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ABSTRACT

Objectives: The ability to identify novel risk factors for health outcomes is a key strength of electronic health re-

cord (EHR)-based research. However, the validity of such studies is limited by error in EHR-derived phenotypes.

The objective of this study was to develop a novel procedure for reducing bias in estimated associations be-

tween risk factors and phenotypes in EHR data.

Materials and Methods: The proposed method combines the strengths of a gold-standard phenotype obtained

through manual chart review for a small validation set of patients and an automatically-derived phenotype that

is available for all patients but is potentially error-prone (hereafter referred to as the algorithm-derived pheno-

type). An augmented estimator of associations is obtained by optimally combining these 2 phenotypes. We con-

ducted simulation studies to evaluate the performance of the augmented estimator and conducted an analysis

of risk factors for second breast cancer events using data on a cohort from Kaiser Permanente Washington.

Results: The proposed method was shown to reduce bias relative to an estimator using only the algorithm-

derived phenotype and reduce variance compared to an estimator using only the validation data.

Discussion: Our simulation studies and real data application demonstrate that, compared to the estimator using

validation data only, the augmented estimator has lower variance (ie, higher statistical efficiency). Compared to

the estimator using error-prone EHR-derived phenotypes, the augmented estimator has smaller bias.

Conclusions: The proposed estimator can effectively combine an error-prone phenotype with gold-standard

data from a limited chart review in order to improve analyses of risk factors using EHR data.
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INTRODUCTION

Electronic health records (EHRs) contain extensive patient data,

providing an efficient and wide-reaching source for health re-

search.1,2 In the last decade, EHR data have been widely used to in-

vestigate research questions in various health care and medical

domains. In Figure 1, we present a commonly used standardization

process for EHR data. This figure demonstrates the flow from data

in a medical data warehouse to data ready for research analysis.

One common use of EHR data is identification of novel risk factors

for disease, referred to as an association study.3

However, such EHR-based association studies face many chal-

lenges. One major challenge is measurement error in EHR-derived
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outcomes.4 For example, the binary phenotypes of patients in EHR

data are derived through phenotyping algorithms (Figure 1). The

performance of these algorithms, which highly depend on the types

of diseases and qualities of algorithms, are rarely perfect resulting in

misclassification. Errors in EHR-derived phenotypes can lead to sys-

tematic bias, substantially inflate type I error, and diminish statisti-

cal power.5–18 An existing method proposed by Sinnott et al (2014)

incorporates the algorithm-derived probability of disease status into

analyses using EHR-derived phenotypes. This method improves the

power of association tests with imperfect phenotypes from the

EHR.19

An alternative to relying on an algorithm-derived phenotype,

which may suffer from misclassification, is to conduct validation

through manual chart review (Figure 1) and use these validated phe-

notypes for association studies; for example, Ritchie et al,3 Ritchie

et al,20 and Bush et al.21 Although chart reviews have the potential

to provide gold-standard phenotypes, they are typically expensive

and therefore usually conducted only for a small subset of patients.

However, because of the small validation set, this estimator in sub-

sequent association studies is often not efficient (ie, the estimator

has large variance).

Another method developed by Magder and Hughes (1997), less

commonly used in EHR-based association studies than in conven-

tional epidemiological studies, postulates a misclassification model

for the relationship between misclassification rates (ie, sensitivity

and specificity) and exposure levels and correct association estimates

using the estimated misclassification rates from the validation

set.22,23 Nevertheless, this method relies on the correctly specified

misclassification model and availability of a relatively large valida-

tion sample to ensure unbiased and efficient estimates of the

parameters. McInturff et al (2004) developed a Bayesian method

that incorporates information on the prior distribution of sensitivity

and specificity.24 However, this method assumes that the

misclassification of disease state is non-differential with respect to

covariates. If sensitivity or specificity of the phenotyping algorithm

varies across exposure groups, exposure-specific sensitivity and spe-

cificity estimates are required. To handle differential misclassifica-

tion, Lyles et al (2011) extended Magder and Hughes’ maximum

likelihood estimation method by modeling the dependence of the

misclassification rates on covariates through regression models.25

Edward et al (2013) developed a multiple imputation method to ac-

count for misclassification when validation data are available.26

However, these 2 approaches require a correctly specified misclassi-

fication rate model. For EHR data, the performance of a phenotyp-

ing algorithm depends on a variety of factors, including missing data

patterns, types of risk predictors, and phenotyping models. Correct

specification of the misclassification rate of a phenotyping algorithm

may be challenging.

