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Abstract

Predicting compound–protein affinity is beneficial for accelerating drug discovery. Doing so 

without the often-unavailable structure data is gaining interest. However, recent progress in 

structure-free affinity prediction, made by machine learning, focuses on accuracy but leaves much 

to be desired for interpretability. Defining intermolecular contacts underlying affinities as a vehicle 

for interpretability; our large-scale interpretability assessment finds previously used attention 

mechanisms inadequate. We thus formulate a hierarchical multiobjective learning problem, where 

predicted contacts form the basis for predicted affinities. We solve the problem by embedding 

protein sequences (by hierarchical recurrent neural networks) and compound graphs (by graph 

neural networks) with joint attentions between protein residues and compound atoms. We further 

introduce three methodological advances to enhance interpretability: (1) structure-aware 
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regularization of attentions using protein sequence-predicted solvent exposure and residue–residue 

contact maps; (2) supervision of attentions using known intermolecular contacts in training data; 

and (3) an intrinsically explainable architecture where atomic-level contacts or “relations” lead to 

molecular-level affinity prediction. The first two and all three advances result in DeepAffinity+ 

and DeepRelations, respectively. Our methods show generalizability in affinity prediction for 

molecules that are new and dissimilar to training examples. Moreover, they show superior 

interpretability compared to state-of-the-art interpretable methods: with similar or better affinity 

prediction, they boost the AUPRC of contact prediction by around 33-, 35-, 10-, and 9-fold for the 

default test, new-compound, new-protein, and both-new sets, respectively. We further demonstrate 

their potential utilities in contact-assisted docking, structure-free binding site prediction, and 

structure−activity relationship studies without docking. Our study represents the first model 

development and systematic model assessment dedicated to interpretable machine learning for 

structure-free compound–protein affinity prediction.

Graphical Abstract

INTRODUCTION

Current drug–target interactions are predominantly represented by the interactions between 

small-molecule compounds as drugs and proteins as targets.1 The enormous chemical space 

to screen compounds is estimated to contain 1060 drug-like compounds.2 These compounds 

act in biological systems of millions or more protein species or “proteoforms” (considering 

genetic mutations, alternative splicing, and post-translation modifications of proteins).3,4 

Facing such a combinatorial explosion of compound–protein pairs, drug discovery calls for 

efficient characterization of compound efficacy and toxicity, and computational prediction of 

compound–protein interactions (CPI) addresses the need.

Classical physics-driven methods model atomic-level energetics using cocrystallized or 

docked 3D structures of compound–protein pairs,5,6 such as molecular mechanical and 

quantum mechanical force fields, potentials of mean force, and empirical and statistical 

scoring. Over the years of development, these methods are increasingly accurate7–9 for 

applications including quantitative structure–activity relationship (QSAR). Moreover, their 
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affinity predictions are intrinsically interpretable toward revealing mechanistic principles, 

with the consideration of atomic contacts, dynamics, and energetics, as well as solvent 

effects. Recently, thanks to increasingly abundant molecular data and advanced computing 

power, data-driven machine learning (especially deep learning) methods are also developed 

using the input structures of compound–protein complexes10–12 or proteins alone (see a 

related task of classifying binding13,14), albeit with less focus on interpretability. However, 

these structure-based methods, physics- or data-driven, are limited by the availability of 

structure data. Indeed, 3D structures are often not available for compound–protein pairs or 

even proteins alone and their prediction through docking is still a computationally 

demanding and challenging task.

To overcome the data limitation of structure-based affinity-prediction methods and broaden 

the applicability to more chemical–proteomic pairs without structures, our focus of the study 

is structure-free prediction of compound–protein affinities. Recent developments only use 

identities of compounds (SMILES15,16 or graphs16,17) and proteins (amino acid 

sequences15,17 or shorter, predicted structural property sequences16) as inputs. Compared to 

these recent work, our goals are two folds: improved generalizability to “new” molecules 

unseen in training data as well as improved interpretability to a level that data supports (not 

yet the level of mechanical principles that can be revealed by physics-driven structure-based 

methods). In particular, interpretability remains a major gap between the capability of 

current structure-free machine-learning models and the demand for rational drug discovery. 

The central question about interpretability is whether and how methods (including machine 

learning models) could explain why they make certain predictions (affinity level for any 

compound–protein pair in our context). This important topic is rarely addressed in structure-

free machine learning models. DeepAffinity16 has embedded joint attentions over 

compound–protein component pairs and uses such joint attentions to assess origins of 

affinities (binding sites) or specificities. Additionally, attention mechanisms have been used 

for predictions of CPI,18 chemical stability,19 and protein secondary structures.20 

Assessment of interpretability for all these studies was either lacking or limited to a few case 

studies. We note a recent work proposing post-hoc attribution-based test to determine 

whether a model learns binding mechanisms.21

We raise reasonable concerns on how much attention mechanisms can reproduce native 

contacts in compound–protein interactions. Attention mechanisms were originally developed 

to boost the performance of seq2seq models for neural machine translations.22 They have 

gained popularity for interpreting deep learning models in visual question answering,23 

natural language processing,24 and healthcare.25 However, they were also found to work 

differently from human attentions in visual question answering.26

Representing the first effort dedicated to the interpretability of structure-free compound–

protein affinity predictors (in particular, deep-learning models), our study is focused on how 

to define, assess, and enhance interpretability for these methods as follows.

How to Define Interpretability for Affinity Prediction.

Interpretable machine learning is increasingly becoming a necessity27 for fields beyond drug 

discovery. Unlike interpretability in a generic case,27 what interpretability actually means 
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and how it should be evaluated is much less ambiguous for compound–protein affinity 

prediction. To make explanations conform with scientific knowledge, human understanding, 

and drug-discovery needs; we define interpretability of affinity prediction as to the ability to 

explain predicted affinity through underlying atomic interactions (or contacts). Specifically, 

atomic contacts of various types are known to constitute the physical basis of intermolecular 

interactions,28 modeled in force fields to estimate interaction energies,6 needed to explain 

mechanisms of actions for drugs,29,30 and relied upon to guide structure–activity research in 

drug discovery.31,32 Therefore, we use the ability to replicate such corresponding contacts 

while predicting affinities as a vehicle for interpretability. The current definition of 

interpretability (residue-atom pairs in contact) is primitive compared to mechanistic 

principles in structure-based classical methods. However, it is expected to serve as a vehicle 

to help fill the mechanistic void in structure-free affinity predictors (especially deep-learning 

models). We emphasize that simultaneous prediction of affinity and contacts does not 

necessarily make the affinity predictors intrinsically interpretable unless predicted contacts 

form the basis for predicted affinities.

How to Assess Interpretability for Affinity Prediction.

Once interpretability of affinity predictors is defined first through atomic contacts, it can be 

readily assessed against ground truth known in compound–protein structures, which 

overcomes the barrier for interpretable machine learning without ground truth.33 In our 

study, we have curated a data set of compound–protein pairs, all of which are labeled with 

pKd/pKi values and contact details, and we have split them into training, test, new-

compound, new-protein, and both-new sets. We measure the accuracy of contact prediction 

over various sets using area under the precision–recall curve (AUPRC) which is suitable for 

binary classification (contacts/noncontacts) with highly imbalanced classes (far fewer 

contacts than noncontacts). We have performed large-scale assessments of attention 

mechanisms in various molecular data representations (protein amino-acid sequences and 

structure–property annotated sequences16 as well as compound SMILES and graphs) and 

corresponding neural network architectures (convolutional and recurrent neural networks 

[CNN and RNN] as well as graph convolutional and isomorphism networks [GCN and 

GIN]). We have found that current attention mechanisms inadequate for interpretable affinity 

prediction, as their AUPRCs, were merely slightly more than chance (0.004).

How to Enhance Interpretability for Affinity Prediction.

We have made three main contributions to enhance interpretability for structure-free deep-

learning models.

The first contribution is to incorporate physical constraints into data representations, model 

architectures, and model training. (1) To respect the sequence nature of protein inputs and to 

overcome the computational bottlenecks of RNNs, inspired by protein folding principles, we 

represent protein sequences as hierarchical k-mers and model them with hierarchical 

attention networks (HANs). (2) To respect the structural contexts of proteins, we predict 

from protein sequence solvent exposure over residues and contact maps over residue pairs, 

and we introduce novel structure-aware regularizations for structured sparsity of model 

attentions.
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The second contribution is to supervise attentions with native intermolecular contacts 

available to training data and to accordingly teach models how to pay attention to pairs of 

compound atoms and protein residues while making affinity predictions. We have 

formulated a hierarchical multiobjective optimization problem where contact predictions 

form the basis for affinity prediction. We utilize contact data available to training 

compound–protein pairs and design hierarchical training strategies accordingly.

The last contribution is to design intrinsic explainability into the architecture of a deep 

“relational” network. Inspired by physics, we explicitly model and learn various types of 

atomic interactions (or “relations”) through deep neural networks with joint attentions 

embedded. This was motivated by relational neural networks first introduced to learn to 

reason in computer vision34,35 and subsequent interaction networks to learn the relations and 

interactions of complex objects and their dynamics.36,37 Moreover, we combine such deep 

relational modules in a hierarchy to progressively focus attention from putative protein 

surfaces, binding-site k-mers and residues, to putative residue-atom binding pairs.

The rest of the paper is organized as follows. The aforementioned contributions in defining, 

measuring, and enhancing interpretable affinity prediction will be detailed in the Methods 

section. In the Results section, we first show over established affinity-benchmark data sets 

that the original DeepAffinity16 and its variants (with various molecular representations and 

neural networks) have comparable or better accuracy in affinity prediction, compared to 

current noninterpretable structure-free methods. We then describe a data set newly curated 

for both affinity and contact prediction. The data set is designed to be diverse and 

challenging with the generalizability test in mind. Using this data set, we incrementally 

introduce the three contributions to DeepAffinity and compare the resulting DeepAffinity+ 

(using the first two contributions) and DeepRelations (using all three contributions) to a 

competing interpretable method. Both methods produce remarkably improved 

interpretability (now defined as accuracy of contacts predicted by joint attentions) while 

maintaining accurate and generalizable affinity prediction. Importantly, compared to the 

competing method and their reduced version without supervising attentions, they show that 

sufficiently better interpretability (much more accurate contact predictions) can help 

improve accuracy in affinity prediction. Lastly, we use various focused studies to show the 

spatial patterns of top-10 predicted contacts, the benefit of these predictions to contact-

assisted protein–ligand docking, and the additional utilities of aggregating attentions and 

decomposing predicted affinities for binding site prediction and QSAR.

