, 
B and C) (13, 15). Furthermore, 75% of cCREs in the union were at 
least 2 kilo–base pairs (kbp) away from annotated promoter regions, 
and 19,447 displayed high levels of cell type specificity [false discovery 
rate (FDR) < 0.01; Fig. 2B and table S6]. Gene ontology analysis (33) 
revealed that these cell type–specific cCREs were proximal to genes 
involved in relevant biological processes, including collagen fibril 
organization for cardiac fibroblast–specific cCREs (K1) and myo-
fibril organization for ventricular cardiomyocyte–specific cCREs 
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Fig. 2. Characterization of gene regulatory programs in cardiac cell types. (A) Heatmap illustrating row-normalized chromatin accessibility values for the union of 
287,415 cCREs. K-means clustering was performed to group cCREs on the basis of relative accessibility patterns. (B) Heatmap showing row-normalized chromatin acces-
sibility of 19,447 cell type–specific cCREs (FDR < 0.01 after Benjamini-Hochberg correction; fold change > 1.2). K-means clustering was performed to group cCREs on the 
basis of relative accessibility patterns. Number of cCREs per K can be found in brackets. (C) Genomic Regions Enrichment of Annotations Tool (GREAT) ontology analysis 
(33) of cell type–specific cCREs. Q value for enrichment indicates Bonferroni-adjusted P value. NK, natural killer; GO, gene ontology; BP, blood pressure. (D) Transcription 
factor motif enrichment (35) for known and de novo motifs within cell type–specific cCREs. The heatmap in shows motifs with an enrichment P value of <10−5 in at least 
one cluster. For de novo transcription factor motifs, the best matches for the top motifs are displayed. Statistical test for motif enrichment: hypergeometric test. P values 
were not corrected for multiple testing. (E) Combination of transcription factor motif enrichment and gene expression shows cell type–specific roles for members of 
transcription factor families. Displayed are heatmaps for known motif enrichment in cell type–specific cCREs (left) and gene expression across clusters (right). (Fb., fibro-
blast; vCm., ventricular cardiomyocyte; aCm., atrial cardiomyocyte; Ec., endothelial; Sm., smooth muscle; Mac., macrophage; Lc., lymphocyte; Ad., adipocyte; Nr., nervous.)
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(K2; Fig.  2C and table S7). Using chromVAR (table S8) (34) and 
HOMER (table S9) (35), we detected cell type–dependent enrichment 
for 231 transcription factor–binding signatures, such as MEF2A/B, 
NKX2.5, and THR- sequence motifs in cardiomyocyte-specific cCREs 
and TCF21 motifs in cardiac fibroblast–specific cCREs (Fig. 2D). 
To discover the transcription factors that may bind to these sites, we 
combined corresponding snRNA-seq data with sequence motif en-
richments to correlate the expression of these transcription factors 
with motif enrichment patterns across cell types (Fig.  2E). As an 
example, we found strong enrichment of the binding motif for the 
macrophage transcription factor SPI1/PU.1 (36) in macrophage- 
specific cCREs, and SPI1 was exclusively expressed in macrophages 
(Fig. 2E and table S4). In addition, we observed that transcription 
factor family members were expressed in cell type–specific combi-
nations. For instance, while GATA Family of transcription factors 
(GATA-binding factor) displayed similar motif enrichment patterns 
across sets of cell type–specific cCREs, we found that endothelial 

cells and cardiac fibroblasts expressed GATA2 and GATA6, respec-
tively, whereas cardiomyocytes expressed both GATA4 and GATA6 
and endocardial cells expressed GATA2, GATA4, and GATA6 (Fig. 2E 
and table S4). In summary, these results establish a resource of cCREs 
for interrogation of cardiac cell type–specific gene regulatory programs.

Cardiac cell type–specific gene regulatory programs 
implicated in chamber-specific structure and function
Each cardiac chamber performs a unique role that is crucial to 
system-level heart function (37). To investigate the gene regulatory 
programs underlying chamber-specific gene expression and cellular 
functions in distinct cardiac cell types, we tested cCREs for differen-
tial accessibility across five of the most abundant cell types of the 
heart: cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth 
muscle cells, and macrophages. We found 16,451 differentially ac-
cessible (DA) cCREs between pooled atria and ventricles, most of 
which were detected in cardiomyocytes (Fig. 3, A to C, and table S10). 
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Specifically, 11,159 cCREs displayed differential accessibility be-
tween the right atrium and the right ventricle, and 12,962 cCREs 
exhibited differential accessibility between the left atrium and the 
left ventricle (fig. S6, A to C, and table S10). Comparing the left and 
right sides of the heart, we identified 101 DA cCREs between the 
right and left ventricles (fig. S6D) and 2687 DA cCREs between left 
and right atria, which, in contrast to comparisons between atria and 
ventricles, were found primarily in cardiac fibroblasts (fig. S6E and 
table S10).

Using coaccessibility analysis (38) to link distal DA cCREs (~88% 
of all DA cCREs) to their putative target genes (table S11; median 
distance, 88.7 kbp), we observed that distal DA cCREs in cardiomy-
ocytes between atria and ventricles were associated with chamber- 
specific gene expression of their putative target genes (Fig. 3D; 
fig. S6, B to E; and table S12), and genes near these DA cCREs were 
enriched for chamber-specific biological processes (Fig. 3E; fig. S6, 
B to E; and table S13). Specifically, distal DA cCREs with higher 
accessibility in atrial cardiomyocytes were associated with genes 
such as PITX2, a transcriptional regulator of cardiac atrial develop-
ment (39), as well as the ion channel subunit SCN5A, which regu-
lates cardiomyocyte action potential (Fig.  3E and table S13) (40). 
Furthermore, we found distal DA cCREs with higher accessibility in 
atrial cardiomyocytes at the HAMP gene locus, which encodes a key 
regulator of ion homeostasis and was recently described as a poten-
tial previously unknown cardiac gene in the right atrium by single- 
nucleus transcriptomic analysis (10, 11). Conversely, genes near distal 
DA cCREs with higher accessibility in ventricular cardiomyocytes 
were enriched for biological processes such as trabecula formation 
and ventricular cardiac muscle cell differentiation. For example, sev-
eral distal DA cCREs with increased accessibility in ventricular car-
diomyocytes compared to atrial cardiomyocytes were linked to the 
promoter region of MYL2, which encodes the ventricular isoform 
of myosin light chain 2 (Fig. 3F and table S4) (41), a regulator of ven-
tricular cardiomyocyte sarcomere function.

In addition, analysis of distal DA cCREs in cardiac fibroblasts 
revealed that putative target genes were involved in distinct biolog-
ical processes between right and left atria. In particular, we found 
that DA cCREs with higher accessibility in right atrial cardiac fibro-
blasts were proximal to genes involved in heart development, heart 
growth, and tube development, whereas DA cCREs with higher ac-
cessibility in left atrial cardiac fibroblasts were adjacent to genes 
involved in biological processes such as wound healing and vascula-
ture development (fig. S6E and table S13). We further found a car-
diac fibroblast–specific DA cCRE with higher accessibility in left 
atria at the fibrinogen FN1 gene locus, potentially indicating a more 
activated fibroblast state (10, 42). Supporting these findings, we iden-
tified several other DA cCREs with higher accessibility in left atrial 
cardiac fibroblasts adjacent to genes involved in generation of 
extracellular matrix (ECM) such as MMP2 and FBLN2 (table S13). 
These observations are consistent with previous findings that a higher 
fraction of ECM is produced in fibroblasts of the left atrium (10).

Using motif enrichment analysis, we inferred candidate transcrip-
tional regulators involved in chamber-specific cellular specialization, 
including TBX5 (T-Box Transcription Factor 5), GATA4, and TGIF1 
(TGFB Induced Factor Homeobox 1) for atrial cardiomyocytes and 
nuclear factor of activated T cells (NFAT), ERRG (Estrogen-Related 
Receptor Gamma), HAND1 (Heart- and Neural Crest Derivatives- 
Expressed Protein 1), and HAND2 for ventricular cardiomyocytes 
(Fig. 3G and table S14). While the TBX5 DNA binding motif was 

strongly enriched in both right and left atrial cardiomyocyte DA 
cCREs, the NFAT5 motif ranked highest in left ventricular cardio-
myocyte DA cCREs and the TBX20 motif was strongly enriched in 
right ventricular cardiomyocyte DA cCREs (fig. S6, B and C, and 
table S14). Furthermore, cardiac fibroblast DA cCREs with higher 
accessibility in the right atrium were enriched for the binding motif 
of forkhead transcription factors (fig. S6E), whereas cardiac fibro-
blast DA cCREs with higher accessibility in the left atrium were en-
riched for the homeobox transcription factor CUX1 motif (fig. S6E 
and table S14). Together, we identified cCREs and candidate tran-
scription factors associated with specific cardiac chambers, particu-
larly within cardiomyocytes and cardiac fibroblasts.