In this article, we propose a method to reduce bias in EHR-based

studies using the algorithm-derived phenotype with available valida-

tion data for a small subset of the population. The key idea is moti-

vated by Wang and Wang (2015)27 who considered measurement

errors in covariates when modeling time-to-event outcomes and pro-

posed a marginal bias correction method without modeling the mis-

classification. By deriving the joint distribution of 2 sets of marginal

estimators, an augmented estimator of associations is obtained using

the conditional normal distribution. In this article, we consider bi-

nary phenotypes and propose a novel augmented estimator with bet-

ter statistical properties. The proposed method utilizes the biased

estimator from error-prone phenotypes to improve the statistical ef-

ficiency of the estimator from validation data only. This strategy

obviates the need to model the dependency of misclassification rates

on exposure levels, making it particularly useful in EHR-based re-

search. The goal of the proposed method is to combine the strengths

of the estimates using validation data only (ie, low bias) with esti-

mates using algorithm-derived phenotype (ie, smaller variance).

Figure 1. An illustration of the pipeline for preparing EHR data for research use. To conduct association studies, health outcomes are typically derived from a phe-

notyping algorithm. Algorithms with different characteristics (eg, algorithm specific characteristics, patient-level characteristics) lead to phenotypes of different

qualities (ie, different sensitivity and specificity) for use in the subsequent association study. Following the phenotyping process, manual chart reviews are often

conducted to provide gold-standard phenotypes. The proposed method is a novel method in the downstream analyses to account for phenotyping error.
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Through simulation studies and real data analysis, we demonstrate

that the proposed method has consistently better statistical proper-

ties under a wide spectrum of misclassification settings.

MATERIALS AND METHODS

Data structure and notation
We considered an EHR-derived data set of N patients to conduct an

association study between a binary phenotype, Y, and a set of cova-

riates, X. Instead of the true phenotype, Y, the EHR data contain an

algorithm-derived phenotype, S, derived from an automated algo-

rithm which is subject to misclassification. A validation set of n sub-

jects is randomly sampled, and the true phenotype, Y, is obtained in

this sub-sample. The ratio of the validation set size to the full data

set size (ie, the validation ratio) is q ¼ n=N (Figure 2). For the sub-

jects in the validation set, V, we observe ðXi; Yi; SiÞ, where

i ¼ 1; :; n; and, for all of the individuals in the EHR data, we ob-

serve ðXj; SjÞ, where j ¼ 1; . . . N.

Existing methods
Model (1): validation data only

The association between the covariates and true phenotype is esti-

mated using Y in validation data through a logistic regression

model. Let b1 denote the association between X and Y. The resul-

tant estimator, denoted b̂V , is an unbiased but inefficient estimator

of the parameter of interest, b1, due to the limited validation set.

Model (2): naı̈ve approach

The association is estimated using S in the full sample through a lo-

gistic regression model. The resultant estimator, denoted ĉF, is a bi-

ased estimator of b1 due to error in S but is more efficient than b̂V

because a larger full data set is used.

Model (3): misclassification-adjusted approach

The validation set can be used to estimate sensitivity and specificity.

These estimates are used to calibrate the parameter of interest, b1,

whose estimator is denoted as ĉP. However, the practical perfor-

mance of this method depends on the validation set size and the

specification of the misclassification model.22,28 The sensitivity and

specificity are estimated using information on the true disease status

and algorithm-derived phenotype in the validation set. The esti-

mated sensitivity is defined as the number of correctly identified pos-

itive patients divided by the number of all positive patients in

validation data; the estimated specificity is the number of correctly

identified negative patients divided by the number of all negative

patients in the validation data. These estimates are plugged into the

likelihood function (ie, Eq.5 in Magder & Hughes) to estimate b1.