METHODS

Toward genome-wide prediction of compound–protein interactions (CPI), we assume that 

proteins are only available in 1D amino-acid sequences, whereas compounds are available in 

1D SMILES or 2D chemical graphs. We start the section with the curation of a data set of 

compound–protein pairs with known pKd/pKi values, which is also of known intermolecular 

contacts. We will introduce the state-of-the-art and our newly-adopted neural networks to 

predict from such molecular data. These neural networks will be first adopted in our 

previous framework of DeepAffinity16 (supervised learning with joint attention) so that the 

interpretability of attention mechanisms can be systematically assessed in CPI prediction. 
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We will then describe our physics-inspired, intrinsically explainable architecture of deep 

relational networks where aforementioned neural networks are used as basis models. With 

carefully designed regularization terms, we will explain multistage deep relational networks 

that increasingly focus attention on putative binding-site k-mers, binding-site residues, and 

residue-atom interactions, for the prediction and interpretation of compound–protein affinity. 

We will also explain how the resulting model can be trained strategically.

Benchmark Set with Compound–Protein Affinities and Contacts.

We have previously curated affinity-labeled compound–protein pairs16 based on BindingDB.
38 In this study, we used those pKi/pKd-labeled data with amino-acid sequence length no 

more than 1000 and curated a subset with known complex-protein cocrystal structures. We 

further merge the data with the refined set of PDBbind (v. 2019),39 leading to 4446 pairs 

between 3672 compounds and 1287 proteins. More details about procedures are provided in 

the Supporting Information, Section 1.1. Resulting data characteristics, including compound 

property distributions and protein class statistics, are described in the Results section.

The compound data are in the format of canonical SMILES as provided in PubChem,40 and 

the protein data are in the format of FASTA sequences (UniProt canonical). Compound 

SMILES were also converted to graphs with RDKit.41 Ionization states of compounds 

defined in PubChem were validated using the software OpenBabel, and the compounds were 

further sanitized and standardized using “chem.Sanitize-Mol( )” in the software RDKit. 

More details are provided in the Supporting Information, Section 1.2. Atomic-level 

intermolecular contacts (or “relations”) were derived from compound–protein cocrystal 

structures in PDB,42 as ground truth for the interpretablity of affinity prediction. 

Specifically, we cross-referenced aforementioned compound–protein pairs in PDBsum43 and 

used its LigPlot service to collect high-resolution atomic contacts or relations. These direct, 

first-shell contacts are given in the form of contact types (hydrogen bond or hydrophobic 

contact), atomic pairs, and atomic distances.

The data set was randomly split into fourfolds where fold 1 did not overlap with fold 2 in 

compounds, did not do so with fold 3 in proteins and with fold 4 in either compounds or 

proteins. Folds 2, 3, and 4 are referred to as new-compound, new-protein, and both-new sets 

for generalizability tests, and they contain 521, 795, and 205 pairs, respectively. Fold 1 was 

randomly split into training (2334) and test (591) sets. More procedural details about data 

splitting are summarized in the Supporting Information, Algorithm 1. The split of the whole 

data set is illustrated in Figure 1 below. The similarity profiles between training molecules 

and those in the test and generalization sets are analyzed in the Results section later.

Although monomer structures of proteins are often unavailable, their structural features can 

be predicted from protein sequences alone with reasonable accuracy. We have predicted the 

secondary structure and solvent accessibility of each residue using the latest SCRATCH44,45 

and contact maps for residue pairs using RaptorX-contact46 (see details in the Supporting 

Information, Section 1.3). These data provide additional structural information to regularize 

our machine learning models. If protein structures are available, actual rather than predicted, 

such data can be used instead.
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Data Representation and Corresponding Basis Neural Networks.

Baseline: CNN and RNN for 1D Protein and Compound Sequences.—When 

molecular data are given in 1D sequences, these inputs are often processed by convolutional 

neural networks (CNN)15,47 and by recurrent neural networks (RNN) that are more suitable 

for sequence data with long–term interactions.16

Challenges remain in RNN for compound strings or protein sequences. For compounds in 

SMILES strings, the descriptive power of such strings can be limited. In this study, we 

overcome the challenge by representing compounds in chemical formulae (2D graphs) and 

using two types of graph neural networks (GNN). For proteins in amino-acid sequences, the 

often-large lengths demand deep RNNs that are hard to be trained effectively (gradient 

vanishing or exploding and nonparallel training).48 We previously overcame the second 

challenge by predicting structure properties from amino-acid sequences and representing 

proteins as a much shorter structure property sequences where each four-letter tuple 

corresponds to a secondary structure.16 This treatment however limits the resolution of 

interpretability to be at the level of protein secondary structures (multiple neighboring 

residues) rather than individual residues. In this study, we overcome the second challenge 

while achieving residue-level interpretability by using biologically motivated hierarchical 

RNN (HRNN).

Notation Summary.—Scalars, vectors, and matrices are denoted in normal lowercase, 

bold-faced lowercase, and uppercase characters, respectively. Subscripts i, t, and j are for the 

ith protein residue, tth protein k-mer, and jth compound atom, respectively. Subscript it 
represents the ith residue in the tth k-mer (where i can be regarded as a global residue index). 

Therefore, the jth atom of compound X described in dg features is denoted xj and its learned 

representation (embedded through GNN) is denoted zj. The ith residue of protein Y with dp 

features is denoted by yi, and its learned representation (embedded through HRNN) is 

denoted by hit, where t is the index of the k-mer containing residue i. These residue 

representations hit within the k-mer are then aggregated to obtain the k-mer representation 

ht, and all k-mer representations are concatenated to reach the protein representation.

Superscripts r, (l), and [s] indicate the rth relation about molecular features, the lth layer of 

graph neural networks, and the sth stage of DeepRelations, respectively.

Proposed: GCN and GIN for 2D Compound Graphs.—Compared to 1D SMILES 

strings, chemical formulae (2D graphs) of compounds have more descriptive power and are 

increasingly used as inputs to predictive models.16–19,49 In this study, compounds are 

represented as 2D graphs in which vertices are atoms and edges are covalent bonds between 

atoms. Suppose that n is the maximum number of atoms in our compound set (compounds 

with smaller number of atoms are padded to reach size n), let us consider a graph 

G = (V, X, ℰ, A), where V = vj j = 1
n  is the set of n vertices (each with dg features), 

X ∈ Rn × dg that of vertex features X = x1, …, xj, …, xn , ℰ that of edges, and A ∈ 0, 1 n × n

is unweighted symmetric adjacency matrix. Let A = A + ℐ and D be the degree matrix (the 

diagonals of A).
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We used the graph convolutional network (GCN)50 and graph isomorphism network (GIN)51 

which are the state-of-the-art for graph embedding and inference. GCN consists of multiple 

layers, and at layer l, the model can be written as follows

H(l) = ReLU D−1/2AD−1/2H(l − 1)Θ(l)
(1)

where H(l) ∈ Rn × dg
(l)

 is the output, Θ(l) ∈ Rdg(l − 1) × dg(l) are the trainable parameters, and dg
(l)

is the number of features, all at layer l. Initial conditions (when l = 0) are H(0) = X and 

dg
(0) = dg.

GIN is the most powerful graph neural network in theory: its discriminative or 

representational power is equal to that of the Weisfeiler–Lehman graph isomorphism test.52 

Similar to GCN, GIN consists of multiple layers, and at layer l, the model can be written as a 

multilayer perceptron (MLP)

H(l) = MLP (l) A(l)H(l − 1)
(2)

where A(l) = A + ε(l)ℐ, ϵ(l) can be either a trainable parameter or a fixed hyperparameter. 

Each GIN layer has several nonlinear layers compared to GCN layer with just a ReLU per 

layer, which might improve predictions but suffer in interpretability.

The final representation for a compound is Z = z1, …, zj…, zn = H(L) if GCN or GIN has L 

layers. In this study, vertex features are as in ref 19, with few additional features detailed 

later in physics-inspired relational modules. A summary of these features is provided in the 

Supporting Information, Table S2.

Proposed: HRNN for 1D Protein Sequences.—We aim to keep the use of RNN that 

respects the sequence nature of protein data and mitigate the difficulty of training RNN for 

long sequences. To that end, inspired by the hierarchy of protein structures, we model 

protein sequences using hierarchical attention networks (HANs). Specifically, during protein 

folding, sequence segments may fold separately into secondary structures and the secondary 

structures can then collectively pack into a tertiary structure needed for protein functions. 

We exploit such hierarchical nature by representing a protein sequence of length easily in 

thousands as tens or hundreds of k-mers (consecutive sequence segments) of length k 
(hyperparameter in this study). Accordingly, we process the hierarchical data with 

hierarchical attention networks (HANs)53 which have been proposed for natural language 

processing. We also refer to it as hierarchical RNN (HRNN). Although the inter-k-mer 

attentions might overcome potential issues brought by k-mer definition as they do in natural 

language processing,53 it would be interesting to examine the potential benefit of using other 

domain-relevant definition of k-mers, such as (predicted or actual) secondary structure 

elements.

Given Y = y1, …, yi, …, ym , a protein sequence described with dp features for each residue 

i Y ∈ Rn × dp , we partition it into T consecutive, nonoverlapping k-mers. We use two types 
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of RNNs in hierarchy for modeling within and across k-mers. We first use an embedding 

layer to represent the ith residue in the tth k-mer as a vector eit. We use a shared RNN for all 

k-mers for the latent representation of the residue: hit = RNN(eit) (t = 1, …, T). We then 

summarize each k-mer as kt with an intra-k-mer attention mechanism

uit = v1 tanh Θ1ℎit + b1 ∀ i, t
uit′ = exp uit

∑i′exp ui′t
∀ i, t

kt = ∑
i

uit′ ℎit∀ t
(3)

With another RNN for kt, we reach the representation of the tth k-mer: ht = RNN(kt) (t = 1, 

…, T).

The final representation for a protein sequence is the collection of ht.

Joint Attention over Protein–Compound Atomic Pairs for Interpretability.—
Once the learned representation of protein sequences (H = [h1, …, ht, …, hT], where t is the 

index of protein k-mer) and that of compound sequences or graphs Z = z1, …, zj, …, zn , 

where j is the index of compound atom) are defined, they are processed with a joint k-mer–

atom attention mechanism to interpret any downstream prediction

Ntj = tanh htΘ2zj ∀ t, j

Wtj′ = exp Ntj
∑t′, j′exp Nt′j′

∀ t, j (4)

With Wtj′ , the joint attention between the tth k-mer and the jth atom, we can combine it with 

the intra-k-mer attention over each residue i in the tth k-mer and reach Wij, the joint 

attention between the ith protein residue and the jth compound atom

Wij = uit′ Wtj′ ∀ i, j (5)

This joint attention mechanism is an extension of our previous work,16 where a protein 

sequence was represented as a single, “flat” RNN rather than multiple, hierarchical RNNs.

