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Abstract

Assessment of the immune response to tumors is growing in importance as the prognostic 

implications of this response are increasingly recognized, and as immunotherapies are evaluated 

and implemented in different tumor types. However, many different approaches can be used to 

assess and describe the immune response, which limits efforts at implementation as a routine 

clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to 

assess tumor infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-

Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this 

review, we discuss the available evidence for the prognostic and predictive value of TILs in 

common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary 

system, gynecological system, and head and neck, as well as primary brain tumors, mesothelioma 

and melanoma. The particularities and different emphases in TIL assessment in different tumor 

types are discussed. The standardized methodology we propose can be adapted to different tumor 

types and may be used as a standard against which other approaches can be compared. 

Standardization of TIL assessment will help clinicians, researchers and pathologists to 

conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
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Introduction

Assessment of tumor infiltrating lymphocytes (TILs) is growing in importance as evidence 

emerges of the prognostic and potentially predictive significance of TILs in many different 
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tumor types, and as immunotherapies show exciting results in clinical trials and clinical 

practice. A significant research effort is underway to identify reliable biomarkers to select 

patients with the highest likelihood of responding to immunotherapeutic agents. As 

discussed in part 1 of this review, TIL assessment on H&E sections has shown clinical 

validity as a prognostic marker in invasive breast carcinoma [1], and is reproducible [2], 

affordable and widely available. However, many different approaches are used to assess the 

immune infiltrate in tumors with highly variable requirements, costs and complexity. In part 

1 of this review, we proposed a standardized methodology for TIL assessment in solid 

tumors, based on the International Immuno-Oncology Biomarkers Working Group 

guidelines for TIL assessment in invasive breast carcinoma [1]. In part 2, we discuss the 

TILs literature in different tumor types, and suggest ways in which the proposed 

methodology may be applied to these tumor types and adapted as required based on the 

available evidence and expert opinion.

TILs in melanoma

Reporting of TILs in primary cutaneous melanoma has long been routine in histopathology 

practice, following the early recognition of their prognostic significance [3–5]. The host 

immune response to melanoma has been highlighted by the recent impressive results of 

immune checkpoint inhibitor therapy, which is now standard of care in metastatic melanoma 

[6]. The immune infiltrate in melanomas is therefore of great interest to clinicians and 

researchers, both as a prognostic marker and as a potential predictive marker of response to 

immunotherapy. TILs in melanoma have been well studied, and the current body of literature 

is discussed below with regard to scoring methodologies, prognostic value, predictive value 

of sentinel node positivity, and scoring in metastatic deposits.

The prognostic value of TILs in primary cutaneous melanoma has been debated in the 

literature over the past few decades. Initial reports established simple H&E based scoring 

criteria [4,5], classifying the immune infiltrate as brisk (“TILs present throughout the 

substance of the vertical growth phase or present and infiltrating across the entire base of the 

vertical growth phase”), non-brisk (“TILs noted in one or more foci of the vertical growth 

phase”) or absent (entirely absent from the tumor or present but not infiltrating the 

melanoma cell nests). The immune infiltrate as classified by this system was found to be an 

independent prognostic factor, with an adjusted odds ratio for survival of 11.3 for a brisk 

infiltrate and 3.5 for a non-brisk infiltrate [5]. This study established strict guidelines to 

define a “TIL” – the lymphocytes must infiltrate and disrupt the tumor cell nests, that is, 

stromal lymphocytes are not included in the assessment [5]. Clark’s TIL scoring system is 

reproducible amongst pathologists [7] and has subsequently been validated in studies 

involving over 5000 patients [8–11], all reporting that TILs are an independent prognostic 

factor in multivariate analyses. In 2012, a group at the Melanoma Institute of Australia 

(MIA) proposed a modification to the system described by Clark et al, introducing a grade 

based on the density (absent/mild/moderate/marked, score 0–3) and distribution (absent/

focal/multifocal/diffuse, score 0–3) of the immune infiltrate [12]. The possible combinations 

were collapsed into four TILs grades as follows: grade 0 = absent; grade 1 = mild or 

moderate focal infiltrate, or mild multifocal infiltrate; grade 2 = marked focal, moderate or 

marked multifocal, or mild diffuse infiltrate; grade 3 = moderate or marked diffuse infiltrate 
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[12]. In a cohort of 1865 melanomas over 0.75mm thick, this scheme was an independent 

predictor of melanoma specific survival, with a 5-year survival of 100% seen in the patients 

with grade 3 TILs [12], however it remains to be validated in an independent cohort.

Despite this body of evidence, a number of studies have also been published that report a 

lack of independent prognostic value using Clark’s scoring system [13–15]. Rao et al found 

that the difference in overall survival across the three TILs groups was not statistically 

significant but a significant difference was observed when the absent TILs group was 

compared with those with TILs present, brisk or non-brisk [16]. In a recent population based 

study of over 4000 patients [17], Eriksson et al used a TIL scoring system of absent-to-

sparse/moderate/marked based on H&E assessment, which was approximated to the absent/

non-brisk/brisk system described by Clark et al [5]. This TILs score was not found to be an 

independent prognostic factor [17].

The discrepant results from these studies may be in part due to differing patient populations, 

in particular, differences in melanoma thickness and growth phase. Studies including a large 

proportion of thin melanomas in which only the radial growth phase is present appear more 

likely to report an absence of an association between TILs and survival [15,17], however a 

significant association was found in the study by Thomas et al in which 82% of cases were 

<1.0mm thick [9]. A meta-analysis of high quality published studies may be of value to 

resolve the issue. Fortunately, as many of these studies have used a standard TILs scoring 

method, combination in a meta-analysis should have validity.