Proposed Method
Model (4): the augmented estimator

The key idea of the proposed method is to combine the advantages

of the estimators in models (1) and (2) through the joint distribution

of the 2 estimators without explicitly specifying the misclassification

model. This procedure outperforms model (3) in the case of incor-

rect misclassification models. In practical situations, the true value

of c1 is unknown and ĉF from model (2) is biased because of the

misclassified algorithm-derived phenotype. We obtain an

estimator; ĉV , using the validation data set, which, though highly

biased and inefficient, is used to obtain the augmented estimator.

We first obtain the joint distribution of b̂V � b1 and ĉV � ĉF,

which is approximately a normal distribution with mean 0 and

covariance matrix
R=n X=n

X=n R�=n

 !
. Since ĉV � ĉF is observed, b̂V

� b1 conditioning on ĉV � ĉF is asymptotically normal with

mean XR��1 ðĉV � ĉFÞ and variance R�XR��1X
0

n . This mean is ap-

proximately 0 for a moderate-sized validation set.

This derivation suggests an augmented estimator as follows,

b̂A ¼ b̂V � X̂R̂
��1ð ĉV � ĉFÞ (1)

where X̂ and R̂
�

are empirical estimates of X and R�. The augmented

estimator approximately follows a normal distribution

N b1;
R�XR��1 X

0

n

� �
. Compared to the estimator, b̂V , which has vari-

ance R
n, the estimator, b̂A, has smaller variance (ie,

R� XR��1 X
0 � RÞ: In other words, the augmented estimator b̂A is

unbiased and has higher statistical efficiency than the estimator b̂V .

Intuitively, we consider that all estimates are scalers (ie, 1-dimen-

sional). In extreme cases where the surrogate S is noninformative

and completely random, the proposed estimate of the covariance be-

tween b̂V � b1 and ĉV � ĉF, X̂, will approach 0. By Equation (1),

the augmented estimator b̂A is close to b̂V , the estimator using the

validation data only. This makes sense because the surrogate S is

noninformative and the proposed method automatically assigns

small weights to irrelevant term ðĉV � ĉFÞ. When the algorithm-

derived phenotypes S are highly correlated to the true phenotypes Y

in the validation data, we have a “relatively large” covariance X̂ (af-

ter a proper standardization by R̂
��1

) and then the augmented esti-

mator b̂A will assign a larger weight to the debiased term

ðĉV � ĉFÞ.

Algorithm
The algorithm of the augmented estimation procedure is outlined in

the following algorithm and illustrated in Figure 3:

Algorithm:

1. Obtain b̂V with model (1) using gold standard outcome in the

validation set.

2. Obtain ĉV with model (2) using algorithm-derived phenotype in

the validation set.

3. Obtain ĉF with model (2) using algorithm-derived phenotype in

the full EHR data.

4. Obtain the proposed estimator b̂A using Equation (1) in

model (4).

Simulation studies and data evaluation
To evaluate the empirical performance of our proposed method, we

use simulation studies under different misclassification settings and

compare the bias and efficiency of the proposed augmented estima-

tor with other estimators. We consider both nondifferential and dif-

ferential misclassifications. Nondifferential misclassification

assumes a constant error rate across exposure levels while differen-

tial misclassification assumes different error rates across subjects

and may be dependent on exposure levels. In Table 1, we present the

comparisons between 4 models.