Cell type specificity of candidate enhancers associated 
with heart failure
Recent large-scale studies profiling the H3K27ac histone modifica-
tion in human hearts have uncovered candidate enhancers associated 
with heart failure (15,  18). However, because these studies either 
examined heterogeneous bulk heart tissue (15, 18) or focused solely 
on enriched cardiomyocytes (16), it remains unclear what role, if 
any, additional cardiac cell types and cCREs may contribute to heart 
failure pathogenesis. Using our cell atlas of cardiac cCREs, we re-
vealed the cell type specificity of candidate enhancers showing dif-
ferential H3K27ac signal strength between human hearts from 
healthy donors and donors with dilated cardiomyopathy (heart fail-
ure) (Fig. 4 and fig. S7, A to E) (15). We observed that a large frac-
tion of candidate enhancers that displayed increased activity (45%) 
during heart failure were accessible primarily in cardiac fibroblasts 
(Fig. 4A, K2-4up, and table S15), whereas most of those exhibiting 
decreased activity (67%) were accessible primarily in cardiomyo-
cytes (Fig. 4B, K1-3down, and table S15). Candidate enhancers with 
increased activity in cardiac fibroblasts were proximal to genes in-
volved in ECM organization and connective tissue development 
(Fig. 4A, K2-4up, and table S16), whereas those exhibiting decreased 
activity in cardiomyocytes were proximal to genes involved in the 
regulation of heart contraction and cation transport (Fig. 4B, K1-3down, 
and table S16). For example, several of these cardiac fibroblast can-
didate enhancers were present at loci encoding the ECM proteins 
lumican (LUM) and decorin (DCN) and coaccessible with the pro-
moters of these genes (Fig. 4C). Consistent with these findings, both 
genes were primarily expressed in cardiac fibroblasts (fig. S7F and 
table S4), and LUM has been reported to exhibit increased expres-
sion in failing hearts compared to control hearts (15). On the other 
hand, several cardiomyocyte candidate enhancers displaying de-
creased activity in heart failure were coaccessible with the promoter 
region of IRX4 (Fig. 4D), which encodes a ventricle-specific tran-
scription factor (43) and is primarily expressed in cardiomyocytes 
of the left ventricle (fig. S7G and table S4).

To identify potential transcription factors regulating these patho-
logic responses during heart failure, we performed motif enrichment 
analysis in cell type–specific subsets of enhancers showing differen-
tial H3K27ac signal strength between healthy and failing hearts 
(table S17). For candidate enhancers exhibiting increased activity in 
heart failure, we identified enrichment of not only bHLH motifs 
such as AP4 in cardiac fibroblast candidate enhancers, which matched 
previous bulk analysis (Fig. 4E, K2-4up) (15), but also TEAD3 and 
MYF6 motifs in cardiomyocyte candidate enhancers (Fig. 4E, K1up). 
Conversely, for candidate enhancers displaying decreased activity 
in heart failure, we observed enrichment of nuclear receptor motifs 
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such as glucocorticoid response element in cardiomyocyte candi-
date enhancers, which is consistent with previous findings (Fig. 4F, 
K1-3down) (15), as well as other motifs that were not detected in bulk 
analyses, such as the bZIP transcription factor CEBPA for cardiac 
fibroblast candidate enhancers (Fig. 4F, K4down). Thus, these results 
show that this cardiac cell atlas of cCREs may be used to assign 
disease-associated candidate enhancers from bulk assays to their 
affected cell types and infer transcriptional regulators involved in 
lineage-specific disease pathogenesis.

Interpreting noncoding risk variants of cardiac diseases 
and traits
Noncoding genetic variants contributing to risk of complex diseases 
are enriched within cCREs in a tissue and cell type–dependent 
manner (24, 44–47). To examine the enrichment of cardiovascular 
disease variants within cCREs active in cardiac cell types, we per-
formed cell type–stratified LD (linkage disequilibrium) score regres-
sion analysis (48) using genome-wide association study (GWAS) 
summary statistics for cardiovascular diseases (Fig. 5A) (49–53) 
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and control traits (fig. S8A and table S18) by measuring the enrich-
ment of disease-associated variants within all cCREs identified for 
each cell type. This analysis revealed significant enrichment of 
AF-associated variants in both atrial (Z = 5.61, FDR = 1.9 × 10−6) 
and ventricular cardiomyocyte cCREs (Z = 6.80, FDR = 2.8 × 10−9), 
varicose vein-associated variants in endothelial cell cCREs (Z = 4.36, 
FDR = 3.9 × 10−4), and coronary artery disease–associated variants 
in cardiac fibroblast cCREs (Z = 3.29, FDR = 1.7 × 10−2; Fig. 5A). 
Notably, except for AF, these associations were not significant in a 
pseudo-bulk heart dataset created by combining chromatin acces-
sibility profiles from all cardiac cell types (Fig. 5A). Furthermore, 
cardiovascular disease variants were not significantly enriched in ac-
cessible chromatin from noncardiac tissues (3, 5, 17) or human lung 
cell types (54), with the exception of a significant enrichment of vari-
cose vein–associated variants in endothelial cells (fig. S8, B and C).

Next, to identify likely causal AF risk variants in cardiomyocyte 
cCREs, we first determined the probability that variants were causal 
for AF [posterior probability of association (PPA)] at 111 known 
loci using Bayesian fine mapping (55). We then intersected fine-
mapped AF variants with cCREs detected in atrial and/or ventricu-
lar cardiomyocytes and identified 38 variants with PPA > 10% in 
cardiomyocyte cCREs, including previously reported variants at the 
HCN4 (13) and SCN10A/SCN5A (56) loci (table S19). We further 
prioritized AF variants for molecular characterization on the basis 
of their overlap with cCREs that were primarily accessible in cardio-
myocytes, evolutionarily conserved, and coaccessible with promoters 
of genes expressed in cardiomyocytes. To experimentally validate 
the molecular functions of cCREs containing AF variants, we used a 
human pluripotent stem cell (hPSC)–derived cardiomyocyte differ-
entiation model system (Fig. 5B) (57). From the variant prioritiza-
tion analysis, we found a cCRE in the second intron of the potassium 
channel gene KCNH2 (HERG), which was coaccessible with the 
KCNH2 promoter (Fig. 5C) and harbored two variants, rs7789146 
and rs7789585, with a combined PPA of 28% (Fig. 5C and fig. S9A). 
KCNH2 was primarily expressed in ventricular and atrial cardiomy-
ocytes in the adult human heart (fig. S9B). The cCRE appeared to be 
activated during hPSC-cardiomyocyte differentiation, as evidenced 
by an increase in H3K27ac signal that correlated with KCNH2 ex-
pression (Fig. 5C). Supporting its in vivo role in regulating gene 
expression in mammalian hearts, a genomic region (hs2192) (58) 
containing this cCRE was previously shown to drive LacZ reporter 
expression in mouse embryonic hearts (Fig. 5D) (58).

A cardiomyocyte enhancer of KCNH2 is affected by 
noncoding risk variants associated with AF
To investigate whether these AF variants may affect enhancer activity 
and thereby regulate KCNH2 expression and cardiomyocyte elec-
trophysiologic function, we initially carried out reporter assays 
using a hPSC cardiomyocyte model system. Results from these studies 
confirmed that in D15 hPSC cardiomyocytes, the KCNH2 enhancer 
carrying the rs7789146-G/rs7789585-G AF risk allele displayed sig-
nificantly weaker enhancer activity than when containing the non-
risk variants (Fig. 5E and fig. S9C), thus supporting the functional 
significance of these AF variants. We next used CRISPR-Cas9 ge-
nome editing strategies to remove the enhancer and performed 
quantitative polymerase chain reaction (qPCR) and electrophysio-
logic assays to examine its role in KCNH2 expression and function. 
Supporting the aforementioned findings, CRISPR-Cas9 genome 
deletion of this cCRE in hPSC cardiomyocytes resulted in decreased 

KCNH2 expression in an enhancer dosage–dependent manner (Fig. 
5F and fig. S9D). Similar to human cardiomyocytes with loss of 
KCNH2 function due to mutations in the KCNH2 coding sequence 
(59) or gene knockdown (60), cellular electrophysiologic studies 
demonstrated that these cCRE-deleted hPSC cardiomyocytes dis-
played a significantly prolonged action potential duration (Fig. 5, 
G and H), thus suggesting that cardiac repolarization abnormalities 
in atrial cardiomyocytes may lead to AF in an analogous manner to 
ventricular arrhythmias due to long QT syndrome (59). Together, 
these results highlight the utility of this single-cell atlas for assigning 
noncoding cardiovascular disease risk variants to distinct cell types 
and affected cCREs and functionally interrogating how these vari-
ants may contribute to cardiovascular disease risk.