Studies using IHC to delineate and quantify TIL subsets help to demonstrate the importance 

of the host immune response in melanoma. CD69+ activated lymphocytes [18], CD20+ B 

cells [19], and cytotoxic T cells identified by granzyme B [20] have been shown to correlate 

with improved survival. In contrast, FOXP3+ Tregs negatively impacted survival [21]. 

Multispectral immunohistochemistry can be used reliably even in the presence of heavy 

melanin pigmentation [22] and has been used to predict the yield of TILs generated for 

adoptive cell transfer [23]. Importantly, Weiss et al found no added prognostic benefit to 

quantifying lymphocyte subsets by IHC over a three-tiered H&E assessment [11].

Although the therapeutic benefit of sentinel lymph node biopsy in melanoma is still being 

debated [24], it is well established as an important prognostic factor [25]. Recent studies 

have shown that the TIL score in the primary tumor is inversely correlated with sentinel 

node involvement [12,14,15,26,27]. This has been demonstrated both with the scoring 

system described by Clark et al [14,15,27] and the modified MIA system [12]. Wong et al 

examined a cohort of patients with thin melanomas (<1mm) who underwent sentinel lymph 

node biopsy and found no association between TILs and sentinel lymph node positivity, 

however numbers were small and did not represent the usual patient population undergoing 

sentinel lymph node biopsy [28]. Interestingly, although finding a significant association 

between TILs and sentinel lymph node positivity, and between sentinel lymph node 

positivity and survival, two studies did not find TILs to be an independent prognostic factor 

for survival [14,15].
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While most research in other solid tumors has focused on the primary lesion, evaluation of 

TILs in metastatic sites has also been the focus of investigation in melanoma. In 1996, Mihm 

et al showed that the TILs scoring method of Clark et al could be slightly modified and 

applied to metastatic tumor deposits in regional nodes, likening the expansive proliferation 

of malignant cells to the vertical growth phase of the primary tumor [29]. The lymphocytic 

infiltrate within the metastatic tumor nests (carefully excluding the surrounding lymphoid 

stroma from the assessment) was found to be an independent prognostic factor [29]. Similar 

results were demonstrated by Bogunovic et al [30] and Kakavand et al [31], using both H&E 

TIL assessment and semi-quantitative scoring of immunohistochemical stained sections. 

Recently, as part of The Cancer Genome Atlas project, a modified TILs scoring system was 

used to correlate histological assessment of TILs with RNA-based gene expression profiling 

and survival [32]. The majority of samples submitted for this study were from metastatic 

sites [32]. This system scored lymphocyte density (score 0–3) and distribution (score 0–3) 

score to produce a seven-tiered L-score, which was found to be significantly associated with 

the “immune” subclass of melanomas identified to be rich in immune-related transcripts on 

mRNA expression profiling [32]. Whilst more information is potentially provided by this 

more detailed scoring system, it remains to be validated in an independent cohort and 

compared with the traditional three-tiered system of Clark et al [5].

Assessing TILs in metastatic deposits within lymph nodes is clearly complicated by the 

presence of pre-existing lymphoid stroma. As per the guidelines established by Clark et al 

[5] and Mihm et al [29], only lymphocytes in direct contact with melanoma cells and 

disrupting melanoma cell nests should be included in the assessment. As this 

recommendation is the same for the primary lesion, little modification is required to adapt 

the scoring system to the metastatic setting. As discussed further in part 1 of this review, 

how to assess TILs in metastases, particularly lymph nodes, is less clear for other tumor 

types. For example, as the guidelines for TILs assessment in invasive breast cancer 

recommend only assessing the stromal compartment [1], modification of the protocol will be 

required to investigate the impact of TILs in lymph node metastases. For further discussion 

of TIL assessment in metastatic deposits, including those in lymph nodes, the reader is 

referred to part 1 of this review.

Further investigation of the potential prognostic importance of stromal TILs in melanoma 

would be of interest. The tumor stroma, that is, the stroma within the borders of the invasive 

tumor, between the tumor nests, is altered relative to the adjacent stroma and has important 

interactions with the tumor cells [33,34]. We consider this stroma to be an integral part of 

the tumor, and hence stromal TILs should also be assessed as they may also play an 

important role in melanoma. Following Clark’s initial definition of TILs [5], lymphocytes 

within the stromal compartment have been largely excluded from analysis in melanoma.

Another area of interest is the potential importance of peri-tumoral lymphocytes. Less is 

known about the potential prognostic effect of a marked lymphocytic infiltrate in this 

compartment. Ladanyi et al have considered peri-tumoral and intra-tumoral lymphocytes 

separately in a series of small immunohistochemical studies, and have found that high 

numbers of peri-tumoral activated T helper cells, B cells and mature dendritic cells are 

associated with improved survival [35–37]. In contrast, Hillen et al found no significant 
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association between survival and the density of peri-tumoral lymphocytes subsets defined by 

immunohistochemistry [18]. A recent study attracting much interest showed that the CD8+ T 

cell density at the invasive margin of melanoma metastases was able to consistently predict 

response to immune checkpoint inhibitor therapy with pembrolizumab, performing better 

than CD8+ T cell density within the tumor and better than CD4+, PD-1+ and PD-L1+ cell 

densities within tumor or at the invasive margin [38]. The invasive margin was defined as an 

area outside the tumor nests, which were delineated by S100 IHC [38]. This important study 

has renewed interest in the potential importance of peri-tumoral lymphocytes, given the 

ongoing search for a reliable biomarker able to predict response to immune checkpoint 

inhibitor therapy.