Simulation settings

In simulation studies, the choice of input values is motivated by dis-

tributions observed in the second breast cancer events data. Starting

from these values, we select additional values to cover the expected
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range in real EHR studies. We assume the full data set size is

N¼5000, and investigate validation sets of 4 sizes: n¼100, 200,

400, and 800 (ie, the corresponding values of q are 0.02, 0.04, 0.08,

and 0.16). We do not report results for larger validation set sizes be-

cause the results are similar above n¼800. In order to investigate

bias and efficiency under a variety of settings, we investigate both

differential and nondifferential misclassification scenarios. In sce-

narios featuring nondifferential misclassification, to mimic the em-

pirical distribution of the variable, covariate X was generated by

resampling with replacement from the variable “Age” in the real

data. In scenarios featuring differential misclassification, we simu-

lated the binary covariate X from a Bernoullið0:21Þ distribution to

approximately mimic the empirical distribution of variable “Stage”

in the real data, representing the situation where sensitivity and spe-

cificity differ across exposure groups. The true phenotype, Y, was

generated from the covariate X and the association parameters. We

choose the intercept b0 to be �1.9, �1.5, �1.0 or �0.5, correspond-

ing to different disease prevalence of 13%, 18%, 27%, and 38%, re-

spectively, and the association parameter b1 was set to 0.5 or 1,

corresponding to an odds ratio of 1.64 (a moderate effect size) and

2.7 (a relatively large effect size). The algorithm-derived phenotype,

S, was generated from Y and X with specified values for sensitivity

(S) and specificity (P) (Figure 4).

Under the nondifferential scenario (ie, scenario 0), the values of

sensitivity and specificity were not dependent on the exposure level.

We set the values to 0.90 and 0.95, respectively. Under the differen-

tial scenarios (ie, scenarios 1 and 2), the values of sensitivity and spe-

cificity differed between exposure groups. In the nonexposed group

(X¼0), the values were the same as in scenario 0. In the exposed

group (X¼1), because of the tradeoff between sensitivity and specif-

icity,29 we assumed higher sensitivity and lower specificity in sce-

nario 1; lower sensitivity and higher specificity in scenario 2

(Figure 4). The values for sensitivity (0.90) and specificity (0.95) in-

vestigated were motivated by the performance of the breast cancer

phenotyping algorithm developed for the data in our motivating ex-

ample. We have conducted additional simulation studies for other

values of sensitivity and specificity (eg, 0.85 and 0.90, and a much

lower setting 0.60 and 0.80). Based on the values of disease preva-

lence, sensitivity, and specificity, the range of corresponding positive

predictive values (PPV) is from 31% to 92%, which covers the full

spectrum of algorithm performance likely to be encountered in re-

search practice. The relative performance of the proposed method,

compared to the existing ones, was consistent with our previous in-

vestigation with a wide range of PPV. The details on the additional

simulation studies are found in Supplementary Appendices 4 and 5.

Each simulation scenario was repeated 100 times. We estimated

the bias of each estimator by taking the difference between the esti-

mated value and the true value and averaging across all simulations.

Standard errors were computed as the mean of the standard errors

for each estimator averaged across all simulations. R code to imple-

ment the proposed method with sample simulated data is available

on GitHub (https://github.com/Penncil/EHR-based-Study) and our

group website (https://www.penncil.org/software).

Results

In Figure 5, we present boxplots of simulation results for scenarios

0, 1, and 2.

The red boxes on the left, representing the method using valida-

tion data only (ie, model (1)), give unbiased but inefficient estimates.

The widths of the boxes are large, which means the variances of the

estimates are large due to the small observed validation set. The or-

ange boxes represent estimates using the algorithm-derived pheno-

type outcome in the full EHR data set (ie, model (2)). Since the

algorithm-derived phenotype suffers from misclassification, the esti-

mator is biased compared to the true value of b1. The blue boxes

represent model (3), which is Magder and Hughes’ misclassification

adjustment approach. In the nondifferential case (scenario 0), the

estimators generated by model (3) perform well with low bias and

variance. However, under the differential misclassification scenarios

Figure 2. Illustration of data structure of the BRAVA study. The first column shows the true second cancer breast event (SBCE) status obtained through chart re-

view in validation data. The data is often available for a small subset of patients (size ¼ n). The second column is the SBCE status from an automated algorithm,

which is subject to misclassification (size ¼ N). The last 4 columns represent the set of risk factors (ie, year, age, stage, and ER_PR [Surveillance, Epidemiology,

and End Results (SEER), estrogen receptor (ER), and progesterone receptor (PR) status of index breast cancer]), which are available for all subjects in the

EHR data.
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(ie, scenarios 1 and 2), due to incorrectly specified misclassification,

the bias was large. The purple boxes present results for model (4).