DISCUSSION
The limited ability to interrogate cell type–specific gene regulation 
in the human heart has been a major barrier for understanding mo-
lecular mechanisms of cardiovascular traits and diseases. Here, we 
report a cell type–resolved atlas of cCREs in the human heart, which 
was ascertained by profiling accessible chromatin in individual nu-
clei from all four chambers of multiple human hearts and includes 
both cell type–specific and heart chamber–specific cCREs. In par-
ticular, we observed chamber-specific differences in chromatin ac-
cessibility between ventricles and atria as well as left and right atria 
but notably detected few differences between left and right ventricles. 
This finding is consistent with recent snRNA-seq analysis in human 
hearts, which found few differentially expressed genes between left and 
right ventricles (11). We note that the power to detect chamber-specific 
differences in chromatin accessibility depends on the number of sam-
ples assayed and the total nuclei used as input for differential analysis. 
Thus, future studies with larger cohorts will likely reveal additional 
chamber-specific differences between cardiac cell types.

We further highlight the utility of this atlas of heart cCREs to pro-
vide previously unidentified insight into aberrant gene regulation 
during cardiovascular pathology. To this end, we delineated the cell 
type specificity of enhancers that were differentially active between 
healthy and failing heart tissue (15) and identified additional tran-
scription factors that may be involved in the pathogenesis of specific 
cell types during heart failure. Such cell type–specific analysis is par-
ticularly important in the context of heart failure because cellular 
composition can differ between diseased and control hearts (16, 61). 
This change in cellular composition may, in part, explain the cell type 
bias that we observed between candidate enhancers exhibiting in-
creased and decreased activity during heart failure (i.e., cardiac fibro-
blasts and cardiomyocytes, respectively). However, because of the 
large differences in H3K27ac signal, we suspect that measured changes 
in candidate enhancer activity could be due to a combination of both 
enhancer remodeling and shift in cell type composition. Thus, future 
studies profiling snATAC-seq and H3K27ac in parallel from the 
same cardiac sample or novel approaches to profile histone modifi-
cations in single nuclei (62, 63) will provide greater insight into the 
extent of changes in chromatin accessibility and enhancer activity in 
individual cardiac cell types from diseased hearts.

Last, we show how this atlas can be used to not only assign non-
coding genetic variants associated with cardiovascular disease risk 
to cCREs in specific cardiac cell types but also illuminate their cellular 
and molecular consequences. In particular, we found significant en-
richment of AF-associated variants within cardiomyocyte cCREs 
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and functionally interrogated one of these cCREs by demonstrat-
ing its role in regulating KCNH2 expression and cardiomyocyte 
repolarization. Similar to electrophysiologic phenotypes of human 
cardiomyocytes exhibiting KCNH2 loss of function (59, 60), hPSC 
cardiomyocytes harboring deletions of this cCRE displayed action 
potential prolongation, suggesting that cardiac repolarization ab-
normalities may contribute to AF, possibly through similar mecha-
nisms as to how they may contribute ventricular arrhythmias (59). On 
the other hand, we found no enrichment of variants associated with 
heart failure in any cardiac cell type. This finding may reflect the het-
erogeneous etiologies of cardiovascular diseases and the limited num-
ber of currently known risk loci for heart failure (49). Future GWAS in 
large cohorts with detailed phenotyping, including biobanks such as 
the UK Biobank (64) and the BioBank Japan Project (65) and whole- 
genome sequencing efforts such as the National Heart, Lung, and 
Blood Institute Trans-Omics for Precision Medicine program (66), 
will help identify and refine disease association signals. Therefore, 
this atlas of cardiac cCREs will be a valuable resource for continued 
discovery of regulatory elements, target genes, and specific cell types 
that may be affected by noncoding cardiovascular genetic variants.

In summary, we created a human heart cell atlas of >287,000 
cCREs, which may serve as a reference to further expand our knowl-
edge of gene regulatory mechanisms underlying cardiovascular dis-
ease. To facilitate distribution of these data, we created a web portal 
at http://catlas.org/humanheart. Integrating this resource with ge-
nomic and epigenomic clinical cardiac datasets, we built a system-
atic framework to interrogate how cis-regulatory elements and 
genetic variants might contribute to cardiovascular diseases such as 
heart failure or AF. Overall, such information will have great poten-
tial to provide insight into the development of future cardiac thera-
pies that are tailored to affected cell types and thus optimized for 
treating specific cardiovascular diseases.

MATERIALS AND METHODS
Experimental design
We performed snATAC-seq to define a comprehensive catalog of 
cCREs for the cell types in four regions of nonfailing human hearts 
and generated in parallel snRNA-seq datasets for a subset to delin-
eate gene expression patterns. We used the cCRE catalog to compu-
tationally assign dynamic enhancers in failing hearts to cell types 
and to assign cardiovascular disease risk variants to cCREs in indi-
vidual cardiac cell types. Last, we applied reporter assays, genome 
editing, and electrophysiological measurements in in vitro differen-
tiated human cardiomyocytes to validate the molecular mechanisms 
of cardiovascular disease risk variants.

Human tissues
Adult human heart tissues were procured at the time of organ dona-
tion using an Institutional Review Board protocol (no. 101021) ap-
proved by the University of California, San Diego. Donated hearts were 
perfused with cold cardioplegia before cardiectomy and then ex-
planted immediately into an ice-cold physiologic solution as we pre-
viously described (67). Full-thickness samples from each chamber were 
obtained, and epicardial fat was rapidly removed before immediately 
flash-freezing samples in liquid nitrogen. Samples were received from 
the United Network for Organ Sharing. Limited clinical data were ob-
tained for each heart per approved Institutional Review Board protocol 
(table S1). All samples were stored at −80°C until processing.

Single-nucleus ATAC-seq
Combinatorial barcoding snATAC-seq was performed as described 
previously (21, 27, 28) with slight modifications. Nuclei were isolated 
in gentleMACS M tubes (Miltenyi) on a gentleMACS Octo dissoci-
ator (Miltenyi) using the “Protein_01_01” protocol in magnetic- 
activated cell sorting (MACS) buffer [5 mM CaCl2, 2 mM EDTA, 1× 
protease inhibitor (Roche, 05-892-970-001), 300 mM MgAc, 10 mM 
tris-HCl (pH 8), and 0.6 mM dithiothreitol (DTT)]. Nuclei were 
pelleted with a swinging-bucket centrifuge (500g, 5 min, 4°C; 5920R, 
Eppendorf) and resuspended in 1 ml of nuclear permeabilization 
buffer [1× phosphate-buffered saline (PBS), 5% bovine serum albu-
min (BSA), 0.2% IGEPAL CA-630 (Sigma-Aldrich), 1 mM DTT, 
and 1× protease inhibitor]. Nuclei were rotated at 4°C for 5  min 
before being pelleted again with a swinging-bucket centrifuge (500g, 
5 min, 4°C; 5920R, Eppendorf). After centrifugation, permeabi-
lized nuclei were resuspended in 500 l of high-salt tagmentation 
buffer [36.3 mM tris acetate (pH 7.8), 72.6 mM potassium ace-
tate, 11 mM Mg acetate, and 17.6% N,N′-dimethylformamide] and 
counted using a hemocytometer. Concentration was adjusted to 
2000 nuclei/9 l, and 2000 nuclei were dispensed into each well 
of a 96-well plate per sample (96 tagmentation wells per sample; 
samples were processed in batches of two to four samples). For 
tagmentation, 1 l of barcoded Tn5 transposomes (table S20) was 
added using a BenchSmart 96 (Mettler Toledo), mixed five times, 
and incubated for 60 min at 37°C with shaking (500 rpm). To in-
hibit the Tn5 reaction, 10 l of 40 mM EDTA (final 20 mM) was 
added to each well with a BenchSmart 96 (Mettler Toledo), and the 
plate was incubated at 37°C for 15 min with shaking (500 rpm). 
Next, 20 l of 2× sort buffer (2% BSA and 2 mM EDTA in PBS) 
were added using a BenchSmart 96 (Mettler Toledo). All wells 
were combined into a separate fluorescence-activated cell sorter 
tube for each sample and stained with DRAQ7 at 1:150 dilution 
(Cell Signaling Technology). Using an SH800 (Sony), 20 nuclei 
per sample were sorted per well into eight 96-well plates (total of 
768 wells) containing 10.5 l of Elution Buffer (EB; Qiagen) [25 pmol 
of primer i7, 25 pmol of primer i5, and 200 ng of BSA (Sigma-Aldrich)]. 
During the sort, nuclei with two to eight copies of DNA (2-8n) were 
included because cardiomyocyte nuclei in human hearts are often 
polyploid (16). Preparation of sort plates and all downstream pipet-
ting steps were performed on a Biomek i7 automated workstation 
(Beckman Coulter). After addition of 1 l of 0.2% SDS, samples were 
incubated at 55°C for 7 min with shaking (500 rpm). One microliter 
of 12.5% Triton X was added to each well to quench the SDS. Next, 
12.5 l of NEBNext High-Fidelity 2× PCR Master Mix (New 
England Biolabs) were added, and samples were PCR-amplified 
[72°C 5 min, 98°C 30 s, (98°C 10 s, 63°C 30 s, 72°C 60 s) × 12 cy-
cles, held at 12°C]. After PCR, all wells were combined. Libraries 
were purified according to the MinElute PCR Purification Kit man-
ual (Qiagen) using a vacuum manifold (QIAvac 24 Plus, Qiagen), 
and size selection was performed with SPRISelect reagent (Beckman 
Coulter; 0.55× and 1.5×). Libraries were purified one more time 
with SPRISelect reagent (Beckman Coulter; 1.5×). Libraries were 
quantified using a Qubit fluorimeter (Life Technologies), and a 
nucleosomal pattern of fragment size distribution was verified using 
a TapeStation (High Sensitivity D1000, Agilent). Libraries were se-
quenced on a NextSeq 500 sequencer (Illumina) using custom se-
quencing primers with the following read lengths: 50 + 10 + 12 + 50 
(read 1 + index 1 + index 2 + read 2). Primer and index sequences 
are listed in table S20.