As there is significant prognostic information available from examining both stromal TILs 

and intra-tumoral TILs in other tumor types, it would be of interest to further examine the 

stromal compartment as well as the peri-tumoral area in melanoma. As such, standardized 

definitions of these compartments would be of value to pathologists and researchers, as 

illustrated in part 1 of this review. The definition of “invasive margin” used by Galon and 

colleagues [39] is preferred, and we suggest this will be applicable to most solid tumor types 

as well as colorectal carcinoma. This defines the invasive margin as the region centered on 

the border separating the host tissue from the malignant nests, with an extent of 1mm [39]. 

Tissue within this region is considered central tumor and beyond this region is considered 

peri-tumor. While lacking specific supporting evidence, this is a pragmatic, easily applied 

and widely applicable definition. In invasive breast carcinoma, there is currently no evidence 

to suggest a functional difference between lymphocytes at the invasive margin and within the 

central tumor stroma, and it is recommended that these areas are combined in daily practice 

[1]. However, in melanoma, colorectal carcinoma (discussed below) and potentially other 

tumor types, there does appear to be value in separating the two areas, at least in the research 

setting. With clear definitions such as these in place, it is hoped that data from future studies 

can be combined and compared in a valid manner. A suggested approach to applying the 

proposed standardized methodology to TIL assessment in melanoma is illustrated in Figure 

1 and detailed further in a tutorial available online in Supplementary File 1.

TILs in colorectal carcinoma

Recognition of the prognostic impact of TILs in colorectal carcinoma dates back to the 

1930s [40]. Much evidence has accumulated in the intervening years, such that proposals 

have been made to include an assessment of the immune infiltrate in the traditional Tumor-

Node-Metastasis staging system [41]. Early interest in colorectal cancer TILs revolved 

around their association with cancers showing sporadic or familial microsatellite instability 

(MSI). In recent years, attention has shifted to the prognostic value of TILs assessment, 

different scoring methodologies and the ability of TILs scoring to predict response to 

neoadjuvant therapy in rectal cancer.

Colorectal adenocarcinoma arises through genetically distinct pathways – the traditional 

stepwise adenoma-carcinoma sequence characterized by mutations in APC, TP53 and 

KRAS and chromosomal instability, the CpG island methylator phenotype (CIMP) in which 

high levels of promoter methylation lead to silencing of tumor suppressor genes, and the 
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MSI pathway characterized by deficient DNA mismatch repair (dMMR) [42,43]. dMMR/

MSI-high cancers often have a distinctive morphology, and these histological features 

including TILs, Crohn-like lymphocytic reaction, mucinous/signet-ring cell differentiation 

and medullary growth pattern form part of the 2004 revised Bethesda criteria to select 

patients for further MSI testing [44]. Many studies have shown the value of a histological 

assessment of TILs in predicting MSI status, alone or as part of a predictive model [45–49]. 

A count of intra-epithelial lymphocytes on H&E alone can predict MSI status with a 

sensitivity of 21 – 93% and a specificity of 62 – 97%, with cut-offs ranging from 2–5 

intraepithelial lymphocytes per high power field [45–48]. Joost et al [49] compared five 

different predictive models incorporating an assessment of TILs [46,48,50–52], with 

sensitivities ranging from 78 – 97% and specificities of 46 – 93%. However, National 

Comprehensive Cancer guidelines now recommend universal screening of all colorectal 

carcinomas for MMR/MSI status to identify Lynch syndrome [53], and the prognostic 

stratification of all patients based on MMR/MSI status is increasingly being recommended 

[54–56]. Universal screening has become routine practice in many histopathology 

laboratories, with a panel of two or four immunohistochemical stains reliably identifying 

dMMR colorectal carcinomas [57,58]. As such, the imperfect sensitivity and specificity of 

TILs and other histological features is no longer considered sufficient to identify these cases 

in practice. It has recently been recognized that, although rare, POLE proofreading domain 

mutations are present in a small subset of colorectal carcinomas, and result in an 

ultramutated, highly immunogenic phenotype with improved prognosis [59]. As is discussed 

further below in the section “Endometrial Carcinoma”, the high level of TILs in these 

tumors may prove to have diagnostic and therapeutic importance.

In addition to identifying dMMR/MSI-high colorectal carcinomas, TILs have also been 

shown to have important prognostic value in all colorectal carcinomas, regardless of MSI 

status [60]. Both semi-quantitative H&E-based scoring and digital quantitation of TILs on 

IHC have received much attention in the literature. In 1986, Jass et al published a semi-

quantitative H&E assessment of TILs in rectal cancer which was found to be an independent 

prognostic factor [61]. The lymphocytic infiltrate was described as predominating in the 

“delicate connective tissue lamina at the growing tissue margin”, that is, in the stromal 

compartment, and scored as little/none, moderate or pronounced [61]. Semi-quantitative 

H&E assessment also formed the basis of the Klintrup-Mäkinen score developed in 2005, 

where the immune infiltrate was scored from 0–3, with score 0 = no increase in 

inflammatory cells; score 1 = a patchy increase of inflammatory cells at the invasive margin, 

but no destruction of invading cancer cell islets; score 2 = a band-like infiltrate at the 

invasive margin with some destruction of cancer cell islets; and score 3 = a very prominent 

inflammatory reaction, forming a cup-like zone at the invasive margin, and frequent and 

invariable destruction of cancer cell islets [62]. Whilst again focusing on the invasive 

margin, the importance of intra-tumoral TILs disrupting cancer cell nests is also emphasized. 