Given learned representations hi for protein residue i (the k-mer index is ignored for 

simplicity) and zj for compound atom j as well as the joint attention Wij over the pair, we 

further jointly embed the pair and aggregate over all pairs to reach f— the joint embedding 

of protein Y, compound X, and their residue-atom “interactions” captured by W

fij = tanh Θ3hi + Θ4zj + b2
f = ∑

i, j
fijWij (6)

where Θ3, Θ4, and b2 are learnable parameters. The joint embedding f is fed to a CNN and 

two multilayer perceptrons (MLP) to make affinity prediction as before.16 In other words, W
for contact prediction directly forms the basis of f for affinity prediction.
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In comparison, Gao et al.’s method18 also uses joint attention for contact prediction. 

However, the joint attention matrix is marginalized for either the compound or the protein; 

and the separately processed compound or protein representations were used for affinity 

prediction. More specifically

Wij = tanh hiΘzj

ui = max
j

Wij, αi = exp ui
∑i′exp ui′

∀ i

uj = max
i

Wij, αj = exp uj
∑jexp uj′

∀ i

op = ∑
i

αihi, od = ∑
j

αjzj

(7)

The separate final representations for the compound (od) and the protein (op) were fed to 

downstream layers for affinity prediction, with much of information lost on the joint 

attention (the basis of contact prediction).

DeepRelations.

Overall Architecture.—We have developed an end-to-end “by-design” interpretable 

architecture named DeepRelations for joint prediction and interpretation of compound–

protein affinity. The overall architecture is shown in Figure 2.

There are three relational modules (Rel-CPI) corresponding to three stages. Their attentions 

are trained to progressively focus on putative binding k-mers, residues, and pairs; and 

earlier-stage attentions guide those in the next stage through regularization. In each Rel-CPI 

module, there are K = 10 types of atomic “relational” features for proteins or compounds 

[nine relation (sub)types are described next, and the last is the union of all nine types of 

features]. All types of relational features are individually fed to aforementioned neural 

network pairs (for instance, HRNN for protein sequences and GCN for compound graphs, or 

HRNN-GCN in short), concatenated, and jointly embedded for proteins and compounds 

with attentions over residue–compound pairs. The embedding output (based on joint 

attentions for contact prediction) of the last module is fed to CNN and MLP layers for 

affinity prediction. All three modules are trained end-to-end as a single model. In contrast, 

DeepAffinity+ only has one module without multistage focusing, and its module only uses 

the last type of relational features (the union of the first nine types).

Physics-Inspired Relational Modules.—The relational modules are inspired by 

physics. Specifically, atomic “relations” or interactions constitute the physical bases and 

explanations of compound–protein interaction affinities and are often explicitly modelled in 

force fields. We have considered the following six types of relations with attentions paid on 

and additional input data defined for.

• Electrostatic interactions: the ion feature of a protein residue is its net charge as 

in the force field CHARMM36 and that of a compound atom is its formal charge. 

The dipole feature of a protein residue is 1 for polar residues (S, T, C, Y, N, Q, 

and H54) or 0 for others and that of a compound atom is its Gasteiger partial 
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charge. The electrostatics thus include all four combinations (subtypes) of 

residue-atom relations: ion–ion, ion–dipole, dipole–ion, and dipole–dipole.

• Hydrogen bond: noncovalent interaction (A···H−D) between an electronegative 

atom as a hydrogen “acceptor” (“A”) and a hydrogen atom that is covalently 

bonded to an electronegative atom called a hydrogen “donor” (“D”). Therefore, 

if a protein residue or compound atom could provide a hydrogen acceptor/donor, 

its hydrogen-bond feature is −1/+1; otherwise, the feature value is 0. A protein 

residue is allowed to be both hydrogen-bond donor and acceptor. Specifically, for 

protein residues, amino acids of hydrogen-bond acceptors are N, D, Q, E, H, S, 

T, and Y and those of hydrogen-bond donors are Y, W, T, S, K, H, Q, N, and R.55 

For compound atoms, the hydrogen-bond acceptor or donor is defined as in the 

base features factory file (atom types “SingleAtomAcceptor” and “SingleAtom-

Donor” in the file “BaseFeatures.fdef”) of the software RDKit v. 2018.03.4.

• Halogen bond: a halogen bond (A···X−D) is very similar to hydrogen bond 

except that a halogen “X” (rather than hydrogen) atom (often found in drug 

compounds) is involved in such interactions. As standard amino acids do not 

contain halogen atoms, a protein residue can only be a halogen bond acceptor 

(“A” in A···X−D) and assigned a nonzero halogen-bond feature of −1, only if it 

is amino acid S, T, Y, D, E, H, C, M, F, W,56 N, or Q. On the compound side, 

only a halogen atom is assigned a nonzero feature value. Specifically, halogen-

bond features of iodine, bromine, chlorine, and fluorine atoms are assigned at +4, 

+3, +2, and +1, respectively, for decreasing halogen-bonding strengths.56

• Hydrophobic interactions: the interactions between hydrophobic protein residues 

and compound atoms contribute significantly to the binding energy between 

them. This feature is only nonzero and set at 1 for hydrophobic residues of 

proteins or nonpolar atoms of compounds (atoms whose absolute values of 

partial atomic charges are less than 0.2 units57,58).

• Aromatic interactions: aromatic rings in histidine, tryptophan, phenylalanine, and 

tyrosine participate in “stacking” interactions with aromatic moieties of a 

compound (π−π stacking). Therefore, if a protein residue has an aromatic ring, 

its aromatic feature is set at 1 and otherwise at 0. Similarly, if a compound atom 

is part of an aromatic ring, the feature is set at 1 and otherwise at 0.

• VdW interactions: van der Waals are weaker interactions compared to others. 

However, the large amount of these interactions contribute significantly to the 

overall binding energy between a protein and a compound. We consider the 

amino-acid type and the atom element as their features and use an embedding 

layer to derive their continuous representations.

For each (sub)type of atomic relations, corresponding protein and compound features are fed 

into basis neural network models such as HRNN for protein sequences and GNN for 

compound graphs. The embeddings over all types are concatenated for protein residues or 

compound atoms and then jointly embedded with joint attentions over residue-atom pairs.
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Physical Constraints as Attention Regularization.—The joint attention matrices W
in each Rel-CPI module, for individual relations or overall, are regularized with the 

following two types of physical constraints. We note that, aiming at the general case where 

protein structures may not be available, we use sequence-predicted rather than actual 

structure properties (solvent exposure and residue contacts) when introducing these physical 

constraints.

Focusing regularization in the first regularization, a constraint input is given as a matrix 

T ∈ [0, 1]m × n to penalize the attention matrix W if it is focused on undesired regions of 

proteins. In addition, an L1 sparsity regularization is on the attention matrix W to promote 

interpretability as a small portion of protein residues interact with compounds. Therefore, 

this “focusing” penalty can be formalized as follows

R1(W) = λrelation (1 − T) ⊙ W 2 + λL1 W 1 (8)

where the T term, a parameter, can be considered as soft thresholding, and the matrix norms 

are element-wise. The L1 regularization term in R1(·) is only included in the first module 

(stage 1), where R1(·) is the only regularization term. It is then moved to another term in the 

second, and the last modules, where multiple regularization terms, are used together.

The first regularization is used for all three Rel-CPI modules or stages with increasingly 

focusing T. Let T[s] be the constraint matrix and W[s] be the learned attention matrix in the 

sth stage. In the first stage, Tij
[1], being binary, is one only for any residue i predicted to be 

solvent-exposed (relative solvent-accessible area predicted above 0.25 by SCRATCH44,45) in 

order to focus on potential surfaces. In the second stage, Tij
[2] = maxj′Wij′

[1] to focus on 

putative binding residues hierarchically learned for k-mers and residues at module/stage 1. 

In the third and last stage, Tij
[3] = maxj′Wij′

[2] focuses on putative contacts between protein 

residues and compound atoms based on the learned binding residues at module/stage 2.

Structure-aware sparsity regularization over protein contact maps. We further develop a 

structure aware sparsity constraints based on known or RaptorX-predicted contact maps of 

the unbound protein. As sequentially distant residues might be close in 3D and form binding 

sites for compounds, we define overlapping groups of residues where each group consists of 

a residue and its spatially close neighboring residues. Just in the second stage, we introduce 

Group Lasso for spatial groups and the Fused Sparse Group Lasso (FSGL) for sequential 

groups on the overall, joint attention matrix W

R2(W) = λgroup‖W‖group + λfused‖W‖fused
+λL1 ‐overall W 1

(9)

The group Lasso penalty will encourage a structured group-level sparsity so that few clusters 

of spatially close residues share similar attentions within individual clusters. The fused 

sparsity will encourage local smoothness of the attention matrix so that sequentially close 

residues share similar attentions with compound atoms. The L1 term again maintains the 

sparsity of the attention matrix W. This regularization is only introduced in the second and 
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third stages for W[2] and W[3], after the first-stage attention matrix W[1] is supposedly 

focused on protein surfaces. The attention matrix in the last stage, W[3], is used for 

predicting residue-atom contacts.

Supervised Attentions.—It has been shown in visual question answering that attention 

mechanisms in deep learning can differ from human attentions.26 As will be revealed in our 

results, they do not necessarily focus on actual atomic contacts (relations) in compound-

protein interactions either. We have thus curated a relational subset of our compound–protein 

pairs with affinities, for which known ground-truth atomic contacts or relations are available. 

We summarize actual contacts of a pair in a matrix Wnative of length m × n, which is a 

binary pairwise interaction matrix padded with 0 to reach the maximum number of protein 

residues or compound atoms and then normalized by the total number of nonzero entries. 

We have accordingly introduced an additional third regularization term to supervise attention 

matrix W in the second and third stages

R3(W) = λbind‖W − Wnative‖F (10)

In the case of DeepAffinity+ with a single module, all three regularization terms are 

included as in the last module of DeepRelations.

Training Strategy for Hierarchical Multiobjectives.—Accuracy and interpretability 

are the two objectives we pursue at the same time. In our case, the two objectives are 

hierarchical: compound–protein affinity originates from atomic-level interactions (or 

“relations”) and better interpretation in the latter potentially contributes to better prediction 

of the former.