The augmented estimates, presented in the purple boxes, combine

the advantages of the red and orange boxes: low bias and variance.

Moreover, model (4) performed well under nondifferential and dif-

ferential misclassification.

In Figure 6, we present comparisons for bias and standard errors

across alternative models under differential misclassification

scenario 1. The purple line is generated by the proposed model (4).

The black horizontal line in each bias plot at zero is provided for ref-

erence. In the plots presenting estimated bias, model (4) (purple) has

less bias than model (2) (orange) and model (3) (blue). In plots com-

paring the value of standard error, model (4) has fewer standard

errors than model (1) (red). The proposed method combines the ad-

vantage of model (1) and model (2); in addition, model (4) per-

formed consistently well under both nondifferential and differential

Figure 3. An illustration of the algorithm of computing the proposed augmented estimator. Step I, use the gold standard outcome, Y, in validation data to obtain

b̂V ; Step II, use the algorithm-derived phenotype, S, in validation set to obtain ĉV ; Step III, use S in the full data set to obtain ĉF . Finally, use Equation (1) to obtain

the augmented estimator.

Figure 4. Values of specificity (P) and sensitivity (S) under non-differential (left panel) and differential misclassification (right 2 panels) settings.

Table 1. List of models compared in the simulation studies

Models

compared

Data and model used Pros Cons

Model (1) Validation data and gold standard outcome Small bias High variance

Model (2) Full EHR data and algorithm-derived

phenotype

Small variance Often high bias

Model (3) Full EHR data and algorithm-derived phenotype

with correction for misclassification

Small bias and variance with cor-

rectly specified misclassification

Potential for high bias with incor-

rectly specified misclassification

Model (4) Combined validation and full EHR with algorithm-

derived phenotype

Small bias and small variance Potential for bias with small valida-

tion set
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misclassification settings compared to model (3). Results under sce-

nario 0 and 2 with N¼5000 and additional simulation studies for

smaller (N¼3000) and larger (N¼10 000) sizes of full data are

provided in Appendix 3. More simulations on comparison of the

proposed method with Lyles et al’s (2014) and Edwards et al’s

(2013) method are provided in Supplementary Appendix 6.

Data evaluation
To illustrate the proposed method, we analyzed data from the

BRAVA study, an investigation of risk factors for second primary or

recurrent breast cancers (jointly termed second breast cancer events

[SBCE]) in women with a personal history of breast cancer.30 The

study included 3152 women enrolled in Kaiser Permanente Wash-

ington (KPWA), a large integrated health care system in Washington

state, diagnosed with a primary stage I–IIB invasive breast cancer

between 1993 and 2006. Patient demographics and primary breast

cancer characteristics were available from the KPWA virtual data

warehouse. Because cancer recurrence is imperfectly captured in ad-

ministrative data, a medical records review was conducted for all

women to ascertain a gold standard SBCE phenotype. Additionally,

algorithms for identifying SBCE using administrative and cancer

registry data were developed.31 The BRAVA data thus provide both

a gold standard and phenotype algorithm classified SBCE phenotype

for all women. We used these data to compare the magnitude and

variance of estimates for the association of age at primary cancer di-

agnosis and primary breast cancer stage with occurrence of SBCE on

a single model based on 4 models when subsets of the data were

sampled and treated as a validation subset.

We investigated performance of the 4 models using 3 different

EHR-derived imperfect phenotypes. First, we used the “high specif-

icity” imperfect phenotype developed by the BRAVA study.31 The

sensitivity and specificity of this algorithm were 89% and 99%, re-

spectively. Second, we generated an imperfect phenotype with

known nondifferential sensitivity of 0.9 and specificity of 0.95 by

simulating the imperfect phenotype from a Bernoulli distribution

with probability 0.9 for true cases and 0.05 for true noncases. Fi-

nally, we generated an imperfect phenotype with known differential

misclassification. For patients with stage 1 disease, we simulated the

imperfect phenotype with sensitivity and specificity of 0.9 and 0.95,

respectively. For patients with stage 2 disease, we simulated the im-

perfect phenotype with sensitivity 0.95 and specificity 0.9. This

reflects the situation that might result if a patient with a more ad-

vanced primary cancer diagnosis interacts more frequently with the

health care system resulting in a lower probability of a missed SBCE

(higher sensitivity) as well as higher probability of being erroneously

classified as having SBCE when no second cancer has occurred

(lower specificity).