http://catlas.org/humanheart
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Single-nucleus RNA-seq
Nuclei were isolated from heart tissue using a gentleMACS dissoci-
ator (Miltenyi). Frozen heart tissue (~40 mg) was suspended in 2 ml 
of MACS dissociation buffer [5 mM CaCl2 (G-Biosciences, R040), 
2 mM EDTA (Invitrogen, 15575-038), 1× protease inhibitor (Roche, 
05-892-970-001), 3 mM MgAc (Grow Cells, MRGF-B40), 10 mM 
tris-HCl (pH 8) (Invitrogen, 15568-075), 0.6 mM DTT (Sigma- 
Aldrich, D9779), and ribonuclease (RNase) inhibitor (0.2 U/l; 
Promega, N251B) in water (Corning, 46-000-CV)] and placed on 
wet ice. Next, samples were homogenized using a gentleMACS dis-
sociator (Miltenyi) with gentleMACS M tubes (Miltenyi, 130-096-335) 
and the Protein_01_01 protocol. Suspension was filtered through a 
30 M CellTrics filter (Sysmex, 04-0042-2316). M tube and filter 
were washed with 3 ml of MACS dissociation buffer and combined 
with the suspension. Suspension was centrifuged in a swinging- 
bucket centrifuge (Eppendorf, 5920R) at 500g for 5 min (4°C, ramp 
speed of 3/3). Supernatant was carefully removed and pellet was re-
suspended in 500 l of nuclei permeabilization buffer[(0.1% Triton 
X-100 (Sigma-Aldrich, T8787), 1× protease inhibitor (Roche, 05-
892-970-001), 1 mM DTT (Sigma-Aldrich, D9779), RNase inhibi-
tor (0.2 U/l; Promega, N251B), and 2% BSA (Sigma-Aldrich, 
SRE0036) in PBS]. Sample was incubated on a rotator for 5 min at 
4°C and then centrifuged at 500g for 5 min (Eppendorf, 5920R; 4°C, 
ramp speed of 3/3). Supernatant was removed and pellet was resus-
pended in 600 to 1000 l of sort buffer [1 mM EDTA and RNase 
inhibitor (0.2 U/l) in 2% BSA (Sigma-Aldrich, SRE0036) in PBS] 
and stained with DRAQ7 (1:100; Cell Signaling Technology, 7406). 
Seventy-five thousand nuclei were sorted using an SH800 sorter 
(Sony) into 50 l of collection buffer [RNase inhibitor (1 U/l) and 
5% BSA (Sigma-Aldrich, SRE0036) in PBS]. Sorted nuclei were then 
centrifuged at 1000g for 15 min (Eppendorf, 5920R; 4°C, ramp speed 
of 3/3), and supernatant was removed. Nuclei were resuspended in 
18 to 25 l of reaction buffer [RNase inhibitor (0.2 U/l) and 1% 
BSA (Sigma-Aldrich, SRE0036) in PBS] and counted using a hemo-
cytometer. Twelve thousand nuclei were loaded onto a Chromium 
controller (10x Genomics). Libraries were generated using the 
Chromium Single Cell 3′ Library Construction Kit v3 (10x Genom-
ics, 1000078) according to the manufacturer specifications. Com-
plementary DNA was amplified for 12 PCR cycles. SPRISelect 
reagent (Beckman Coulter) was used for size selection and cleanup 
steps. Final library concentration was assessed by the Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific), and fragment size was 
checked using TapeStation High Sensitivity D1000 (Agilent) to en-
sure that fragment sizes were distributed normally around 500 bp. 
Libraries were sequenced using a NextSeq 500 or HiSeq 4000 (Illu-
mina) using these read lengths: read 1, 28 cycles; read 2, 91 cycles; 
and index 1, 8 cycles.

hPSC culture
An engineered H9-hTnnTZ-pGZ-D2 hPSC transgenic reporter line 
was purchased from WiCell and maintained on Geltrex (Gibco) pre-
coated tissue culture plates in E8 medium (68) containing Dulbecco’s 
modified Eagle’s medium/F12, l-ascorbic acid-2-phosphate magne-
sium (64 mg/liter), sodium selenium (14 g/liter), fibroblast growth 
factor 2 (100 g/liter), insulin (19.4 mg/liter), NaHCO3 (543 mg/
liter), transferrin (10.7 mg/liter), and transforming growth factor–  
1(2 g/liter). Cells were passaged every 3 to 5 days upon reaching 
~80% confluency. For single-cell passaging experiments, cells were 
incubated with prewarmed TrypLE Select Enzyme, no phenol red 

(1 ml per well of a six-well plate) for 2 to 3 min in a 37°C, 5% CO2 
incubator. Following incubation, cells were triturated to create a 
single-cell suspension and cultured in E8 medium supplied with 
Rock inhibitor (69) for 18 to 24 hours after split, followed by daily 
feeding with E8 medium.

In vitro cardiomyocyte differentiation
The H9-hTnnTZ-pGZ-D2 cell line was differentiated into beating 
cardiomyocytes using a previously reported Wnt-based monolayer 
differentiation protocol (70). Briefly, the H9-hTnnTZ-pGZ-D2 cell 
line was cultured in E8 medium for 3 to 10 passages. Before differ-
entiation, hPSCs were seeded at a density of 350,000 to 400,000 cells 
per well of a 12-well plate and cultured for 2 days. For direct differ-
entiation, cells were treated with 10 M CHIR99021 (Fisher Scien-
tific, no. 442350) in RPMI/B-27 without insulin. Fresh RPMI/B-27 
without insulin media was replaced at post 24 hours, and cells were 
then cultured for 2 days. At day 3, cells were treated with 5 M IWP2 
(TOCRIS, no. 353310) in conditional medium and RPMI/B-27 
without insulin 1:1 mix medium for another 2 days. At day 5, cells 
were exposed to fresh RPMI/B-27 without insulin media again for 
2 days. Then, fresh RPMI/B-27 with insulin media was used and 
replenished every 2 days. Contracting cardiomyocytes were usually 
observed at days 7 and 8. D25 in vitro cardiomyocytes were purified 
using a PSC-derived cardiomyocyte isolation kit, human (Miltenyi 
Biotec, 130-110-188) and used for real-time qPCR (RT-qPCR).

Luciferase reporter assay
A genomic region harboring the KCNH2 intronic enhancer (con-
taining the risk allele rs7789146-G/rs7789585-G) was amplified by 
nested PCR (KCNH2-E-cF, CTGGCTGAAGACACCTTACTTT; 
KCNH2-E-cR, ACGGAGCAGTCAAGGAAAC and KCNH2-In-cF, 
CGGGGTACCCCTCCGTAAATGAGGTGCTATC; KCNH2-In-cR, 
CCCTCGAGACGGAGCAGTCAAGGAAAC) using the genomic 
DNA of H9-hTnnTZ-pGZ-D2 transgenic cells as a template and 
cloned into pGL4.23 [luc2/minP] (Promega, catalog no. E8411) 
luciferase reporter vector. Synthetic DNA containing the KCNH2 
intronic 5′-half enhancer (rs7789045-rs7789690) with the nonrisk/
nonrisk allele (rs7789146-A/rs7789585-A), nonrisk/risk allele 
(rs7789146-A/rs7789585-G), and risk/nonrisk allele (rs7789146-G/
rs7789585-A) were purchased from Integrated DNA Technologies. 
KCNH2 intronic 3′-half enhancer (rs7789654-rs7790480) was am-
plified by PCR (KCNH2-R-In-cF, GCTGTGCAGTGTCAGGTTAT; 
KCNH2-In-cR, CCCTCGAGACGGAGCAGTCAAGGAAAC). Then, 
the whole KCNH2 intronic enhancer with the nonrisk/nonrisk al-
lele (rs7789146-A/rs7789585-A), nonrisk/risk allele (rs7789146-A/
rs7789585-G), and risk/nonrisk allele (rs7789146-G/rs7789585-A) 
were generated by second PCR (KCNH2-In-cF, CGGGGTAC-
CCCTCCGTAAATGAGGTGCTATC; KCNH2-In-cR, CCCTC-
GAGACGGAGCAGTCAAGGAAAC). One day before transfection, 
3 × 105 of D15 in vitro differentiated cardiomyocytes were plated in 
a Geltrex-coated 24-well plate. Cardiomyocytes were transfected 
with 500 ng of pGL4.23 plasmid (either empty, KCNH2 enhancer 
with G/G allele, A/A allele, or mix) and 10 ng of TK:Renilla-luc as 
an internal control using Lipofectamine Stem Transfection Reagent 
(Invitrogen, no. STEM00003). Media were replaced with fresh me-
dia at 24 hours after transfection. At 72 hours after transfection, 
media were removed and the cells were washed with PBS. Lumines-
cence was measured using a Dual-Luciferase Reporter Assay System 
(Promega, no. E2920) according to the manufacturer’s protocol.