Challenges remain in solving the hierarchical multiobjective optimization problem. 

Optimizing for both objectives simultaneously (for instance, through weighted sum of them) 

does not respect that the two objectives do no perfectly align with each other and are of 

different sensitivities to model parameters. Therefore, we consider the problem as multilabel 

machine learning, and we design hierarchical training strategies to solve the corresponding 

hierarchical multiobjective optimization problem, which is detailed next.

Take DeepAffinity+ as an example. We first “pre-trained” it to minimize mean-squared error 

(MSE) of pKi/pKd regression alone, with physical constraints turned on; in other words, 

attentions were regularized [through R1(·) and R2(·)] but not supervised in this stage. We 

tuned combinations of all hyperparameters except λbind in the discrete set of {10−4, 10−3, 

and 10−2}, with 200 epochs at a learning rate of 0.001. Over the validation set, we recorded 

the lowest RMSE for affinity prediction and chose the hyperparameter combination with the 

highest AUPRC for contact prediction such that the corresponding affinity RMSE (root-

mean-square error) does not deteriorate from the lowest by more than 10%.

With the optimal values of all hyperparameters but λbind fixed, we then loaded the 

corresponding optimized model in the first stage and “fine-tuned” the model to minimize 

MSE additionally regularized by supervised attentions [through R1(·), R2(·), and R3(·)]. We 
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used the same learning rate (0.001) and training epochs (200) in fine-tuning; and we tuned 

λbind in the set of {100, …, 105} following the same strategy as in pretraining.

The tuned hyperparameters for all DeepAffinity+ variants are summarized as follows. For 

HRNN-GCN_cstr [modeling protein sequences with HRNN and compound graphs with 

GCN, regularized by physical constraints in R2(·)], we chose λgroup = 10−4, λfused = 10−3, 

and λL1-overall = 10−2; and for its supervised version HRNN-GCN_cstr_sup, the additional 

λbind = 104. For HRNN-GIN_cstr [modeling protein sequences with HRNN and compound 

graph with GIN, regularized by physical constraints in R2(·)], we chose λgroup = 10−4, λfused 

= 10−3, and λL1-overall = 10−4; and for its supervised version HRNN-GIN_cstr_sup, the 

additional λbind = 103. R1(·) was for attentions on individual relations in DeepRelations and 

not applicable for DeepAffinity+ variants, although a surface-focusing regularization on 

overall attentions could be introduced.

We did similarly for hyperparameter tuning for Deep-Relations while constraining (and 

supervising) attentions. The whole DeepRelations model, including the three Rel-CPI 

modules, is trained end-to-end.59 To save computational resources, we used the same 

hyperparameters in R2(·) (λL1-overall, λfused, and λgroup) as those optimally tuned in HRNN-

GCN_cstr_sup. We then tuned the rest of the hyperparameters (λL1, λrelation, andλbind) 

following the aforementioned process of pretraining and fine-tuning. In the end, we chose 

λrelation = 10−4, λL1 = 10−5, λgroup = 10−4, λfused = 10−3, λL1-overall = 10−2, and λbind = 103 

for DeepRelations. λbind is usually larger because it is multiplied to the attention-

supervision term that can be orders of magnitude smaller than other terms.

RESULTS

We first assess the accuracy of compound–protein affinity predictions made by state-of-the-

art noninterpretable methods and our interpretable DeepAffinity framework16 (with new 

variants), using three established benchmark sets. After establishing that DeepAffinity 

achieves the state-of-the-art accuracy in affinity prediction, we then describe a newly curated 

data set with both affinities and contacts of compound–protein interactions and assess the 

interpretability of various DeepAffinity versions and a competing interpretable method 

adapted to affinity prediction. We find that current attention-based interpretable models are 

not adequate for interpreting affinity (i.e., predicting contacts). Thus, we proceed to 

regularize and supervise attentions in DeepAffinity to make DeepAffinity+ models. We 

additionally use a novel, physics-inspired, and intrinsically interpretable deep relational 

architecture to make DeepRelations models.

Over the curated data set, we compare our methods with a competing, structure-free 

interpretable method in accuracy, generalizability, and interpretability. Using a series of case 

studies, we also analyze the accuracy levels and spatial patterns of their top-predicted 

contacts, which are shown to benefit protein–ligand docking. We end the section by 

introducing analytics to aggregate joint attentions and decompose predicted affinity and by 

demonstrating their potential utilities toward binding site prediction for proteins and SAR 

for compounds (scoring and lead optimization).
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DeepAffinity with Interpretable Attentions Achieves the State-of-the-Art Accuracy in 
Compound–Protein Affinity Prediction.

As the starting point of interpretability assessment and improvement, our previous 

interpretable DeepAffinity framework16 is first compared to current methods based on 

prediction accuracy for established benchmark sets.

For affinity benchmark data sets, we adopt three established ones of increasing difficulty, the 

Davis,60 the kinase inhibitor BioActivity (KIBA)61 and the refined set of PDBbind (v. 2019).
39 We filtered and partitioned the first two data sets consistently with earlier studies.15,61–63 

The Davis data set62 contains all 30,056 Kd-labeled pairs between 68 kinase inhibitors 

(including FDA-approved drugs) and 442 kinases, randomly split into 25,046 for training 

and 5010 for testing (the widely used “S1” setting62). The filtered KIBA data set61,62 

contains 118,254 pairs between 2111 kinase inhibitors and 229 kinases, including 98,545 for 

training and 19,709 for testing (S1 split again). Other split settings were not pursued because 

published performances in such settings are not always available and comparable. The KIBA 

scores combine ki, kd, and IC50 sources for consistency and are further processed.15,62 As to 

the refined PDBbind data set (v. 2019), we filtered and processed it (see details in the 

Supporting Information Section S1.1) to reach 3505 pairs with ki or kd labeled between 

1149 proteins and 2870 compounds. Compared to Davis and KIBA, the PDBbind data set 

contains more diverse protein classes: 2157 interactions with enzymes including 72 with 

kinases, 62 with nuclear receptors, 33 with G protein-coupled receptors (GPCRs), and 106 

with ion channels. The portion of labeled compound–protein pairs is much lower than that of 

Davis and KIBA. We randomly split the PDBbind data set into 2921 pairs for training and 

584 for testing.

For our framework of DeepAffinity,16 we adopt various data representations and 

corresponding state-of-the-art neural network architectures as detailed in the Methods 

section. To model proteins, we have adopted RNN using protein SPS16 as input data as well 

as CNN and newly developed HRNN using protein amino-acid sequences. To model 

compounds, we have adopted RNN using SMILES as input data as well as GCN and GIN 

using compound graphs with node features and edge adjacency.19 In the end, we have tested 

five DeepAffinity variants (including four new) for protein–compound pairs, including 

RNN–RNN,16 RNN–GCN, CNN–GCN, HRNN–GCN, and HRNN–GIN. Names before and 

after hyphens indicate models to embed proteins and compounds, respectively; and 

embeddings of a pair of protein and compound are passed through joint attentions in eq 6 

before being fed to a convolutional neural network (CNN) and multilayer perceptrons 

(MLP).16 For instance, the first one, RNN–RNN indicates that protein SPS sequences are 

modeled by RNN and compound SMILES or graphs are modeled by RNN. This is 

essentially our previous method16 except that no unsupervised pretraining or ensemble 

averaging is used here. We have tuned hyperparameters for DeepAffinity variants including 

learning rate ({10−3, 10−4}), batch size ({64, 128} (16 for CNN-GCN because of the limit of 

GPU memory) and dropout rate ({0.1, 0.2}) using random 10% of training data as validation 

sets. When HRNN was used to model protein sequences, we have also tuned k-mer lengths 

and group sizes in pairs [{(40,30), (48,25), (30,40), (25,48), (15,80), (80,15)} for Davis and 

{(40,25), (50,20), (25,40), (20,50)} for KIBA and PDBbind] using the validation sets.
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For comparison, we use published current methods that are not structure-based, including 

DeepDTA,15 KronRLS,64 and WideDTA,65 all of which are noninterpretable. Their results 

for the Davis and KIBA sets were self-reported in individual studies and summarized in a 

comparison study.63 Their results for the PDBbind set are derived by retraining released 

source codes with published hyperparameter grids and individual training sets (except 

wideDTA whose codes are not available). In addition, we compare to structure-free methods 

that are interpretable. Except DeepAffinity, the only other interpretable method published so 

far (Gao et al.) was for predicting binary compound–protein interaction.18 As its codes are 

not publicly available, we have implemented the method, revised its model’s last layer 

(sigmoid), and retrained the model for affinity prediction using each training set. To ensure 

fair comparison, all deep-learning models including our DeepAffinity variants here are 

trained for 100 epochs or until convergence (the validation loss does not improve within 15 

epochs), as competing methods previously did.63

We compare aforementioned competing methods and DeepAffinity variants in accuracy 

using two assessment metrics: RMSE (root-mean-squared error; see Table 1) and CI 

(concordance index; see Table 2). Although RMSE evaluates the proximity between 

predictions are to corresponding native values, CI,66 often used for virtual screening, 

measures the probability of correctly ordering nonequal pairs. We summarize the results in 

Tables 1 and 2.

From both tables, we conclude that the original DeepAffinity method16 (RNN–RNN; RNN 

for protein SPS; and RNN for compound SMILES) and its variants compared favorably to 

the state-of-the-art. Specifically, the DeepAffinity variants achieved the best performances in 

RMSE and CI for both the Davis data set and the most diverse and sparse data set of 

PDBbind. It closely followed the best performances (WideDTA) for the KIBA data set. In 

particular, the newly introduced HRNN models for protein sequences (higher-resolution than 

SPS) and graph models GCN and GIN for compound graphs achieved the best or close-to-

the-best performances, which enables interpreting affinity prediction at the level of protein 

residues and compound atoms without sacrificing the accuracy. Considering that other 

methods are not interpretable and the only exception Gao et al. did not perform as well, the 

performances of interpretable DeepAffinity variants are particularly impressive.

Our New Data Set for Both Affinity and Contact Prediction is Diverse and Challenging.

To support systematic assessment and development of explainable affinity prediction, we 

have constructed a data set of 4446 compound–protein pairs (between 1287 proteins and 

3672 compounds) with both affinity values (pKi or pKd) and atomic contacts (available in 

cocrystal structures). More details are included in the Methods section and the Supporting 

Information, Section 1.1.