Of the 3152 patients included in the data set, 407 (12.9%) expe-

rience an SBCE. The median age of patients at diagnosis of their pri-

mary breast cancer was 63 years (interquartile range 52–73). The

majority of patients (78.6%) had Stage 1 disease at diagnosis. Fig-

ure 7 presents results of 3 models applied to the BRAVA data as

well as an estimate based on the gold standard outcome estimated in

the full sample (vertical dashed line). For validation samples of sizes

800 and 1200, the proposed approach ((model (4), purple dashed

line) provides a similar estimate to that based on the gold standard

in the full sample while substantially reducing uncertainty relative to

an estimate based on the validation data only (model (1), red solid

line). This result was consistent across all 3 imperfect phenotypes in-

vestigated. When a validation sample size of 400 was used, the pro-

posed estimator was somewhat more unstable and sometimes

exhibited bias relative to the full data estimate. When using the high

specificity imperfect phenotype, the estimate based on the full sam-

ple (model (2), orange solid line) returned an estimate very similar

to the gold standard applied in the full sample. For the simulated

nondifferential and differential imperfect phenotypes the full data

estimate was notably biased. The plug-in estimator (model (3), blue

dashed line) had low bias relative to the estimate based on the gold

standard in the full sample when using the high specificity imperfect

phenotype and the simulated non-differential imperfect phenotype.

For the imperfect phenotype with differential misclassification, asso-

ciation estimates for stage based on the plug-in estimator were up-

wardly biased.

DISCUSSION

Phenotype misclassification is a major challenge to association esti-

mation using EHR data. Either nondifferential or differential out-

come misclassification can negatively influence statistical efficiency

and lead to bias. One current approach is to restrict association

analyses to a validation set where the gold standard phenotype has

been ascertained. However, the small validation set leads to large

variance of this estimator. Another approach is to ignore the

Figure 5. Comparisons of simulation results of 4 models (1)–(4) under 3 scenarios, where scenario 0 is the nondifferential misclassification setting, and the other

2 are differential misclassification settings. Each notched box in the plots represents 1 model. The solid black segment in each box shows the median of the esti-

mates and the boundaries of the colored boxes give the interquartile ranges for the estimates. The y-axis is the value of the estimated log odds ratio and the dot-

ted horizontal line is the true value of b1 ¼ 1.
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potential misclassification. This method leads to bias, although vari-

ance is small due to the large full data set. In this article, we pro-

posed an estimation procedure to integrate the strengths of the

above 2 estimators, and created an augmented estimator which has

small bias and high efficiency (ie, small variance) simultaneously.

The proposed method uses the validation data and the EHR-derived

phenotypes together to reduce the effects of misclassification, and

does not require explicitly modeling sensitivity and specificity. Un-

der the nondifferential misclassification setting, the performance of

Magder and Hughes’ method is similar to that of the augmented es-

timator. However, in reality, it is difficult to know whether misclas-

sification is differential or nondifferential. We therefore believe the

proposed approach is preferable because it maintains good perfor-

mance regardless of whether misclassification is differential. By han-

dling the complexity of misclassification nonparametrically, this

novel estimation procedure is a robust approach to phenotype mis-

classification in EHR-based association studies. Since ignoring or in-

appropriate handling of error in EHR-derived data will lead to

inflated type I error and loss of power,6,18,32 the proposed method

enhances the reproducibility of EHR-based clinical findings by low-

ering both type I and type II error, contributing to the improved va-

lidity of research findings in clinical practice.