Scores were collapsed into low-grade inflammation (score 0–1) and high grade 

inflammation (score 2–3) and inter-observer and intra-observer agreement was good [62]. 

High grade inflammation at the invasive margin was found to be a strong independent 

prognostic factor for survival in Dukes A and B colorectal carcinomas [62]. The prognostic 
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value of the Klintrup-Mäkinen score has subsequently been validated in independent cohorts 

[63–67].

A comprehensive and detailed approach to TIL scoring in colorectal carcinoma developed 

by Galon and colleagues has attracted international attention [68,69]. An initial study by this 

group in 2005 confirmed the prognostic value of a semi-quantitative H&E assessment of 

TILs in colorectal cancer and performed a detailed analysis of the lymphocyte subsets 

involved using IHC-based digital quantitation, flow cytometry and mRNA profiling [70]. 

Subsequent demonstration of the marked prognostic impact of a CD3+ T cell infiltrate in 

colorectal cancer [71] was followed by development of the “Immunoscore®” which uses 

CD8 IHC to mark cytotoxic T cells and CD45RO to mark memory T cells, which are scored 

in hotspots selected from the invasive margin and central tumor [72]. This Immunoscore® 

was strongly predictive of disease free, disease specific and overall survival, and found to be 

superior to the traditional Tumor-Node-Metastasis staging system of the AJCC/UICC [72], 

confirmed in further studies by the same research group [73]. More recently, on the basis of 

antibody performance, the Immunoscore® was modified to include CD3 rather than 

CD45RO [41], which has also been demonstrated to be predictive of distant metastasis [39], 

and show superior prognostic value to MSI status [74]. Recently, initial results were 

presented in abstract form from a worldwide taskforce established to prospectively validate 

the Immunoscore® [75]. The assay was reportedly reproducible across the 23 participating 

institutions, and the primary endpoints of the study were reached, demonstrating a 

significantly longer time to recurrence in patients with a high Immunoscore® at the invasive 

margin [75]. Full results of this important international collaboration are eagerly awaited. It 

is emphasized that this review provides a framework for TIL-assessment and should be 

considered complementary to all other important evolutions such as the Immunoscore®.

The relative benefits and limitations of semi-quantitative H&E assessment compared with 

digital quantitation of IHC stained slides in colorectal carcinoma have begun to be addressed 

[65–67]. The digital image analysis software used by Galon et al was developed in-house 

and is not publically available for independent validation and comparison with other 

methodologies [76]. However, largely concordant results have been reported using other 

image analysis software (reviewed in [77]). Väyrynen et al performed digital quantitation of 

IHC-defined lymphocyte subsets and a manual Klintrup-Mäkinen score of TILs, and found 

strong correlation between all IHC–based counts and the Klintrup-Mäkinen grade, 

supporting an overall immune assessment [66]. Richards et al compared a manual semi-

quantitative approximation of the Galon Immunoscore® with the Klintrup-Mäkinen grade, 

and found similar prognostic information was provided by both methodologies [65]. 

However, a recent comparison by the same group showed additional prognostic information 

was provided by the manual semi-quantitative approximation of the Galon Immunoscore® 

when compared to the Klintrup-Mäkinen score in whole sections of 246 stage 1 to 3 

colorectal cancers [67]. A detailed cost-benefit analysis of any additional prognostic 

information provided by digital IHC-based scoring is needed to justify the additional time 

and resources required to perform the immunohistochemical assays, implement slide 

scanning capabilities and develop image analysis software. Furthermore, additional direct 

comparison of the Galon Immunoscore® by independent groups using different 

technologies, manual approximation, or Klintrup-Mäkinen grading may allow definition of 
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the most appropriate balance between simplicity and depth of information. As has been 

performed in invasive breast cancer and lung cancer, TILs assessment as part of a treatment-

related randomized controlled trial can provide high level evidence of prognostic and 

predictive value, and could be considered in colorectal carcinoma.

In addition to prognostic information, TILs assessment in rectal cancer may help to predict 

the degree of response to neoadjuvant chemoradiotherapy. This has been investigated in a 

number of studies, all using IHC to delineate different lymphocyte subsets [78–83]. Yasuda 

et al found high numbers of CD8+ TILs in the pre-treatment biopsy to be predictive of high 

histological regression grade following chemoradiotherapy in multivariate analysis [81], 

while Shinto et al found the CD8/FOXP3 ratio to be predictive of treatment response [83]. 

Similar results were found in a univariate analyses [78–80]. McCoy et al found a low 

stromal Treg count to be associated with tumor regression, but not with overall survival [82]. 

To the best of our knowledge, this question has not been comprehensively addressed using 

semi-quantitative H&E based scoring such as the Klintrup-Mäkinen grade.

TILs in upper gastrointestinal tract carcinomas

As a group, carcinomas of the stomach, pancreas, and liver are relatively common, and also 

account for a disproportionately high number of cancer deaths [84]. Chronic inflammation 

due to infection and other causes is at least partly responsible for many cases. Treatment of 

metastatic disease with chemo-radiotherapy generally has modest effects, and initial trials of 

immunotherapy agents in this group of tumors have reported mixed success [85,86], 

suggesting the need for predictive biomarkers and a personalized approach to the use of 

these agents.