Hocker et al., Sci. Adv. 2021; 7 : eabf1444     14 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 23

CRISPR-mediated genome editing experiments
To interrogate the functional significance of the AF-associated risk 
variant–containing cCRE at the KCNH2 locus, the cCRE sequence 
was genetically deleted in H9-hTnnTZ-pGZ-D2 transgenic hPSCs 
using an efficient CRISPR-Cas9–mediated knockout system (57, 71). 
Two adjacent guide RNAs (gRNAs) (KCNH2-enh gRNA-1, CT-
CATTTACGGAGGAGCGCA; KCNH2-enh gRNA-2, TACAGTG-
GCCTTCTAGACGA) targeting the cCRE were designed using a 
web-based software tool CRISPOR (72) based on targeting region of 
interest and minimizing potential off-target effects. The identified 
gRNAs were then synthesized in vitro using the GeneArt Precision 
gRNA Synthesis kit (Invitrogen) according to the manufacturer’s 
protocol. One day before transfection, 1.5  ×  105 H9-hTnnTZ- 
pGZ-D2 hPSCs were seeded in 12-well plates. A pair of ribonucleo-
protein complexes containing 1.2 g of Cas9 protein (New England 
Biolabs) and 400 ng of in vitro transcribed gRNA was then trans-
fected (73, 74) using Lipofectamine stem transfection reagent (Invi-
trogen). Seventy-two hours after the transfection, cells were diluted 
and clonally expanded another 7 days. Colonies were picked and 
lysates were prepared after the first passage for genotyping (75) 
(KCNH2-enh extended forward primer, ACACCTTACTTTGG-
GTGAGAAG; KCNH2-enh extended reverse primer, AGACA-
GAGCACAGACCTAGAA; KCNH2-enh internal forward primer, 
GCTGTGCAGTGTCAGGTTAT; KCNH2-enh internal reverse 
primer, TCTCCCTCCTTCTCTCTCATTC). After confirmation of 
genome-edited clones by Sanger sequencing, two transfected wild-
type (WT) clones, two heterozygote clones, and two homozygote 
clones were selected for further functional analysis.

Real-time quantitative polymerase chain reaction
Total RNA was isolated from the cells using TRIzol reagent (Invit-
rogen). One microgram of total RNA was reverse-transcribed using 
the iScript Reverse Transcription Supermix kit (Bio-Rad) for RT- 
qPCR. RT-qPCR was performed using PowerUP SYBR Green Master 
Mix (Applied Biosystems) in the CFX Connect Real-Time System 
(Bio-Rad). The results were normalized to the TBP gene. The prim-
ers used for RT-qPCR are listed in table S21.

Electrophysiology of cardiomyocytes
Both WT and KCNH2 enhancer knockout D15 in vitro cardiomyo-
cytes were purified using the PSC-derived cardiomyocyte isolation 
kit, human (Miltenyi Biotec, 130-110-188) and cultured for another 
10 to 20 days in a low density before electrophysiological measure-
ments. The single-pipette, whole-cell patch current-clamp technique 
was used for recordings. Action potentials were recorded with a 
patch-clamp amplifier (Axopatch 200B, Axon), and experiments 
were performed at a temperature of 35° ± 0.5°C. Current-clamp 
command pulses were generated by a digital-to-analog converter 
(DigiData 1440, Axon), which was controlled by the pCLAMP soft-
ware (10.3; Axon). Pipettes (resistance, 3 to 5 megohm) were pulled 
using a micropipette puller (Model P-87, Sutter Instrument Co.). 
Several minutes after seal formation, the membrane was ruptured by 
gentle suction to establish the whole-cell configuration for voltage 
clamping. Subsequently, the amplifier was switched to the current- 
clamp mode. Cells were paced with 1  Hz and injected current 
stimuli from 3 to 15 nA for 5-ms duration. Cells were superfused 
with extracellular solution containing the following: 140 mM NaCl, 
5.4 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 5.5 mM glucose, and 
5.0 mM Hepes (pH 7.4 adjusted with NaOH). Pipette solution 

contained the following: 120 mM K-gluconate, 10 mM KCl, 5 mM 
NaCl, 10 mM Hepes, 5 mM phosphocreatine, 5 mM ATP-Mg2, and 
amphotericin (0.44 M; pH 7.2 adjusted with KOH).

Data analysis
Demultiplexing of snATAC-seq reads
For each sequenced snATAC-Seq library, we obtained four FASTQ 
files, two for paired-end DNA reads as well as the combinatorial 
indexes for i5 (768 different PCR indices) and T7 (96 different tag-
mentation indices; table S20). We selected all reads with ≤2 mis-
takes per individual index (Hamming distance between each pair of 
indices is 4) and subsequently integrated the full barcode at the be-
ginning of the read name in the demultiplexed FASTQ files (https://
gitlab.com/Grouumf/ATACdemultiplex/).
Filtering of snATAC-seq profiles by transcriptional start site 
enrichment and unique fragments
TSS (transcriptional start site) positions were obtained from the 
GENCODE database v31 (76). Tn5-corrected insertions were ag-
gregated ±2000 bp around each TSS genome wide. Then, this pro-
file was normalized to the mean accessibility ± (1900 to 2000) bp 
from the TSS and smoothed every 11 bp. The maximum value of the 
smoothed profile was taken as the TSS enrichment. We selected all 
nuclei that had at least 1000 unique fragments and a TSS enrich-
ment of at least 7 for all datasets.
Clustering strategy for snATAC-seq datasets
We used two rounds of clustering analysis to identify clusters. The 
first round of clustering analysis was performed on individual sam-
ples. We divided the genome into 5-kbp consecutive bins and then 
scored each nucleus for any insertions in these bins, generating a 
bin-by-cell binary matrix for each sample. We filtered out those bins 
that were generally accessible in all nuclei for each sample using a z 
score threshold of 1.65 (equivalent to a one-tailed P value < 0.05). 
On the basis of the filtered matrix, we then carried out dimension-
ality reduction followed by graph-based clustering to identify cell 
clusters. We called peaks using MACS2 (32) for each cluster using 
the aggregated profile of accessibility and then merged the peaks 
from all clusters to generate a union peak list. On the basis of the 
peak list, we generated a cell-by-peak count matrix and used Scrublet 
(77) to remove potential doublets with default parameters. Doublet 
scores returned by Scrublet (77) were then used to fit a two-component 
Gaussian mixture model using the BayesianGaussianMixture func-
tion from the python package scikit-learn (78). Nuclei in the com-
ponent with the larger mean doublet score were removed from 
downstream analysis because they likely reflected doublets.

Next, to carry out the second round of clustering analysis, we 
merged peaks called from all samples to form a reference peak list. 
We generated a binary cell-by-peak matrix using nuclei from all 
samples and again performed dimensionality reduction followed by 
graph-based clustering to obtain the final cell clusters across the en-
tire dataset.
Dimensionality reduction and batch correction of 
snATAC-seq data
For processing of snATAC-seq data, we adapted our previously 
published method, SnapATAC (28). To reduce the dimensionality 
of the peak by cell count matrix, SnapATAC uses spectral embed-
ding for dimensionality reduction. To further increase the perform-
ance and scalability of spectral embedding, we applied the Nyström 
method (79) to enable handling of large datasets. Specifically, we first 
randomly sampled 35,000 nuclei as training data. We computed the 