We note that the validity of the augmented estimator is robust to

the misspecification of model (2) on the relation between the imper-

fect outcome and the risk factors. On the other hand, specifying a re-

gression model that is close to the true relationship between the

imperfect outcome and the risk factors can lead to better statistical

efficiency of the proposed estimator. To achieve a more flexible

working model, we can include more risk factors in the prediction

of the algorithm-derived outcome. In other words, we formulated

the case where the set of risk factors for the algorithm-derived

outcome is the same as the risk factors for the true disease status.
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Figure 6. Comparisons of bias (left panels) and standard error (right panels) of 4 estimators from models (1)–(4) under differential misclassification scenario 1 for

validation sample sizes (n¼100, upper panels, and n¼ 400, lower panels) and true regression parameter values. Y-axis in left panels represents the bias between

estimates obtained from each model and true value of association parameter b1 and Y-axis in right panels represents the standard errors of estimates from each

model. Four lines with different point shapes and colors represent results of 4 models (1)–(4). The results for n¼ 200 and n¼ 800 are presented in Supplementary

Appendix 3.2.
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However, this assumption can be relaxed. The additional benefit of

specifying a larger set of risk factors for the imperfect outcome, in

terms of efficiency gain, will be investigated in the future.

The proposed method has a few limitations. First, bias may be

introduced when the validation set is small, as observed in our anal-

ysis of BRAVA data. This is because the augmented estimator is

obtained conditionally on the observed value of ĉV � ĉF. With a

small validation set, ĉV will be poorly estimated and ĉV � ĉF may

not approach zero. Second, the proposed method cannot improve

bias or efficiency of a very good algorithm-derived phenotype (ie, a

phenotype with near perfect sensitivity and specificity). When the

algorithm-derived phenotypes exhibit little or no misclassification,

there is no benefit in using the proposed method and, indeed, no

need for incorporating validation data. Third, when there is substan-

tial knowledge on how misclassification rates depend on covariates,

the Lyles et al (2011) method could potentially provide a more effi-

cient estimate than the proposed method, as the proposed method

does not utilize such knowledge on misclassification rates. Similarly,

for nondifferential misclassification settings, the misclassification-

adjusted approach works nearly as well with a lower standard error

compared to the proposed method. When investigators are fairly

certain that the misclassification is nondifferential, the

misclassification-adjusted approach is preferred.

There are a few extensions for future investigations. First, our

method is suitable for data augmentation with moderate or rela-

tively high disease prevalence, such as type 2 diabetes. For relatively

rare diseases, random sampling of patients for chart review is subop-

timal, because the number of true cases in the validation data will be

small, leading to increased bias and low efficiency of the estimate

b̂V . Outcome-dependent sampling techniques can circumvent this

limitation. Secondly, we will further investigate the high dimen-

sional setting, where the number of prediction (p) is greater than the

number of patients (n) in the validation data set. Thirdly, although

the proposed method is focused on association analysis, there is a

potential to extend the method toward causal estimands.33 Techni-

ques such as propensity score adjustment could be incorporated into

the current model toward causal interpretations. Lastly, we plan to

consider misclassification in risk factors and outcome simulta-

neously to account for the association estimation bias and the loss of

power caused by the imperfect predictor variables and outcomes.6

CONCLUSION

Association analyses of EHR data that ignore misclassification in

EHR-derived phenotypes have the potential for substantial bias.

High Specificity Surrogate
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Figure 7. Point estimates and 95% confidence intervals (CI) for the association (in log odds ratio scale) between the primary breast cancer stage and the occur-

rence of second breast cancer events (SBCE) using the data from the BRAVA study, where validation sample size was n¼400, 800, or 1200. The vertical dashed

line represents the point estimate of the association based on the gold standard SBCE status estimated from the full sample (N¼3152) and grey bands provide a

95% CI for the association estimate. The estimates of association for age are presented in Supplementary Appendix 7.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 2 251

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz180#supplementary-data


Concerningly, given the typically large samples encountered in

such studies, these biased results may be estimated with high pre-

cision, creating a high risk of erroneous inference. Our proposed

approach provides a means to reduce bias while maintaining low

variance that is straightforward to implement using standard sta-

tistical software.
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