The data set contains diverse proteins and compounds. Among the 4446 pairs, there are 2913 

interactions with enzymes including 114 with kinases, 105 with nuclear receptors, 89 with 

GPCRs, and 111 with ion channels. The enzymes are across all seven enzyme commission 

classes (see details including EC class breakdowns in the Supporting Information, Section 

1.1). The 3672 compounds cover wide ranges of physicochemical properties (log P, 

molecular weight, and affinity values) as seen in Figure 3.
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The data set is split into training including validation (2334), test (591), new-protein (795), 

new-compound (521), and both-new sets (205), as illustrated in Figure 1. Compared to the 

test set, the three generalization sets not only contain new proteins or/and compounds but 

also mainly consist of very dissimilar proteins or/and compounds compared to the training 

set, which suggest their challenges for machine learning. For instance, the new-protein set 

only contains proteins not present in the training set. 454 (57.1%) pairs in the set involve 

new proteins whose global sequence identities to the closest training proteins are below 

30%, and 452 (56.8%) pairs involve new proteins whose local binding k-mer identities are 

below 30% (note that only around 10% residues of an average binding k-mer are binding 

residues). Similarly, 414 (79.5%) new-compound pairs involve new compounds whose 

Tanimoto scores (details in the Supporting Information, Section 1.4) to the closest training 

compounds are below 0.5. The both-new set only contains pairs of new proteins and new 

compounds with similarly low resemblance to the training set. 98 (47.8%) pairs involve new 

proteins with sequence identity below 30% and new compounds with Tanimoto scores below 

0.5. Therefore, the both-new set is expected to be the most challenging set among the four 

for the generalizability of machine learning models. Pair breakdowns are visualized in part 

of Figure 6 (counts). In addition, Jensen–Shannon distances between compound properties 

of training and those of the other sets are given in Table S1, similarly revealing the most 

challenging both-new set.

Attentions alone are Inadequate for Interpreting Compound–Protein Affinity Prediction.

Now that we have established the accuracy of attention-embedded DeepAffinity and 

constructed a suitable data set, our first task for interpretability is to systematically assess the 

adequacy of attention mechanisms for interpreting model-predicted compound–protein 

affinities. To that end, using our newly curated benchmark set for both affinity and contact 

prediction, we have tested six DeepAffinity variants for protein–compound pairs (including 

RNN–RNN, RNN–GCN, CNN–GCN, HRNN–RNN, HRNN–GCN, and HRNN–GIN) as 

well as the only other interpretable method (Gao et al.) that is also attention-based and 

adapted by us from a classifier to a regressor. All models are retrained using the new training 

set with details in the Methods section. The first two DeepAffinity (RNN–RNN and RNN–

GCN) models’ attentions on proteins are at the secondary structure levels. Their joint 

attentions were thus converted to residue-atom matrices, using equal weights across all 

residues within a secondary structure, in the postanalysis of interpretability. The rest have 

joint attentions at the level of pairs of protein residues and compound atoms.

The accuracy of affinity prediction, measured by RMSE and Pearson’s r in pKi/pKd, is 

summarized for the DeepAffinity variants in the top panel of Figure 4 and Table S3. Overall, 

all variants have shown affinity RMSE (Pearson’s r) around 1.5 (0.65), 1.6 (0.50), 1.4 (0.70), 

and 1.7 (0.50) for the default test, new-protein, new-compound, and both-new sets, 

respectively. In particular, the HRNN–GCN version achieved an RMSE (Pearson’s r) of 1.47 

(0.70), 1.46 (0.56), 1.34 (0.73), and 1.49 (0.61) for the four sets, respectively, showing a 

robust accuracy profile. In contrast, the competing method (Gao et al.) has worse RMSE 

values between 1.72 and 1.87 and worse Pearson’s r between 0.42 and 0.58.
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The interpretability of affinity prediction is assessed against ground truth of intermolecular 

residue–atom contacts, as shown in the bottom panel of Figure 4 and Table S3. Specifically, 

we use joint attention scores to classify all possible residue-atom pairs into contacts or 

noncontacts. As contacts only represent a tiny portion 0.0040 ± 0.0029 in our data set of all 

possible pairs, we use the area under the precision–recall curve (AUPRC) as the major 

metric and the area under the receiver operating characteristic curve (AUROC) as a 

reference, to assess such binary classification. Here, AUPRC/AUROC is averaged over all 

pairs involved in the corresponding set. Interestingly, compared to chance (AUPRC = 0.004 

and AUROC = 0.5), all attention-based models including DeepAffinity variants and Gao et 
al. only had slightly better AUPRC (around 0.006 albeit a 50% improvement) except CNN–

GCN for the new-protein set. The best DeepAffinity variant, HRNN–GCN, did improve 

against Gao et al.

From the results above, we conclude that attention mechanisms alone are inadequate for the 

interpretability of compound–protein affinity predictors, regardless of the choice of 

commonly used, generic neural network architectures.

Regularizing Attentions with Physical Constraints Modestly Improves Interpretability.

Our next task is to enhance the interpretability of compound–protein affinity prediction 

beyond the level achieved by attention mechanisms alone. The first idea is to incorporate 

domain-specific physical constraints into model training. The rationale is that, by bringing in 

the (predicted) structural contexts of proteins and protein–compound interactions, attention 

can be guided in their sparsity patterns accordingly for better interpretability.

We start with the two best-performing DeepAffinity variants so far (HRNN–GCN and 

HRNN–GIN), where protein amino-acid sequences are modeled by hierarchical RNN and 

compound graphs by various GNNs (including GCN and GIN). We introduce structure-

aware sparsity regularization R2(·) to the two models to make “DeepAffinity+” variants. The 

resulting HRNN-GCN_cstr and HRNN-GIN_cstr models with physical constraints are 

assessed in Figure 5 and Table S4. Compared to the nonregularized counterparts in Figure 4 

and Table S3, both models achieved similar accuracy levels across various test sets for 

affinity prediction. As to their interpretability, HRNN–GCN_cstr had similar AUPRC as 

before regularization (0.006) and HRNN–GIN_cstr slightly improved AUPRC to around 

0.008, although both were still close to the baseline (0.004). These results suggest that 

incorporating physical constraints to structurally regularize the sparsity of attentions is 

useful for improving interpretability but may not be enough.

Supervising Attentions Significantly Improves Interpretability.

As regularizing attentions with physical constraints was not enough to enhance 

interpretability, our next idea is to additionally supervise attentions with ground-truth contact 

data available to training examples. Again, we introduce “DeepAffinity+” models starting 

with HRNN–GCN and HRNN–GIN, by both regularizing and supervising attentions (using 

R2(·) and R3(·)).

The performances of resulting HRNN–GCN_cstr_sup and HRNN–GIN_cstr_sup models are 

shown in Figure 5. Importantly, HRNN–GCN_cstr_sup (light blue) significantly improved 
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interpretability of affinity prediction without the sacrifice of accuracy. The average AUPRC 

improved to 0.197, 0.048, 0.200, and 0.041 for the default test, new-protein, new-compound, 

and both-new sets, representing a 30.4-, 9.2-, 31.2-, and 6.3-fold increase, respectively, 

compared to the version with just regularization but not supervision of attentions (HRNN–

GCN_cstr). The performances also represented a 32.9-, 9.9-, 35.1-, and 8.6-fold increase, 

respectively, compared to Gao et al. Interestingly, supervising attentions in HRNN–GIN did 

not lead to significant improvement in interpretability.

Building Explainability into DeepRelations Architecture Further Improves Interpretability.

Toward better interpretability, besides regularizing and supervising attentions, we have 

further developed an explainable, deep relational neural network named DeepRelations. 

Here, atomic “relations” constituting physical bases and explanations of compound–protein 

affinities are explicitly modeled in the architecture with multistage gradual “zoom-in” to 

focus attention. In other words, the model architecture itself is intrinsically explainable by 

design.

The performances of the resulting DeepRelations (with both regularized and supervised 

attentions) are shown in Figure 5 (yellow-green “DeepRelations_cstr_sup”). With equally 

competitive accuracy in affinity prediction as all previous models, DeepRelations achieved 

further improvements in interpretability. The AUPRC values were similar to the best 

DeepAffinity+ model (HRNN-GCN_cstr_sup): 0.187, 0.052, 0.191, and 0.047 for the 

default test, new-protein, new-compound, and both-new sets, respectively. The AUROC 

values improved to 0.76, 0.67, 0.76, and 0.66 for the four sets, representing an increase of 

0.03, 0.07, 0.03, and 0.07 compared to those of the best DeepAffinity+, respectively.

To disentangle various components of DeepRelations and understand their relative 

contributions to DeepRelations’ improved interpretability, we removed components from 

DeepRelations for the ablation study. Besides regularized and supervised attentions, we 

believe that the main contributions in the architecture itself are (1) the multistage “zoom-in” 

mechanisms that progressively focus attentions from surface, binding k-mers, binding 

residues to binding residue-atom pairs; and (2) the explicit modeling of atomic relations that 

can explain the structure feature-affinity mappings consistently with physics principles.

We thus made three DeepRelations variants: DeepRelations without multistage focusing, 

without explicit atomic relations, or without both. We compare them with DeepRelations in 

Figure S1. Consistent with our conjecture, we found that, the explicit modeling of atomic 

relations was the main contributor as its removal led to worse affinity and contact 

predictions in new-protein and both-new sets. The multistage focusing also contributes as its 

removal led to worse affinity prediction for both new-compound and both-new sets.

Validation of Affinity Prediction.

To validate the affinity accuracy of our two final models HRNN–GCN_cstr_sup 

(DeepAffinity+ hereinafter) and DeepRelations_cstr_sup (DeepRelations hereinafter), we 

have performed several randomization tests. First, using random sampling of the training set 

would lead to affinity RMSEs above 2.7 and Pearson’s r around 0; whereas using the sample 

mean would lead to affinity RMSEs between 1.85 and 2.02 and an undefined Pearson’s r. 
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Both random affinity predictors performed considerably worse than DeepAffinity+ and 

DeepRelations (RMSE between 1.3 and 1.6 and Pearson’s r between 0.5 and 0.7). Second, 

Y-randomization tests67 of DeepAffinity+ and DeepRelations (20 trials each) led to much 

worse affinity prediction (RMSE between 2.20 and 2.45 and Pearson’s r around 0). 

Compound-randomization tests of our two models had similar results (RMSE between 1.95 

and 2.22 and Pearson’s r around 0 for new proteins). More details can be found in Tables 

S5–7. Therefore, we conclude that our models’ affinity accuracy is significantly better than 

chance correlations.