Gastric carcinoma

Gastric cancer is notable for its associations with infection (Helicobacter pylori, Epstein-

Barr virus (EBV)), chronic inflammation, and genomic instability (both microsatellite 

instability and chromosomal instability) [87]. EBV-associated gastric carcinoma typically 

shows a particularly high immune infiltrate and accounts for a high proportion of the 

histological subtype known as lymphoepithelioma-like carcinoma or gastric carcinoma with 

lymphoid stroma [88]. It is thought that the improved prognosis seen in EBV-associated 

gastric cancer may be related to the high proportion of lymphoepithelioma-like carcinoma in 

this group, rather than the presence of EBV itself [89]. Similar to colorectal carcinomas, 

gastric carcinomas with microsatellite instability due to deficiencies in DNA mismatch 

repair (dMMR/MSI-high) contain high mutational loads, display a prominent lymphocytic 

infiltrate, and are associated with improved prognosis [88].

Assessment of gastric cancer TILs on H&E sections has been reported in few studies. Kang 

et al [90] assessed the prognostic value of TILs amongst EBV-associated gastric carcinomas 

using a modification of the International Immuno-Oncology Biomarkers Working Group 

guidelines for breast carcinoma [1]. sTILs were found to be an independent prognostic 

factor for recurrence free survival but not overall survival, while iTILs were not significantly 

associated with either recurrence free or overall survival [90]. Giamperi et al used a similar 

approach and found that sTILs were significantly associated with dMMR status, but that 
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both sTILs and dMMR status were independent favorable prognostic factors in a 

multivariate model [91].

Studies of immunohistochemical markers of immune cells have been reported more often, 

singly and in combination. Infiltration by CD3+ and CD8+ T cells [92,93], CD20+ B cells 

[94] and expression of the chemokine receptor CXCR3 [95] have been reported to correlate 

with improved prognosis. Conflicting results have been seen for FOXP3+ Tregs, which in 

some studies are associated with improved prognosis [96,97], and in others, a worse 

prognosis [98,99]. Expression of the chemokine receptor CCR7 [99] and immune 

checkpoint molecule PD-L1 [100] have also been associated with worse prognosis in gastric 

cancer. These studies, reviewed by Solinas et al [101], although predominantly small and 

retrospective with varying methodologies, appear to support a favorable prognostic role of 

an active cytotoxic immune response, and an unfavorable role of an exhausted or suppressive 

immune response in gastric carcinoma.

Both dMMR/MSI-high and EBV-associated gastric cancers have been proposed as 

candidates for immune checkpoint inhibitor therapy [102,103], as both types are associated 

with prominent host immune responses. The high mutational load in dMMR/MSI-high 

cancers is thought to result in high immunogenicity [104], as discussed further below. EBV-

associated gastric cancers show extreme levels of hypermethylation, causing epigenetic 

silencing of many tumor suppressor genes [103]. In addition, PD-L1 expression in gastric 

carcinoma appears to correlate with high immune cell infiltration, MMR deficiency and the 

EBV-associated subtype [100,105,106]. Further evaluation in large clinical trials is needed to 

confirm the prognostic value of TILs in gastric cancer, and to assess the potential value of 

TILs as a biomarker for immune checkpoint inhibition and other immunotherapy 

approaches.

Pancreatic carcinoma

Pancreatic ductal adenocarcinomas typically have abundant desmoplastic stroma, which 

contributes to tumorigenesis [107], interacts with immune and inflammatory cells [108], and 

will be important to consider in the histological assessment of TILs. Despite the recent 

proposal of an “immunogenic” subtype of pancreatic ductal adenocarcinoma identified 

through integrated genomic analysis [109], TILs in pancreatic cancer have received 

relatively little attention. There are few published studies examining TILs in pancreatic 

adenocarcinoma on H&E sections and prognosis. The presence of intra-tumoral tertiary 

lymphoid structures, as judged by pathologists, was associated with longer overall and 

disease free survival in one study [110]. Hart et al scored intra-tumoral lymphocytes as high 

or low on H&E sections in 63 patients, but found no association between TILs and survival 

[111].

Immunohistochemical studies of the tumor microenvironment in pancreatic carcinoma have 

found that high levels of tumor associated M2 macrophages marked by CD68, CD163 and 

CD204, neutrophils marked by CD66b, and FOXP3+ Tregs correlated with worse prognosis 

[112,113]. Improved prognosis was seen with high levels of infiltration by CD3+, CD8+ or 

CD4+ T cells and CD20+ B cells [113–115]. Further histological characterization of the 
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proposed immunogenic subtype of pancreatic ductal adenocarcinoma will be of value to 

inform forthcoming immunotherapy clinical trials.

Hepatocellular carcinoma

Many cases of hepatocellular carcinoma are causally linked to chronic inflammation, with 

viral hepatitis, alcohol, and non-alcoholic steatohepatitis as major underlying contributors. 

Chronic inflammation can be seen as the persistence of an ineffective immune response, and 

is associated with the development of an immunosuppressive environment with high 

expression of immune checkpoint molecules, impaired antigen presentation, and the 

presence of Tregs [116]. Hepatocellular carcinomas have highly variable amounts of tumor 

stroma, with some cases having very little, which will need to be factored into the 

assessment of stromal TILs. Marked inflammatory cell infiltration on H&E assessment of 

hepatocellular carcinomas was reported to be associated with improved survival [117]. 

Infiltration by FOXP3+ Tregs was again found to be associated with a worse prognosis [118], 

whereas an improved prognosis was seen with cytotoxic T cell and B cell infiltration 

[119,120]. Initial results of immunotherapy trials show moderate responses of hepatocellular 

carcinoma to immune checkpoint inhibition, and further investigation of combination 

approaches is underway [116].