https://gitlab.com/Grouumf/ATACdemultiplex/
https://gitlab.com/Grouumf/ATACdemultiplex/
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matrix P = D−1S S, where D is the diagonal matrix such that   D  ii   =  
∑ j      S  ij   . The eigendecomposition was performed on P, and the eigen-
vector with eigenvalue 1 was discarded. From the rest of the eigen-
vectors, we took k of them corresponding to the largest eigenvalues 
as the spectral embedding of the training data. We used the Nyström 
method (79) to extend the embedding to the data outside the train-
ing set. Given a set of unseen samples, we computed the similarity 
matrix S′ between the new samples and the training set. The embed-
ding of the new samples is given by ′ = S′ U−1, where U and  are 
the eigenvectors and eigenvalues of P obtained in the previous step. 
To correct for donor/batch-specific effects, after dimensionality re-
duction, we performed cell grouping on individual samples using 
k-mean clustering with k equal to 20. We then constructed k-NN 
graphs for each sample and used the MNN (Mutual Nearest Neighbor) 
correction method to identify mutual nearest neighbors (80). These 
mutual nearest neighbors were used as anchors to match the cells be-
tween different samples and correct for donor/batch effects as de-
scribed previously (80).
Clustering of snATAC-seq data
We constructed the k-nearest neighbor graph (k-NNG) using low- 
dimensional embedding of the nuclei with k equal to 50. We then 
applied the Leiden algorithm (81) with constant Potts model to find 
communities in the k-NNG corresponding to the cell clusters. The 
Leiden algorithm can be configured to use different quality func-
tions. The modularity model is a popular choice, but it is hampered 
by the resolution limit, particularly when the network is large (82). 
Therefore, we used the modularity model only in the first round of 
clustering analysis to identify initial clusters. In the final round of 
clustering, we chose the constant Potts model as the quality func-
tion because it is resolution limit free and is better suited for identi-
fying rare populations in a large dataset (82). Nuclei from two small 
clusters (280 and 254 nuclei) with low reproducibility and stability 
were discarded from downstream analysis. Thirty-four nuclei that 
formed clusters of 1 and 2 nuclei were discarded as well.
Processing and clustering analysis of snRNA-seq datasets
Raw sequencing data were demultiplexed and preprocessed using the 
Cell Ranger software package v3.0.2 (10x Genomics). Raw sequenc-
ing files were first converted from Illumina BCL files to FASTQ files 
using cellranger mkfastq. Demultiplexed FASTQs were aligned to the 
GRCh38 reference genome (10x Genomics), and reads for exonic 
and intronic reads mapping to protein coding genes, long noncoding 
RNA, antisense RNA, and pseudo-genes were used to generate a 
counts matrix using cellranger count; expect-cells parameter was set 
to 5000. A separate counts matrix for each sample was also generated 
using only reads mapped to intronic regions.

Next, exon and intron count matrices for individual datasets 
were processed using the Seurat v3.1.4 R package (29) (https://
satijalab.org/seurat/) to assess dataset quality. Features represented in 
at least three cells and barcodes with between 500 and 4000 genes 
were used for downstream processing. In addition, barcodes with 
mitochondrial read percentages greater than 5% were removed. 
Counts were log-normalized and scaled by a factor of 10,000 using 
NormalizeData. To identify variable genes, FindVariableFeatures 
was run with default parameters except for nfeatures = 3000 to re-
turn the top 3000 variable genes. All genes were then scaled using 
ScaleData, which transforms the expression values for downstream 
analysis. Next, principal components analysis was performed using 
RunPCA with default parameters and the top 3000 variable fea-
tures as input. The first 20 principal components were used to run 

clustering using FindNeighbors and FindClusters (parameter res = 0.4). 
To generate uniform manifold approximation and projection (UMAP) 
coordinates, RunUMAP was run using the first 20 principal com-
ponents and with parameters umap.method  =  “umap-learn” and 
metric = “correlation”. Doublet scores [pANN (proportion of Arti-
ficial Nearest Neighbors)] were generated for cell barcodes using 
DoubletFinder (https://github.com/chris- mcginnis-ucsf/DoubletFinder) 
(83) using the parameters pN = 0.15 and pK = 0.005; the anticipated 
collision rate was set by specifying 2% collisions per thousand nuclei 
for individual datasets.

Individual datasets were merged together using the merge func-
tion in Seurat to combine the count matrices and designate unique 
barcodes. Cell barcodes with pANN scores greater than 0 were re-
moved from downstream analysis. Metadata were also encoded for 
each barcode, and the merged dataset was processed in a similar man-
ner as described above; clusters were identified using FindNeighbors 
and FindClusters (res = 0.8). To generate the UMAP coordinates, the 
first 14 principal components were used in RunUMAP; the UMAP 
algorithm for Seurat v3.1.4 uses the uwot R package and that setting 
was used to generate the coordinates here. To regress out donor specific 
effects, the Harmony R package (https://github.com/immunogenomics/
harmony) (84) was used, and the recomputed principal components 
were used to recluster the cells and rerun UMAP using the above pa-
rameters. For downstream analysis and comparison to snATAC- seq 
data, we manually combined ventricular cardiomyocyte clusters, atrial 
cardiomyocyte clusters, fibroblast clusters, and endothelial cell clusters 
on the basis of shared gene expression patterns (fig. S2, G and H). 
Cluster-specific genes in the all-transcripts dataset were identified in a 
global differential gene expression test using FindAllMarkers with pa-
rameters logFC = 0.25, min.pct = 0.25, and only.pos = FALSE.
Integration of snRNA-seq and snATAC-seq data
The snRNA-seq and snATAC-seq datasets were used to perform label 
transfer from the RNA cells onto the snATAC-seq dataset using the 
Seurat v3.1.4 R package (https://satijalab.org/seurat/) (29). Gene ac-
tivity scores were calculated using chromatin accessibility in regions 
from the promoter up to 2 kb upstream for each ATAC nucleus. Ac-
tivity scores were log-normalized and scaled using NormalizeData 
and ScaleData. To compare the snRNA and snATAC datasets and 
identify anchors, FindTransferAnchors was run considering the top 
3000 variable features from the snRNA-seq dataset. Anchor pairs 
were used to assign RNA-seq labels to the snATAC- seq cells using 
TransferData, with the weight.reduction parameter set to the princi-
pal components used in snATAC-seq clustering. The efficacy of inte-
gration was assessed by examining the distribution of the maximum 
prediction scores output by TransferData and the distribution of an-
notated snATAC-seq identities to the corresponding predicted label.
Creation of a consensus list of heart cCREs
MACS2 (v2.1.2) (32) was used to identify accessible chromatin sites 
for each cluster with the following parameters: -q 0.01 --nomod-
el --shift -100 --extsize 200 -g 2789775646 --call-summits --keepdup-all. 
Estimated genome size was determined to be 2,789,775,646 bp and was 
indicated by the -g parameter. We next filtered out peaks overlapping 
with the ENCODE blacklist (hg38; https://github.com/Boyle-Lab/
Blacklist/) (85). To generate the union of heart cCREs, we merged the 
blacklist- filtered peaks obtained for each cluster using the BEDtools 
merge command with default settings (v2.25.0) (86).
Computing relative accessibility scores for cCREs
To correct biases arising from differential read depth among cells 
and cell types, we derived a procedure that normalizes chromatin 

https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
https://satijalab.org/seurat/
https://github.com/Boyle-Lab/Blacklist/
https://github.com/Boyle-Lab/Blacklist/


Hocker et al., Sci. Adv. 2021; 7 : eabf1444     14 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 23

accessibility at cCREs identified by MACS2 peak calling (v2.1.2) 
(32). We define the set of accessible loci by L, and we define a peak 
p as a subset of related loci l from L. Let al be the accessibility of ac-
cessible locus l and P the set of nonoverlapping peaks used to define 
the loci. For a given cell type Si ∈ S, we computed the median medj 
number of reads sequenced per cell. For each feature pj ∈ P, we 
computed mij, the average number of reads sequenced from Si, and 
overlapping pj. We then defined the activity aij of loci pj in Si as   a  ij   =  

10   6  ×   
 
1/ med  j  

 √ ─ (1 −  m  ij  )  
 ___________ 

 ∑ j∈P    
1/ med  j  

 √ ─ (1 −  m  ij  )   
  . We then define the relative accessibility score 

(RAS)   A  ij   =    a  ij   _  ∑ i∈S    a  ij   
  .

K-means clustering of cCREs
We clustered the union of 287,415 cCREs using a K-means cluster-
ing procedure. We first created a sparse cell × peak matrix that was 
transformed into a RAS-normalized cell type × peak matrix. We 
then performed K-means on the normalized matrix with K from 
2 to 12 and computed the Davies-Bouldin (DB) index for each K (87). 
Let   R  xy   =  ( s  x   +  s  y  ) _  d  xy  

    with sx the average distance of each cell of cluster x 
and dxy the distance between the centroids of clusters x and y. The 
DB index is defined as  DB =   1 _ K   ∑ x,y∈K      max  x≠y  ( R  xy  ) . We selected 
K = 9 because it resulted in the lowest DB index that indicates the 
best partition. We used the python library scikit-learn (78) to com-
pute the K-means algorithm and the DB index (87).
Cell type annotation
We annotated snATAC-seq and snRNA-seq clusters on the basis of 
chromatin accessibility at promoter regions or expression of known 
lineage marker genes, respectively. We annotated atrial and ventric-
ular cardiomyocytes on the basis of differential chromatin accessi-
bility and gene expression at NPPA, MYH6, KCNJ3, MYL7, MYH7, 
HEY2, MYL2, and other reported markers of atrial and ventricular 
cardiomyocytes (30, 88, 89). We used, for example, the gene DCN to 
annotate cardiac fibroblasts (90), VWF and EGFL7 for endothelial 
cells (91, 92), GJA4 and TAGLN for smooth muscle cells (93, 94), 
CD163 and MS4A6A for macrophages (95, 96), IL7R and THEMIS 
for lymphocytes (97, 98), ADIPOQ and CIDEA for adipocytes (99, 100), 
and NRXN3 and GPM6B for a cluster of nervous cells with neuronal 
and Schwann-like gene expression and chromatin accessibility signa-
tures (10, 11, 101). From snRNA-seq, we identified a population of 
endothelial-like cells with specific expression of endocardial cell mark-
ers NRG3 and NPR3 (102, 103). We also identified subtypes of mes-
enchymal cells that included myofibroblasts with characteristic 
expression of embryonic smooth muscle actin MYH10 (104, 105) as 
well as arterial smooth muscle cells with preferential expression of 
ACTA2 and TAGLN relative to a larger cluster of pericytes (table S4) 
(106). snRNA-seq annotations were consistent with recent single-cell 
transcriptomic analyses of adult human heart tissue (10, 11).
Identification of cell type–specific cCREs
We used edgeR (version 3.24) in R (107) to identify cell type–specific 
cCREs. For each cCRE, accessibility within a cell type was compared 
to average accessibility in all other clusters. For each cell type, we 
created a count table for each cCRE using the following strategy: 
Each sample was described with a donor and a chamber ID. For 
each sample ID, we reported read count within (i) the cell type and 
(ii) the rest of the cell types in aggregate. We used this count matrix 
as input for edgeR analysis (107) and performed a likelihood ratio 
test. We considered cCREs with fold change > 1.2 and FDR < 0.01 
after Benjamini-Hochberg correction as cell type specific.