To further improve the accuracy of affinity prediction, we have constructed ensembles of 

DeepAffinity+, DeepRelations, and both, by using combinations of hyperparameters (such 

as the dropout ratio, λbind, and the width of fully-connected layers). More details can be 

found in the Supporting Information, Section 2.5. Notably, the DeepAffinity+ ensemble 

decreased affinity RMSE from 1.49 to 1.29, increased Pearson’s r from 0.68 to 0.77, and 

increased predictive R2 from 0.45 to 0.59 for the test set. It similarly improved the accuracy 

of affinity prediction, albeit to a lesser extent, for other sets involving new molecules. More 

results are reported in Table S8.

Better Interpretability Helps Better Accuracy and Generalizability of Affinity Prediction.

To examine whether the more interpretable affinity predictors are also more accurate in 

affinity prediction, we compare our two final models HRNN–GCN_cstr_sup (DeepAffinity+ 

hereinafter) and DeepRelations_cstr_sup (DeepRelations hereinafter) to the competing 

interpretable affinity predictor Gao et al. Re-examining earlier results (Figure 5 and Table 

S4) shows that DeepAffinity+ and DeepRelations with much better interpretability (AUPRC 

increase between 8.6 and 59-fold) than Gao et al. are also more accurate in affinity 

prediction (RMSE drop between 0.15 and 0.42 and Pearson’s r increase around 0.25) over 

all sets considered. Even when we compare DeepAffiity+ and DeepRelations to their 

attention-unsupervised counterparts (HRNN–GCN_cstr and DeepRelations_cstr), we find 

that better interpretability (contact prediction) leads to better accuracy (lower RMSE and 

higher Pearson’s r for affinity prediction) in 6 of 8 cases where the only exceptions occurred 

when AUPRC values were low.

Here, we further compare DeepAffinity+ and DeepRelations to Gao et al. in affinity and 

contact prediction over multiple difficulty ranges (measured by protein global sequence 

identity, protein local binding k-mer sequence identity, or compound Tanimoto scores) of the 

new-compound, new-protein, and both-new sets. The results are reported in Figure 6 as well 

as Figures S2–7 and Table S9. We find that the same conclusion (better interpretability leads 

to better accuracy) also applies, where model generalizability is needed the most: pairs 

involving very dissimilar proteins (global or local sequence identity below 30%) or/and 

compounds (Tanimoto scores below 0.5) compared to training molecules. Importantly, in 

those cases demanding generalizability the most, DeepAffinity+ and DeepRelations have 

much better accuracy (affinity-prediction RMSE decrease between 0.14 and 0.40 and 

Pearson’s r increase between 0.10 and 0.18) as well as significantly improved 

interpretability (contact-prediction AUPRC increase between 5.9 and 33.3-fold) compared to 

Gao et al.
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DeepAffinity+ and DeepRelations also showed competitive generalizability in both affinity 

and contact prediction. From the most similar proteins (sequence identity above 60%) to the 

least (sequence identity below 30%), affinity-prediction RMSE values of DeepAffinity+ 

(DeepRelations) only increased 0.13 (0.08) for the new-compound set and increased 0.00 

(0.16) for the most challenging both-new set. From the most similar compounds (Tanimoto 

scores above 0.8) to the least (Tanimoto scores below 0.5), affinity-prediction RMSE values 

of DeepAffinity+ (DeepRelations) only increased 0.14 (0.08) for the new-compound set and 

increased 0.43 (0.48) for the most challenging both-new set. Similar conclusions can be 

made about their generalizability in contact prediction.

Case Studies.

Now that we have established and explained how DeepAffinity+ and DeepRelations 

significantly improve the interpretability of compound–protein affinity prediction, we went 

on to delve into their affinity and contact predictions in comparison to Gao et al. using a 

series of cases studies of increasing difficulty. Summary performances of the five cases are 

reported in Table 3. DeepAffinity+ and DeepRelations had better affinity and contact 

prediction in all cases compared to the competing method whose top-10 predicted contacts 

failed to produce any native contacts. In order to understand model behaviors, our analysis 

next would focus on the patterns of top-10 contacts predicted by DeepAffinity+ and 

DeepRelations compared to Gao et al.

Two Compounds Bind to the Same Pocket of a New Protein Nonhomologous 
to Training Examples.—Our first case study involves a protein from the new-protein set, 

human carbonic anhydrase II (CA2, UniProt ID: P00918), that has no close homologue in 

the training set. Specifically, the closest training protein would be human carbonic anhydrase 

IV (CA4, UniProt ID: P22748) with a sequence identity below the 30% threshold (29%). We 

choose two compounds (HET IDs: AL1 and IT2) that bind to the same pocket of CA2 with 

distinct sizes (AL1 is larger by 14 heavy atoms) and affinity-prediction quality (see Table 3).

We compare in Figure 7 the top-10 contacts between protein residues and compound atoms 

that are predicted by three methods. Top-predicted contacts by Gao et al. were scattered 

across protein residues that are far from the binding site, failing to match any native contact. 

In contrast, those top-10 contacts predicted by DeepAffinity+ and DeepRelations were more 

focused in or near the binding site, containing 3–6 native contacts that are direct, first-shell 

contacts. Between our two models, DeepRelations showed better contact prediction in these 

two cases: its top-10 predictions were more focused in the binding site and contained 60 and 

50% native contacts for compounds AL1 and IT2, respectively. The more focused contact 

prediction of our methods could be attributed to structure-aware regularization using protein 

residue–residue contact maps. DeepRelations had better focus than DeepAffinity+, possibly 

because of the multistage focusing strategy.

Even the incorrect predictions of DeepRelations can correspond to residue-atom pairs that 

are close (but above the 4 Å-cutoff used in the first-shell contact definition). For instance, in 

the case of compound AL1, the four incorrect predictions all corresponded to correct 

binding residues that were paired to wrong compound atoms. In the case of compound IT2, 
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the five incorrect predictions included two that paired correct binding-site residues to wrong 

atoms and three that included (the very next) sequence neighbors of correct binding-site 

residues.

These two cases also provided examples to interpret the values of AURPC and top-10 

contact precision. A seemingly “low” AUPRC value of 0.075 can lead to 5 of 10 top 

predictions being correct. The reason is that native contacts represent a rare minority (0.004) 

among all possible residue-atom pairs, and an AUPRC value of 0.075 actually represents 

over 18-fold increase compared to the baseline AUPRC by chance. Meanwhile, a top-10 

contact precision of 0.4 predicted by our structure-free methods is close to the average level 

(0.44) achieved by a popular structure-based protein–ligand docking program, AutoDock 

Vina,68 under default settings.69

Two New Compounds Bind to Distinct Pockets of a Protein.—Our next case study 

involves two compound–protein pairs from the new-compound set, where two compounds 

(HET ID: CPB and T68) not present in the training set bind to two distinct pockets of the 

rabbit glycogen phosphorylase (PYGM, UniProt ID: P00489). The protein is present in the 

training set with 38 ligands (all but one are occupying the same pocket as T68). In addition, 

the compound CPB does not resemble its closest training example interacting with the same 

protein (HET ID: 62N) when 62N rather occupies the same pocket as T68. Therefore, 

contact prediction for the CPB case would be much more challenging. Indeed, our results 

supported the conjecture (Table 3). In their top-10 contact predictions, our both models 

achieved 100% native contacts for T68 but just 10% (DeepAffinity+) or even 0% 

(DeepRelations) for CPB. They had good estimation of binding affinity for both cases.

A closer look into their contact predictions reveal more insights. As seen in Figure 8, 

consistent with our earlier observations, Gao et al.’s contact predictions are dispersed across 

the whole protein, whereas ours are focused. In the case of T68, our predictions are focused 

in the correct binding site (and even the correct binding residues). However, in the case of 

CPB, our predictions are actually still focused in the same site as they did for T68, only 

being wrong this time. Interestingly many falsely-predicted contacts for CPB were not only 

in the other binding site (circled area) but also with the T68 binding residues. This model 

behavior is understandable when almost all training examples, including a very similar 

compound, are indicating a different site. It also reveals a situation that would challenge 

more generalizability and demand more explainability from machine learning methods. 

Intriguingly, DeepAffinity+ still managed to make one correct contact prediction (pointed at 

by a red arrow).

Pair of New Protein and New Compound Very Dissimilar to Training Examples.
—Our last case study is even more challenging in that both the protein (the human tyrosine-

protein kinase Lck, LCK in short, UniProt ID: P06239) and the compound (HET ID: LHL) 

are new and they do not even resemble training examples. Specifically, the most similar 

training protein would be the human tyrosine-protein kinase BTK, BTK in short, UniProt 

ID: Q06239) with sequence identity at 28%. The most similar training compound would be 

K60 (HET ID) with the Tanimoto score at 0.12. Indeed, our results (Table 3) showed that 

contact AUPRC is just around 0.053. Given the explanation to interpret AUPRC and top-10 
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contact precision in the first case study, one would notice that the AUPRC value is 14-fold of 

the baseline (0.004) and 40% of our top-10 contact predictions were true positives (a level 

close to average protein–ligand docking performances).

As seen in Figure 9, again, our contact predictions are more focused in or near the binding 

site compared to the competing methods, which can be attributed to our structure-aware 

attention regularization (and supervision). A closer look into the false positives reveal more 

into our methods. Take DeepAffinity+ as an example. Among the six false-positive contact 

predictions, four were pairing correct binding residues with wrong compound atoms, one 

was paired to a protein residue that is a close sequence neighbor (two residues away) of a 

correct binding residue, and one was paired to a protein residue that is not present in the 

cocrystal structure but predicted to be spatially close to a correct binding residue. In other 

words, the origins of false positives in contact prediction include (but are not limited to) 

pairing with other (nearby) compound atoms and pairing with sequential or predicted spatial 

neighbors of protein binding-residues. When the criterion of native contacts is relaxed from 

direct, first-shell contacts within 4 Å to more contacts within longer distance cutoffs, the 

precision level would further increase, which is detailed next.

Global Patterns of Top-10 Predicted Contacts.—We extended the analysis of the 

patterns of predicted contacts to all test cases. Considering that the native contacts are 

defined strictly as direct, first-shell contacts within 4 Å, we assess 4–10 Å distance 

distributions of residue-atom pairs predicted by DeepAffinity+ (HRNN–GCN_cstr_sup) and 

DeepRelations in comparison with Gao et al. As seen in the global analysis in Figure 10 and 

Table S10, DeepAffinity+ and DeepRelations significantly outperform the competing 

method in all distance ranges over all test sets. Specifically, among their top-10 contact 

predictions, around 40% for the default test and new-compound sets were first-shell contacts 

within 4 Å and the ratios increased to about 70% when considering contacts within 10 Å. 