TILs in non-small cell lung carcinoma

The immune microenvironment in non-small cell lung cancer has been extensively studied 

and detailed descriptions exist in the literature [121,122]. Similar to colorectal cancer, 

inclusion of an IHC-based “Immunoscore” into the traditional Tumor-Node-Metastasis 

staging system has been proposed, following evidence of a significant prognostic impact of 

TILs in non-small cell lung carcinoma [123]. Like melanoma, non-small cell lung carcinoma 

often contains a high somatic mutation burden and immune checkpoint inhibitors are a 

promising therapeutic advance [124–128]. The immune system clearly plays an important 

role in the development, progression and treatment of non-small cell lung cancer, and 

assessment of the immune infiltrate is of great interest to clinicians and researchers.

An excellent and extensive review of the prognostic impact of different innate and adaptive 

immune cell subsets in non-small cell lung cancer, as well as tertiary lymphoid structures 

and immune checkpoint molecule expression, can be found in Remark et al [121]. In 

summary, cytotoxic T cells, natural killer cells, mature dendritic cells and M1 macrophages 

have largely been associated with improved prognosis, Tregs have been associated with 

poorer prognosis, and inconclusive results have been found for neutrophils and B cells [121]. 

Geng et al have performed a meta-analysis of studies investigating the prognostic impact of 

TILs in lung cancer patients, including 29 studies involving 8600 patients with non-small 

cell lung carcinoma [129]. Only three included studies addressed “generalized TILs” based 

on H&E assessment [130–132], discussed further below. The majority of included studies 

used IHC to define T cell subsets, including CD3, CD8, CD4 and FOXP3 [129]. Overall, 

CD8+ cell density in sTILs and in iTILs were associated with improved overall survival, 

with similar results seen for CD3+ cell density [129]. CD4+ T cells were only associated 

with overall survival when assessed in the tumor stroma rather than the tumor cell nests, 
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while FOXP3+ Tregs in the tumor stroma were associated with poorer progression free 

survival [129]. Sixteen of these studies, along with an additional eight studies, were included 

in a meta-analysis by Zeng et al [133]. These authors concluded that high levels of CD8+, 

CD3+ and CD4+ TILs had prognostic significance for both overall survival and recurrence 

[133]. Of note is the moderate to significant heterogeneity identified in both of these meta-

analyses, as well as the retrospective nature of the included studies, many of which had 

incomplete data with regard to important prognostic factors [129,133]. In addition, the lack 

of standardized TILs assessment and arbitrary cut-points may reduce the validity of 

combining data in this manner.

In contrast to the Immunoscore® developed for colorectal carcinoma, many of the studies of 

IHC-based TIL subset assessment in non-small cell lung carcinoma use a manual semi-

quantitative approach developed in studies of tissue microarrays by Al-Shibli and colleagues 

[134], in which the percentage of the nucleated cells showing positive staining for the 

marker in question is estimated [134–144]. Different cut-offs are used to define “low” and 

“high” for each marker, and for the epithelial/tumor nest compartment and the stromal 

compartment, according to the staining distribution [134]. Other studies have used an 

absolute count of positive cells per mm2, determined by digital image analysis [145–150] or 

manual counting [151–157]. Based on their previous work, Donnem et al recently 

demonstrated that the stromal CD8+ T cell density, scored on a manual semi-quantitative 

four-point scale, has independent prognostic value and can stratify patients within each 

Tumor-Node-Metastasis stage [138]. This paper was followed by a proposal to introduce an 

IHC-based “TNM-Immune” staging system into clinical use for non-small cell lung cancer, 

as has been proposed for colorectal cancer [123].

In contrast to this IHC based method, Brambilla et al recently reported a large analysis of the 

prognostic impact of TILs in non-small cell lung carcinoma, performed as part of the LACE-

Bio pool of four randomized clinical trials [158]. Samples from discovery and internal 

validation cohorts were evaluated for lymphocytic infiltration by H&E assessment and 

scored on a four-point semi-quantitative scale which was collapsed into binary “intense” and 

“non-intense” categories, where an intense infiltrate was defined as mimicking a lymph node 

involved by cancer metastasis [158]. Overall agreement was good when binary classification 

was used [158]. Intense lymphocytic infiltration was found to be an independent prognostic 

variable for overall survival and disease free survival on multivariate analysis in both the 

discovery and validation sets [158]. Neither tumor histology nor treatment showed 

significant interactions with degree of lymphocytic infiltration and TILs did not predict 

benefit to platinum-based adjuvant chemotherapy [158]. Three studies have used a similar 

semi-quantitative H&E based scale and found high lymphocytic infiltration to correlate with 

recurrence free survival [130,131,159], however no prognostic impact was found in a two 

separate studies using different subjective H&E assessments [132,160]. Mignon et al 

recently presented results demonstrating that scoring percentage stromal TILs on H&E was 

highly reproducible and showed prognostic significance, particularly in KRAS mutant non-

small cell lung cancer [161]. However, scoring percentage iTILs on H&E was not 

reproducible between pathologists and failed to demonstrate prognostic significance [161].
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Further research may be required to clarify the potential importance of separating the 

stromal and intra-epithelial compartments, as advocated by Donnem et al [123], compared 

with an overall assessment as preferred by Brambilla et al [158]. Issues of reproducibility in 

iTILs scoring must also be taken into consideration. In addition, consideration of potential 

differences at the invasive margin and in the central tumor has not been extensively studied 

in non-small cell lung carcinoma in contrast to colorectal carcinoma. A prospective 

evaluation of the lung Immunoscore, potentially using digital image analysis, has been 

proposed [123]. Quantitative immunofluorescence has also been used to demonstrate the 

prognostic value of TIL subsets in this setting [132]. An important aspect of the immune 

response to tumors, the formation of tertiary lymphoid structures, may not be captured by an 

overall H&E based TILs assessment or by IHC-based hotspot assessment. The prognostic 