Coaccessibility analysis using Cicero
We used the R package Cicero (38) to infer coaccessible chromatin 
loci. For each chromosome, we used as input the corresponding 
peaks from our 287,415 cCRE union set and the coordinates of the 
snATAC-seq UMAP (108). We randomly subsampled 15,000 cells 
from our aggregate snATAC-seq dataset to construct input matri-
ces for Cicero analysis. We used ±250 kbp as cutoff for coaccessibil-
ity interactions. All other settings were default.
Correlation of gene expression and promoter accessibility
We defined promoter regions as TSS ±2 kbp. TSS were extracted 
from annotation files from GENCODE release 33 (76). We identi-
fied promoter-overlapping peaks using BEDtools (86) and a custom 
script (see the “Code availability” section). For each overlapping 
pair (peak and promoter) identified, we kept only the open chroma-
tin site closest to the TSS to obtain a 1:1 correspondence between 
genes and open chromatin peaks. We then used the RAS and the 
cluster-scaled gene expression (29) to create feature × cell type ma-
trices for RNA-seq and ATAC-seq datasets. We then used these ma-
trices to create heatmaps and to perform ATAC-seq/RNA-seq cluster 
correlation analysis using the Pearson similarity metric. For each cell 
type, we computed the Pearson correlation score between the RAS 
vector of the 7081 promoters and the scaled expression vector of the 
corresponding 7081 genes identified via the 1:1 correspondence 
method described above.
DA cCREs between heart chambers
Between-heart chamber differential accessibility analysis was per-
formed for five cell types from our aggregated snATAC-seq dataset. 
We considered only cell types that had a representation of at least 50 
nuclei per dataset and at least 300 nuclei across each tested condi-
tion. The cell types that met these inclusion criteria included car-
diomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and 
macrophages. Within each cell type, a generalized linear model frame-
work was used using the R package edgeR (107). All fragments for a 
given cell type were aggregated in the .bed format. MACS2 (32) was 
used to call peaks on the aggregate .bed file for each cell type with 
the parameters specified above. NarrowPeak output bed files were 
used for differential accessibility testing. The aggregate .bed file for 
each cell type was then partitioned on the basis of dataset of origin 
using nuclear barcodes. The “coverage” option of the BEDtools pack-
age (86) was applied with default settings to count the total number 
of chromatin fragments from each dataset overlapping narrowPeaks 
called on the aggregate .bed file for the corresponding cell type. This 
yielded a raw count matrix in the format of snATAC-seq datasets 
(columns) by narrowPeaks (rows) for each cell type. The raw count 
matrix was used as input for edgeR analysis. To filter low-coverage 
peaks from our analysis, we used the “filterByExpr” command with-
in edgeR with default settings. We applied an average prior count of 
one during fitting of the generalized linear model to avoid inflated 
fold changes in instances for which peaks lacked coverage for one 
but not both tested conditions. We modeled chromatin accessibility 
at each peak as a function of heart chamber (group) with sex as a 
covariate. The generalized linear model was expressed as follows in 
edgeR notation:

   design <− model . matrix(~sex + group)
    y <− estimateDisp(y, design, prior . count = 1)     

glmFit(y, design)
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Significance was tested using a likelihood ratio test. To account 
for testing multiple hypotheses, a Benjamini-Hochberg significance 
correction was applied for all cCREs tested within each considered 
cell type. Any cCRE with an absolute log2(fold change) > 1 and an 
FDR-corrected P value < 0.05 was considered significant.
Gene expression analysis of genes coaccessible with DA cCREs
To compare the expression of genes coaccessible with heart chamber– 
dependent distal DA cCREs (outside ±2 kb of TSS) in cardiomyo-
cytes and fibroblasts, we performed differential expression testing 
for all genes between indicated heart chambers using Wilcoxon 
rank sum test in Seurat (29). Genes with an absolute fold change > 
1.5 and an FDR-adjusted P value < 0.05 were considered differen-
tially expressed. We then tested the resulting genes for coaccessibil-
ity (38) with distal DA cCREs at a coaccessibility score threshold of 
0.1 and displayed scaled gene expression values from Seurat for the 
indicated differentially expressed genes linked to chamber-dependent 
distal DA cCREs.
Genomic Regions Enrichment of Annotations Tool 
ontology analysis
The Genomic Regions Enrichment of Annotations Tool (GREAT; 
http://great.stanford.edu/public/html/index.php) (33) was used 
with default settings for indicated cCREs or candidate enhancers in 
the .bed format. Biological process enrichments are reported. P values 
shown for enrichment are Bonferroni-corrected binomial P values.
Motif enrichment analysis
For de novo and known motif enrichment analysis of cluster-specific 
cCREs, the findMotifsGenome.pl utility of the HOMER package 
was used with default settings (35). For display of enrichment pat-
terns for motifs from the JASPAR (109) database with evidence of 
enrichment in at least one set of cell type–specific cCREs, motifs with 
an enrichment P value < 10−5 in at least one set of cluster-specific 
cCREs were selected. For motif enrichment within DA cCREs, 
narrowPeak calls from MACS2 were used as input, with peaks called 
on the corresponding cell type (as described above) used as back-
ground. For enrichment of motifs within cell type–attributed bulk 
enhancers, snATAC-seq peaks from the union of snATAC-seq peaks 
were used. Summits were extracted from peaks that overlapped bulk 
enhancer annotations and extended by 250 bp on either side to ob-
tain fixed-width peaks. We also computed motif enrichment scores 
at single- cell resolution using chromVAR (34).

For input to chromVAR, we used the summits of the 287,415 
peaks in our consensus list extended by 250 bp in either direction 
and a set of 870 nonredundant motifs as input (https://github.com/
GreenleafLab/chromVARmotifs). To identify differentially en-
riched motifs in each cell type, we used the following strategy: For 
each cell type and each motif, we computed a rank sum test between 
the chromVAR z score distributions from cells within the cell type 
and outside of the cell type. Tests were run using a random sam-
pling of 40,000 cells. Then, for each cell type, we used 1 × 10−8 as 
P value cutoff. In addition, we applied a Bonferroni correction to 
account for multiple testing, which resulted in selection of signifi-
cant motifs with P value < 1 × 10−11.
Measuring single-cell chromatin accessibility signal within bulk 
candidate heart enhancers
We obtained published candidate heart enhancers annotated by 
H3K27ac ChIP-seq from a recently reported bulk survey of healthy 
left ventricular tissue from 18 human donors (15). Candidate en-
hancers were defined per the study as H3K27ac ChIP-seq peaks that 
were at least 1 kb away from a TSS and present in two or more 

donors. Because these reference annotations were derived from 
bulk profiling of healthy left ventricles, we selected only left ventric-
ular nuclei from our aggregate dataset for comparison. We limited 
our analysis to cell types that comprised at least 5% of nuclei by 
proportion in our aggregate dataset. These included cardiomyo-
cytes, fibroblasts, endothelial cells, smooth muscle cells, and macro-
phages. We first combined all fragments for each cell type from left 
ventricular datasets. The coverage option of BEDtools (86) was ap-
plied with default settings to count the total number of chromatin 
fragments from each ventricular cell type overlapping the candidate 
enhancer annotations. This yielded a raw count matrix in the for-
mat of snATAC-seq cell types (columns) by candidate enhancers 
(rows). The raw count matrix was normalized to RPKM (reads per 
kilobase per million mapped reads) for each candidate enhancer. 
We next used Cluster3.0 (110) to k-means cluster the 31,033 healthy 
heart candidate enhancers into K groups between 2 and 12 with the 
following settings (Method = k-Means, Similarity Metric = Euclidian 
distance, number of runs = 100). We calculated the DB index (87) as 
described above for each clustering using the index.DB function of 
the R package clusterSim (http://keii.ue.wroc.pl/clusterSim/). We se-
lected a k-means of 8, which yielded the lowest DB index, indicating 
the best partitioning.