For the more challenging cases of new-protein and both-new sets, the ratios of predicted 

contacts within 4 Å and 10 Å were around 20 and 50%, respectively. These results 

significantly outperformed the competing method whose ratios were merely 4–6% over all 

sets. Between our two models, DeepRelations behaved similarly as DeepAffinity+ and had 

more top-10 predictions falling in the long range of 8–10 Å.

Predicted Contacts Assist and Improve Protein–Ligand Docking.—From the 

case studies and the global analysis above, we have concluded that top-10 contact 

predictions by our methods are enriched with native contacts within 4 Å (20–40%) as well 

as dominated by longer-range “contacts” within 10 Å (50–70%). We therefore test how 

much the top-10 contact predictions, including false positives, could make a positive impact 

in the drug discovery process. Picking a typical task—protein–ligand docking and a popular 

tool—AutoDock Vina,68 we assess how our contact predictions could assist the task by 

reducing the search space.

Specifically, we chose the five case studies (except the case where DeepRelations made no 

correct contact prediction) and performed unbound protein–ligand docking (all protein 

structures are unbound except PYGM whose structure is cocrystallized with its cognate 

phosphate AMP). Each pair (rigid protein and flexible ligand) is docked twice: one with the 
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default procedure to define a search “box” covering the entire protein and the other using a 

restricted box that barely covers all residues in the top-10 DeepRelations contact predictions 

(including false positives) and then has 20 Å-padding. All the other docking parameters in 

AutoDock Vina are default, including a total of nine protein–ligand complex models ordered 

and reported at the end. Docking performances were evaluated by ligand rmsd of the top few 

models using the software DOCKRMSD.70

Results in Table 4 show that AutoDock Vina assisted by DeepRelations top-10 contact 

predictions had much improved docking performance compared to otherwise. When the 

top-10 contact precision was 40, 50, 50, and 100%, respectively, the best ligand rmsd 

(among all nine complex models) reduced from 2.77, 4.01, 16.62, and 18.75 Å down to 2.45, 

1.59, 4.73, and 1.88 Å, respectively. The quality of the top-1 models also drastically 

improved in three of four cases. Although the way to incorporate predicted contacts into 

protein–ligand docking remains to be optimized, these results have proved that the precision 

and spatial pattern of our structure-free contact prediction is at a level useful to assist and 

improve structure-based protein–ligand docking for pose prediction.

Affinity Prediction for Target Prioritization.—Using the two aforementioned CA2 

(human carbonic anhydrase II) compounds (AL1 and IT2) in the first case study, we also 

explore the utility of our models for target prioritization for given compounds. As no affinity 

data were observed in our data set for AL1 or IT2 with proteins other than CA2, we 

approximate the set of “off-targets” with all the 1286 non-CA2 proteins in our data set. For 

either compound AL1 or IT2, we assessed the distribution of its off-target affinities 

predicted by DeepAffinity+ and compared the distribution (see Figure S8) to its predicted 

on-target (CA2) affinity. As shown in Figure S8, 83.1% (100%) and 88.2% (99.7%) of 

predicted off-target affinities are weaker than the predicted (actual) affinity to the target 

CA2, for compounds AL1 and IT2, respectively. Removing CA2 homologues (4 in total) 

from the non-CA2 proteins led to nearly the same results (data not shown). We note that this 

case is particularly challenging because no homologues of the target CA2 are in the training 

set, and the errors of target affinity prediction are higher than average. More systematic and 

dedicated studies are needed for this topic in future.

More Utilities from Explainable Affinity Prediction.

In the last part of the results, we explore additional utilities of our methods toward 

facilitating drug discovery: binding-site prediction for proteins and structure–activity 

relationship (SAR) for compounds. Our methods do not demand protein structures or 

protein–ligand docking to make these predictions. Rather, they simply aggregate predicted 

attentions (or predicted weights of residue-atom contacts) or/and decompose predicted 

affinities. Although not directly designed or optimized for these tasks, our explainable 

models have shown promising potentials in the tasks toward rational drug discovery.

Binding Site Prediction.—The first extended utility we aim at is structure-free and 

ligand-specific binding-site prediction for proteins. To this end, we feed an arbitrary pair of 

protein and compound to the trained DeepAffinity+ and DeepRelations models and predict 

the weights of residue-atom pairs (Wij where i and j are the indices of a protein residue and 
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a compound atom, respectively). We then calculate the max-marginal attention (maxjWij) for 

each residue i as a weight for ranking. The performances of the residue weights toward 

ligand-specific binding site prediction are summarized in Figure 11 and Table S11. Here, 

binding-site residues of a protein are strictly defined as those making direct, first-shell 

contacts with a paired compound. Without the help of protein structures, predicted residue-

contact maps, or protein–ligand docking, our methods on average achieved AUPRC 

(AUROC) of around 0.43 (0.77) for the default test and new-compound sets as well as 

AUPRC (AUROC) of around 0.18 (0.69) for the more challenging new-protein and both-

new sets. In contrast, the competing method had AUPRC and AUROC close to the random 

performances of 0.004 and 0.50, respectively.

Between DeepAffinity+ and DeepRelations, we noticed that the latter had better 

performance in predicting binding sites for new proteins. Specifically, the AUPRC 

(AUROC) increased from 0.17 (0.65) to 0.21 (0.73) for the new-protein set and did from 

0.16 (0.65) to 0.20 (0.72) for the both-new set.

Structure Activity Relationship (SAR).—The second extended utility we aim at is 

SAR for compounds. To test the utility, we choose two subchallenges (SC3 and SC4) from 

Grand Challenge 3 of D3R:71 Janus kinase 2 (JAK2) and Angiopoietin-1 receptor (TIE2) 

that were excluded in our training set (thus new proteins). The most similar proteins to JAK2 

and TIE2 in our training set are calcium/calmodulin-dependent protein kinase kinase 2 

(CAMKK2, sequence identity 48%) and cyclin-dependent kinase 2 (CDK2, sequence 

identity 39%), respectively. The two data sets include 17 and 18 congeneric compounds, 

respectively, with Kd values measured. They were meant to “detect large changes in affinity 

because of small changes in chemical structure” (https://drugdesigndata.org/about/grand-

challenge-3). In other words, the data sets focus on the sensitivity of methods targeting SAR. 

Chemical graphs, actual pKd, and DeepRelations-predicted pKd of the JAK2 and TIE2 

compounds are in Figures S9 and S10, respectively.

Here, we compare our DeepAffinity+ and DeepRelations not only to structure-free Gao et al. 
but also to 18 structure-based methods from the community that participated in the 

subchallenges. The assessment metrics for affinity ranking are Kendall’s τ and Spearman’s ρ 
as in D3R. A summary of the performances is in Table 5. In the case of JAK2, the 18 

structure-based methods had τ ranging from 0.71 to −0.56 and ρ ranging from 0.86 to −0.70, 

including eight methods with negative τ and ρ (see details in Table S13). As to the structure-

free affinity predictors, Gao et al. had τ = −0.42 and ρ = −0.54, whereas our DeepAffinity+ 

had slightly better τ = −0.36 and ρ = −0.47, both outperforming just one structure-based 

method. However, our DeepRelations achieved τ = 0.15 and ρ = 0.21, outperforming 12 

(two-thirds) of the structure-based methods. In the case of TIE2, the 18 structure-based 

methods had τ ranging from 0.57 to −0.57 and ρ ranging from 0.76 to −0.69, including eight 

methods with negative τ and ρ (see details in Table S14). Interestingly, the best structure-

based method for JAK2 was only placed 12th among 18 with slightly negative τ and ρ for 

TIE2. In contrast, all the structure-free affinity predictors performed well for TIE2: Gao et 
al., DeepAffinity+, and DeepRelations had τ (ρ) reaching 0.60 (0.74), 0.65 (0.79), and 0.61 

(0.72), respectively, and they all outperformed the best structure-based method. The scatter 
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plots of actual versus our predicted pKd are in Figure S11. We note that all 18 structure-

based methods used crystal structures of proteins and often-expensive ligand docking, 

whereas structure-free methods did not. Our methods only cost a fraction of a second when 

making quality predictions for tens to hundreds of compound–protein pairs, thus a useful 

complement to structure/docking-based methods toward virtual screening.

Beyond affinity scoring, we further examine DeepRelations in extracting SAR knowledge 

toward drug discovery. A central question in lead optimization is where and how to modify a 

lead compound to improve its property (affinity here). As a stepping stone, we construct 

predictors from our DeepRelations in order to anticipate the affinity changes when a 

functional-group substituent is introduced to a lead. Specifically, we regard our predicted 

pKd pKd  as estimated binding energy for a compound–protein pair and our predicted joint-

attention Wij as the fraction of contribution between protein residue i and compound atom j. 

Borrowing the idea of energy decomposition, we calculate the binding-energy contribution 

of a functional group R as the product of the predicted binding-energy and the sum-

marginals of joint attention: pKd
R = pKd ⋅ ∑j ∈ R ∑iWij . In this way, the difference of this 

R-group contribution, ΔpKd
R, can be a predictor of affinity change when introducing a 

substituent R-group to a compound.

To test our predictor for lead optimization, we use the JAK2 data set involving 17 

compounds that share a common scaffold and have distinct combinations of two functional 

groups (3 choices for R1 and 10 for R2; see Figure 12A and S9). We construct 121 pairs of 

compounds between a weaker binder (origin) and a stronger binder (end). 7, 36, and 78 of 

the structural changes from the origin to the end compound involve R1, R2, and both-R 
substitutions, respectively. We compare three methods in predicting these 121 affinity 

changes with assessment metrics including Pearson’s r (main assessment), Spearman’s ρ, 

and Kendall’s τ (Figure 12B–D). A straightforward predictor using DeepRelations’ ΔpKd 

without decomposition had r = 0.218, whereas the decomposed affinity-change predictor 

ΔpKd
R improved r to 0.361. If one has access to the protein in complex with a previously 

discovered compound and can have an accurate estimate of the binding residues, the 

summation of protein residue i in pKd
R can be just over binding residues rather than all 

residues. In that case, the new ΔpKd
R can slightly improve r further to 0.363. Our 

decomposed affinity-change predictor ΔpKd
R similarly improved ρ and τ. Compared to the 18 

structure-based competing methods that participated in the D3R JAK2 subchallenge, our 

structure-free predictor with decomposition outperformed 15 (five-sixths) of them in r, ρ, 

and τ, as detailed in Tables S15 and S16.