importance of tertiary lymphoid structures has been well studied in non-small cell lung 

cancer [121,147,162], and their presence correlates with an activated cytotoxic T cell 

response, indicating an important role of these local organized lymphoid structures in 

coordinating the immune response to tumors [147]. Head-to-head comparison of the IHC-

based Immunoscore and the overall H&E assessment, with consideration of the inclusion of 

additional features such as tertiary lymphoid structures, would also be of value in 

progressing towards a consensus for TILs assessment in non-small cell lung cancer. An 

approach to features particular to lung carcinoma such as lepidic growth and aerogenous 

spread is found in the accompanying tutorial, available in Supplementary File 2. Pre-existing 

alveolar macrophages would be excluded from a TIL assessment in non-small cell lung 

carcinoma, while the sTILs compartment would include the fibrovascular cores of papillary 

structures (Figure 2).

Assessment of the immune response to non-small cell lung carcinoma is of particular 

interest following accumulating evidence of the efficacy of immune checkpoint inhibitor 

therapy for this indication [124–128]. Whilst studies of PD-1 inhibitors nivolumab and 

pembrolizumab have focused on tumor cell PD-L1 expression as a predictive biomarker 

[124,125,127], studies of the PD-L1 inhibitor atezolizumab have also shown predictive value 

of PD-L1 expression on tumor infiltrating immune cells [126]. Response to atezolizumab 

also correlated with high expression of effector T-cell and interferon-γ associated gene 

signatures in tumor tissue [126]. Whilst further discussion of the issues surrounding PD-L1 

IHC is beyond the scope of this article, it is clear that a standardized method of assessing 

and quantifying the immune infiltrate in tumors is needed to then reliably assess immune 

cell PD-L1 expression.

Less is known about the immune microenvironment of pleural malignant mesothelioma, but 

the potential effect of TILs on mesothelioma prognosis is beginning to be described. Early 

IHC-based studies suggested a favorable prognostic effect of TILs in mesothelioma 

[163,164]. More recently, in a cohort of 329 pleural malignant mesothelioma cases 

comprising video-assisted thoracoscopic surgery pleurodesis biopsies and resection 

specimens, Russell, Thapa and John (manuscript in preparation) assessed the percentage of 

stromal TILs and the presence or absence of tertiary lymphoid structures. Interestingly, the 

sTILs score was strongly negatively correlated with survival, however the presence of 

tertiary lymphoid structures was independently associated with better survival in 
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multivariate analysis. A tutorial demonstrating the proposed approach to TILs assessment in 

pleural malignant mesothelioma is available online in Supplementary File 3.

TILs in gynecological carcinomas

Endometrial carcinoma

Relatively little is known about the prognostic significance of TILs in endometrial 

carcinoma, with many studies focusing instead on the value of TILs to predict MSI status. 

With increasing recognition of the frequency of Lynch syndrome amongst women with 

endometrial cancer and the advent of reliable immunohistochemical screening, assessment 

of TILs is receiving less attention. However, interest has been renewed following 

identification of the ultramutated POLE subtype of endometrial carcinoma and the potential 

utility of immune checkpoint inhibitors.

Approximately 10–20% of endometrial carcinomas display microsatellite instability due to 

either epigenetic silencing or germline mutations in DNA mismatch repair genes (Lynch 

syndrome) [165,166]. Similar to colorectal carcinoma, initial screening guidelines 

incorporated clinical and pathological features (reviewed in [167]). Shia et al found high 

TILs counts and the presence of peri-tumoral lymphocytes to be predictive of deficient 

MMR in endometrial carcinomas, with a sensitivity of 85% and specificity of 46% [168]. 

Only lymphocytes within tumor cell nests (i.e. intraepithelial) were counted as TILs, and an 

absolute count of 10 H&E stained high power fields was obtained [168]. This method and 

the proposed cut-off of 40 lymphocytes per 10hpf were used in subsequent studies, which 

showed similar results [169–172]. As for colorectal cancer, the reported sensitivities of even 

multivariate models are now considered insufficient for screening for MMR defects 

[167,173].

A recently recognized subgroup of endometrial cancers has a very high mutation rate due to 

deficiencies in DNA proofreading [174]. POLE mutations are found in approximately 7% of 

endometrial carcinomas, resulting in loss of DNA polymerase epsilon and ineffective DNA 

proofreading [175]. This group of POLE ultramutated endometrial carcinomas appears to 

have an improved prognosis, particularly in high-grade cancers, and shows particular 

histological features as illustrated in Figure 3 [174,176,177]. Howitt et al found that POLE-

mutated endometrial carcinomas had very high predicted neoantigen loads, and that POLE 

and MSI tumors had higher TILs and higher PD-L1 expression on immune cells than 

microsatellite stable tumors [178]. Similar histological findings were reported by Hussein et 

al [179] and van Gool et al [180]. Given the initial positive results of immune checkpoint 

inhibition in MSI tumors [102], similar responses may be predicted in POLE ultramutated 

tumors, although this has not yet been clinically tested to our knowledge. The recognition of 

POLE tumors has prognostic value and potential predictive value, and as there is not yet a 

widely available immunohistochemical marker to screen cases, histological features 

including TILs may prove useful to identify cases for further testing.