We repeated the above analysis for 4406 candidate enhancers 
reported to have increased bulk H3K27ac ChIP signal and 3101 
candidate enhancers reported to have decreased signal in 18 late-
stage idiopathic dilated cardiomyopathy (heart failure) left ventri-
cles versus 18 healthy control left ventricles reported in the same 
study. We again clustered the candidate enhancers for both groups 
into k groups between 2 and 12 as above and selected the clustering 
that yielded the lowest DB index (87).
GWAS variant enrichment analysis
We used LD score regression (48,  111) to estimate genome-wide 
enrichment for GWAS traits using annotation sets from single-cell 
chromatin accessibility from the heart or lung (54) or bulk DNase 
hypersensitivity sites for tissues from ENCODE (3, 5, 17). For bulk 
DNase-seq datasets, peak annotations were merged across biologi-
cal replicates from the same tissue type. We compiled published 
GWAS summary statistics for cardiovascular diseases (49–53), other 
diseases (112–122), and nondisease traits (123–132) using the Euro-
pean subset from transethnic studies where applicable. We created 
custom LD score files by using peaks from each cell type or tissue as 
a binary annotation. As background, we used baseline annotations 
included in the baseline-LD model v2.2. For each trait, we used LD 
score regression to estimate enrichment coefficient z scores for each 
annotation relative to the background. Using these z scores, we com-
puted two-sided P values for enrichment and used the Benjamini- 
Hochberg procedure to correct for multiple tests within each set of 
annotations.
Fine mapping for AF
We obtained published AF GWAS summary statistics and index 
variants for 111 disease-associated loci (50). To construct credible 
sets of variants for each locus, we first extracted all variants in LD 
(r2 > 0.1 using the EUR (European)  subset of 1000 Genomes phase 3) 
(133) in a large window (±2.5 Mb) around each index variant. We 
next calculated approximate Bayes factors (ABF) (55) for each vari-
ant using effect size and SE estimates. We then calculated PPAs for 
each variant by dividing its ABF by the sum of ABF for all variants 
within the locus. For each locus, we then defined 99% credible sets 
by sorting variants by descending PPA and retaining variants that 
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added up to a cumulative PPA of >0.99. This resulted in an output 
of 6014 candidate causal variants.
Variant prioritization for functional validation
To prioritize variants for functional validation, we refined our list of 
candidate causal variants from fine mapping analysis to only those 
with a PPA > 0.1 (216 remaining of 6014). We used BEDtools (86) 
to intersect these variants with ATAC-seq peaks called on an aggre-
gate .bed file for atrial and ventricular cardiomyocyte snATAC-seq 
clusters (cardiomyocyte cCREs). This resulted in 40 fine-mapped 
variants that resided within 38 candidate cardiomyocyte cCREs (38 
cCRE-variant pairs).

We assessed each remaining cCRE-variant pair via the following 
criteria:

1) cCREs primarily accessible in cardiomyocytes
2) presence of a corresponding ATAC-seq peak at a testable time 

point in the in vitro hPSC-cardiomyocyte differentiation model  
system

3) sequence conservation in 100 vertebrates [genome browser 
track generated using phyloP of the PHAST5 package downloaded 
from UCSC genome browser (134), http://hgdownload.soe.ucsc.
edu/goldenPath/hg38/phyloP100way/]

4) predicted coaccessibility of candidate enhancer with a gene 
promoter

5) expression of putative target gene associated with cCRE 
appearance (chromatin accessibility and H3K27ac) during hPSC- 
cardiomyocyte differentiation (57)

A candidate cCRE-variant pair at the KCNH2 locus was priori-
tized for functional experimentation.
ChIP-seq data processing
Reads were mapped to the human genome reference GRCh38 using 
Bowtie2 (version 2.2.6) (135) and reads with MAPQ (mapping quality) > 
30 selected using SAMtools (version 1.3.1) (136). PCR duplicates 
were removed using the MarkDuplicates function of Picard tools 
(version 1.119) (137). RPKM-normalized signal tracks were generated 
using the BamCoverage function in deepTools (version 2.4.1) (138).
RNA-seq data processing
Reads were mapped to the human genome reference GRCh38 using 
STAR (version 020201) (139) and reads with MAPQ > 30 selected 
using SAMtools (version 1.3.1) (136). PCR duplicates were removed 
using the MarkDuplicates function of Picard tools (version 1.1.19) 
(137). RPKM-normalized signal tracks were generated using the 
BamCoverage function in deepTools (version 2.4.1) (138).
ATAC-seq data processing
Reads were mapped to the human genome reference GRCh38 using 
Bowtie2 (version 2.2.6) (135) and reads with MAPQ > 30 selected 
using SAMtools (version 1.3.1) (136). PCR duplicates were removed 
using SAMtools (version 1.3.1) (136). RPKM-normalized signal tracks 
were generated using the BamCoverage function in deepTools (ver-
sion 2.4.1) (138).
Statistical analysis
No statistical methods were used to predetermine sample sizes. 
There was no randomization of the samples, and investigators were 
not blinded to the specimens being investigated. However, cluster-
ing of single nuclei based on chromatin accessibility was performed 
in an unbiased manner, and cell types were assigned after clustering. 
Low-quality nuclei and potential barcode collisions were excluded 
from downstream analysis as outlined above. Cluster specificity at 
each cCRE was tested using edgeR (107) as described above, with 
P values corrected via the Benjamini-Hochberg procedure. To 

identify DA sites between the heart chambers and for each cell type, 
a likelihood ratio test was used and the resulting P value was cor-
rected using the Benjamini-Hochberg procedure. For significance 
of ontology enrichments using GREAT, Bonferroni-corrected bi-
nomial P values were used (33). For significance testing of enrich-
ment of de novo and known motifs, a hypergeometric test was used 
without correction for multiple testing (35). For luciferase and 
qPCR data, we performed one-way ANOVA (analysis of variance) 
analysis with post hoc Tukey test using GraphPad Prism version 
8.0.0 for Windows (GraphPad Software, San Diego, CA, USA; www.
graphpad.com).
External datasets
Cardiomyocyte differentiation: RNA-seq, H3K27ac day 0 (hPSC); 
day 5 (cardiac mesoderm); and day 15 (primitive cardiomyocytes) 
were downloaded from GSE116862 (57). Signal tracks for heart 
H3K27ac ChIP-seq data were downloaded from https://portal.ner-
sc.gov/dna/RD/heart/. List of candidate enhancers was downloaded 
from supplementary tables (15). H3K27ac ChIP-seq data for car-
diomyocyte nuclei from nonfailing donors (NF1) were downloaded 
from National Center for Biotechnology Information Sequence 
Read Archive BioProject ID PRJNA353755 (140). We acquired 
snATAC-seq data for human lung from GSE161383 (54) and bulk 
DNase-seq datasets for human tissues from ENCODE (3, 5, 17) 
with the following identifiers: ENCSR053ZKP, ENCSR259GYP, 
ENCSR277KRY, ENCSR458AOS, ENCSR597NVK, ENCSR422IIZ, 
ENCSR968TPO, ENCSR788IZL, ENCSR859LTL, ENCSR060HPL, 
ENCSR783OCW, ENCSR171ADO, ENCSR171ETY, ENCSR520BAD, 
ENCSR686WJL, ENCSR791BHE, ENCSR856XLJ, ENCSR361DND, 
ENCSR579KDC, ENCSR693UHT, ENCSR365NDK, ENCSR712PYJ, 
ENCSR930PDT, ENCSR178JBL, ENCSR595HZQ, ENCSR261RWJ, 
ENCSR455GUW, ENCSR689DSM, ENCSR954AJK, ENCSR564FZH, 
ENCSR000ELO, ENCSR909HFI, ENCSR931UQB, ENCSR128GBN, 
ENCSR006IMH, ENCSR163PKT, ENCSR641ZPF, ENCSR782SSS, 
ENCSR101QXF, ENCSR709IYR, ENCSR866ODX, ENCSR195ONB, 
ENCSR450PWF, ENCSR549NRK, ENCSR749MUH, ENCSR080ISA, 
ENCSR090IDV, ENCSR102RSU, ENCSR401ESD, ENCSR484UAU, 
ENCSR508FVM, ENCSR340MRJ, ENCSR760QZM, ENCSR763AKE, 
ENCSR923JYH, ENCSR164WOF, ENCSR323UTX, ENCSR650FLQ, 
ENCSR702DPD, ENCSR129BZE, and ENCSR437AYW.
Code availability
The pipeline for processing snATAC-seq data is available as a part 
of the Taiji software: https://taiji-pipeline.github.io/. Custom code 
used for demultiplexing and downstream analysis for snATAC data 
is available here: https://gitlab.com/Grouumf/ATACdemultiplex/- 
/tree/master/ATACdemultiplex and https://gitlab.com/Grouumf/
ATACdemultiplex/-/blob/master/scripts/.
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