When we split the analysis into three series involving R1, R2, and both-R separately, we 

observed that ΔpKd
R improved r from 0.267 to 0.753, −0.081 to 0.137, and 0.244 to 0.377, 

respectively (Figure S13). Using the binding-residue information could slightly improve the 

correlation further. Interestingly, when both R-groups are substituted (78 cases), ΔpKd
R1 had 

a better Pearson’s correlation (0.405) with the actual affinity changes than ΔpKd
R2 (−0.121) 
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and even ΔpKd
R1 + R2 (0.375) did (Figure S14), potentially suggesting that the R1 group could 

be explored first for affinity optimization. Once a functional group R is chosen, affinity 

changes upon any proposed substitution can be predicted using our group-decomposed 

ΔpKd
R.

CONCLUSIONS

Toward accurate and interpretable machine learning for structure-free prediction of 

compound–protein interactions, we have curated compound–protein interaction data set 

annotated with both affinities and intermolecular atom-contacts, assessed the adequacy of 

current attention-based deep learning models for both accuracy and interpretability, and 

developed novel machine-learning models (in particular, DeepAffinity+ and DeepRelations) 

to remarkably enhance interpretability without sacrificing accuracy. We have also shown that 

our methods’ accuracy for affinity prediction is comparable or better than competing 

(noninterpretable) methods using established benchmark data sets. This is the first study 

with dedicated model development and systematic model assessment for interpretability in 

affinity prediction.

Our study has found that commonly-used attention mechanisms alone, although better than 

chance in most cases, are not satisfying in interpretability. The most attended protein–ligand 

contacts in affinity prediction do not reveal native contacts underlying affinities at a useful 

level. The conclusion maintains regardless of the representation of molecules (sequences/

strings or graphs) or the architecture of neural networks. We have tackled the challenge with 

three innovative, methodological advances. First, we introduce structure-aware constraints to 

regularize attentions (or guide their sparsity patterns), using sequence-predicted structural 

contexts such as protein surfaces and protein residue–residue contact maps. Second, we 

exploit available native contacts to supervise novel joint attentions, that is, to teach neural 

network how to weigh residue-atom pairs when making affinity predictions. Lastly, we build 

intrinsically explainable model architecture where various atomic relations, reflecting 

physics laws, are explicitly modeled and aggregated for affinity prediction. Joint attentions 

are embedded over residue-atom pairs for their relations. A multistage hierarchy, trained 

end-to-end, progressively focuses attentions on protein surfaces, binding k-mers and 

residues, and residue-atom contact pairs. The first two advances are introduced in both 

DeepAffinity+ and DeepRelations; and the last is additionally introduced in DeepRelations. 

Their best versions involve hierarchical recurrent neural networks (HRNN) to embed protein 

sequences and graph convolutional networks (GCN) to embed compound graphs.

Empirical results demonstrate the superiority of DeepAffinity+ and DeepRelations in 

interpretable and accurate prediction of compound–protein interactions. Their affinity 

prediction shows generalizability to compounds or/and proteins that are new or even 

dissimilar to training data. Compared to a competing interpretable method, they boosted the 

AUPRC for contact prediction (a measure of interpretability) by around 33-, 10-, 35-, and 9-

fold for the default test, new-protein, new-compound, and both-new sets, respectively. 

Importantly, improved model interpretability has shown to contribute to improve model 

accuracy and generalizability.
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Case studies suggest that DeepAffinity+ and DeepRelations predict not only more correct 

but also more well-patterned contacts that are focused in or near binding sites, thanks to the 

structure-aware regularization and supervision of joint attentions. A global analysis indicates 

that around 40% (20%) of our top-10 predicted contacts are native contacts that are direct 

and first-shell for the test and the new-compound set (the new-protein and both-new set). 

Many “incorrect” predictions because of the strict definition of native contacts were within 

reasonable ranges—in fact, around 70% (50%) of the top-10 predicted contacts correspond 

to residue-atom pairs within 10 Å when the set does not (does) involve a new protein. With 

the precision level and the focused pattern, our top-10 contact predictions (including false 

positives) have demonstrated their value in assisting and improving protein–ligand docking, 

while the protocol to incorporate the predictions into docking remains to be optimized.

By aggregating joint attention and decomposing predicted affinities, we also demonstrate 

additional utilities of our explainable affinity and contact predictor, toward drug-discovery 

tasks such as binding site prediction, SAR (scoring), and SAR (lead optimization). Although 

not directly designed nor optimized for these tasks, our methods and analyses have shown 

great potentials in these tasks toward facilitating drug discovery.

An additional benefit of our structure-free methods is their broad applicability toward the 

vast chemical and proteomic spaces. They do not rely on 3D structures of compound–protein 

complexes or even proteins alone when such structures are often unavailable. The only 

inputs needed are protein sequences and compound graphs. Meanwhile, they adopt the latest 

technology to predict structural contexts from protein sequences (such as surfaces, 

secondary structures, and residue–residue contact maps). They introduce structure-aware 

regularization to incorporate the predicted structural contexts into affinity and contact 

predictions. When structure data are available, DeepRelations can readily integrate such data 

by using actual rather than predicted structural contexts. We tested the use of actual versus 
predicted protein residue–residue contact maps and did not observe significant performance 

differences in our cases (Table S12).

Our study demonstrates that it is much more effective to directly teach explainability to 

machine learning models (such as our structure-aware regularization and supervision of joint 

attentions) and build explainability into model architectures (such as our explicit modeling 

of atomic relations in DeepRelations) than to demand explainability from general-purpose 

models (such as seeking contact-interpretation from unsupervised, generic attention 

mechanisms). In other words, designing intrinsically interpretable machine learning models 

incorporated with domain knowledge, although more difficult, can be much more desired 

than pursuing interpretability in a post hoc manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Complete data set consists of training, test, compound-unique, protein-unique, and double 

unique sets with compound–protein counts provided.
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Figure 2. 
Schematic illustration of DeepRelations, an intrinsically explainable neural network 

architecture for predicting compound–protein interactions. Three linked relational modules 

(Rel-CPI in the small yellow boxes) correspond to three stages of attention focusing. Each 

module embeds relational features with joint attentions over pairs of protein residues and 

compound atoms (details on the right). In comparison, DeepAffinity+ has a single module 

with all relational features lumped together. Both methods are structure-free, and protein 

structures are just for illustration.
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Figure 3. 
Distributions of compound properties across various subsets: (A) log P; (B) exact molecule 

weight; and (C) pKi/pKd labels.
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Figure 4. 
Comparing accuracy and interpretability among various versions of DeepAffinity with 

unsupervised joint attention mechanisms as well as another interpretable method (Gao et 
al.). Separated by hyphens in legends are neural network models for proteins and 

compounds respectively. A horizontal dashed line indicates the performance of a random 

predictor.
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Figure 5. 
Comparing accuracy and interpretability among various versions of DeepAffinity+ 

(DeepAffinity with regularized and supervised attentions) and DeepRelations. “cstr” in 

legends indicates physical constraints imposed on attentions through regularization term 

R2(·), whereas “sup” indicates supervised attentions through regularization term R3(·). A 

horizontal dashed line indicates the performance of a random predictor.
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Figure 6. 
Comparing DeepAffinity+, DeepRelations, and Gao’s method in the generalizability of 

affinity prediction (RMSE and Pearson’s r) and contact prediction (AUPRC and AUROC) to 

molecules unlike training data. A horizontal dashed line indicates the performance of a 

random predictor.
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Figure 7. 
Structural visualization of top-10 intermolecular contacts predicted by DeepAffinity+ (left), 

DeepRelations (middle), and Gao et al. (right) for two test cases. Here, two compounds 

[AL1: top panels (A–C) and IT2: bottom panels (D–F); stick representations] bind to the 

same pocket of the human carbonic anhydrase II that is new and nonhomologous to training 

data (wheat cartoons where binding residues are highlighted in red). Shown in dashed lines 

are top-10 predicted contacts (interactions between protein residues and compound atoms). 

The dashed lines in red and pale cyan highlight correct and incorrect predictions, 

respectively, according to native, direct contacts retrieved by LigPlot.
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Figure 8. 
Structural visualization of top-10 intermolecular contacts predicted by DeepAffinity+ (left), 

DeepRelations (middle) and Gao et al. (right) for another two test cases. Here, two 

compounds that are new to training data [CPB: top panels (A–C) and T68: bottom panels 

(D–F); stick representations] bind to distinct pockets of the human glycogen phosphorylase 

(wheat cartoons where binding residues are highlighted in red). Shown in dashed lines are 

top-10 predicted contacts (interactions between protein residues and compound atoms), 

including correct (red) and incorrect (pale cyan) ones according to LigPlot’s definition of 

native, direct contacts. The black hollow arrow in panel A points to the only correct 

prediction by DeepAffinity+ and the black circle there indicates the binding site for T68. 

Interestingly, many incorrect predictions by DeepAffinity+ and DeepRelations for CPB were 

with binding residues to T68.
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Figure 9. 
Structural visualization of top-10 intermolecular contacts predicted by (A) DeepAffinity+, 

(B) DeepRelations, and (C) Gao et al. for a difficult test case. Here, both the compound 

(LHL, in sticks) and the protein (tyrosine-protein kinase Lck, in wheat cartoons with binding 

residues highlighted in red) are new and very dissimilar to training data. The red and pale 

cyan dashed lines represent correct and incorrect top-10 predicted contacts, respectively. 

DeepAffinity+ and DeepRelations still managed to achieve the precision of 40% in their 

top-10 contact predictions.
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Figure 10. 
Distributions of top-10 contacts, predicted by DeepAffinity+, DeepRelations, and Gao’s 

method, in various distance ranges.
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Figure 11. 
Comparing three interpretable methods (DeepAffinity+, DeepRelations, and Gao et al.) in 

binding-site prediction.
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Figure 12. 
Actual (x-axis) vs DeepRelations-predicted (y-axis) affinity changes when introducing 

functional-group substitutions [R1, R2, or both in (A)] to lead compounds for JAK2. The 

three predictors are as follows: (B) predicted affinity change ΔpKd; (C) group-decomposed 

affinity change ΔpKd
R using all protein residues and the substituent group R alone; and (D) 

group-decomposed affinity change ΔpKd
R using estimated protein binding residues and the 

substituent group R alone.
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