Robust evidence of the clinical validity of TILs assessment for prognosis in endometrial 

carcinoma remains to be demonstrated. Intra-epithelial CD8+ T cell density has shown 

independent prognostic significance in initial studies [181–183], and stromal CD3+ T cells 
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may also have prognostic value [184]. Workel and colleagues demonstrated that CD103, a 

marker discussed further below, defined intra-epithelial CD8+ PD-1+ lymphocytes, and that 

high numbers of these iTILs were associated with improved prognosis in patients with high-

risk endometrial adenocarcinoma [185]. High Treg counts were associated with poorer 

disease free survival in the study of Yamagami et al [186]. Further work in large, high 

quality studies is needed to confirm the prognostic significance of TILs in endometrial 

carcinoma, which may have significant interactions with MSI and POLE status. A tutorial 

outlining the proposed approach to scoring TILs in endometrial cancer is available online in 

Supplementary File 4.

Ovarian carcinoma

A seminal paper published in 2003 by Zhang et al established the prognostic significance of 

TILs in ovarian carcinoma [187]. In the intervening years, evidence has accumulated largely 

in support of this finding and has refined the clinicopathological features associated with a 

robust TIL response.

In their study of 186 ovarian carcinomas, Zhang et al found that the presence of any intra-

epithelial T cells, as assessed on CD3 IHC, was an independent favorable prognostic factor 

on multivariate analysis, with striking differences in progression free and overall survival 

between the two groups [187]. Both manual counting and digital image analysis were used 

to determine the number of T cells per high power field, averaged from a total of 15 to 20 

high power fields [187]. Both iTILs and sTILs were assessed, however only results for iTILs 

were reported [187]. While some studies have since reported no association between TILs 

and prognosis in ovarian carcinoma [188,189], a recent meta-analysis of 10 studies involving 

1815 patients found women with ovarian cancers lacking intra-epithelial TILs had a risk of 

dying 1.53x that of women with tumors containing CD8+ TILs (95%CI 1.22–1.93) [190]. 

This pooled hazard ratio was higher, up to 2.67 (95%CI 2.02–3.53), when studies using a 

higher cut-off to define “TIL negative” were analyzed [190]. The authors concluded that >5 

CD8+ TILs per 200x high power field should be used to define “TIL positive” in ovarian 

carcinoma [190]. To the best of our knowledge, no study has formally compared the 

information gained from quantitative IHC based assessment to that potentially obtained from 

semi-quantitative H&E based scoring.

As has been reported in other tumor types, different lymphocyte subsets may have different 

impacts on the progression and prognosis of ovarian carcinoma. In the meta-analysis by 

Hwang et al, CD8 was found to have a more consistent and stronger association with overall 

survival than CD3 [190]. Cytotoxic T cells marked by TIA-1 and granzyme B have also 

been shown to positively correlate with survival [191]. Interestingly, the presence of CD20+ 

B cells and plasma cells co-localized with T cells appears to increase the positive prognostic 

effect of TILs above that seen with CD8+ T cells alone [192,193]. Plasma cells were 

predominantly seen in the stromal compartment, often in association with organized tertiary 

lymphoid structures [193], which have been shown to correlate with improved prognosis in 

many tumor types [194]. In contrast, conflicting results have been seen with regard to intra-

epithelial FOXP3+ Tregs, with studies showing both positive [191,195] and negative [196–

198] effects on survival in ovarian carcinoma.
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The location of TILs may have particular significance in ovarian carcinoma. Following the 

original description of intra-epithelial TILs in ovarian carcinoma [187], most studies have 

focused on the epithelial compartment. Stumpf et al reported that high numbers of iTILs, but 

not sTILs, were associated with improved survival [199]. Similar findings were reported by 

Darb-Esfahani and colleagues [200]. Webb et al have demonstrated that the integrin CD103, 

which binds to E-cadherin expressed by epithelial cells, is highly expressed by intra-

epithelial effector T cells in ovarian carcinoma, and suggested that it is these CD103+ T cells 

that contribute to the improved prognosis seen with high levels of TILs [201]. Similarly, 

Bosmuller et al found CD103 added prognostic value to conventional T cell markers in the 

assessment of TILs in ovarian carcinoma [202]. However, two studies have reported 

important prognostic value of TILs in the stromal compartment, similar to that seen in the 

epithelial compartment [203,204]. In addition, the important interaction between T cells, B 

cells and plasma cells described by Nielsen and Kroeger [192,193], and the formation of 

tertiary lymphoid structures, take place predominantly in the tumor stroma. Therefore 

although intra-epithelial TILs clearly have well-demonstrated prognostic significance in 

ovarian carcinoma, the stromal compartment should also be considered when evaluating 

TILs in these tumors. A tutorial on TILs assessment in ovarian carcinoma is available in 

Supplementary File 5. Figure 4 illustrates a range of sTILs percentages in ovarian carcinoma 

as a reference.

Neoadjuvant chemotherapy for ovarian carcinoma is a controversial area, and selection of 

patients who should receive neoadjuvant chemotherapy rather than undergo primary 

debulking surgery is currently challenging [205–207]. Pre-treatment biopsies matched with 

post-treatment resection specimens provide valuable opportunities for examining modulation 

of the immune response by chemotherapy and evaluating potential predictors of response to 

neoadjuvant chemotherapy. Early work suggests that TILs increase following neoadjuvant 

chemotherapy, both cytotoxic and regulatory T cells [208,209]. Importantly, many TILs 

post-neoadjuvant chemotherapy express CTLA-4, PD-1 and PD-L1 [208], and tumor cell 

expression of PD-L1 may also be induced by neoadjuvant chemotherapy. These molecules 

may be considered markers of T cell exhaustion in the appropriate context, and expression of 

these markers may support the use of immune checkpoint inhibitors following chemotherapy 

to reawaken the immune response [208]. Lo et al also described an increase in immune 

infiltration following neoadjuvant chemotherapy in those tumors showing some degree of 

baseline TILs [210]. However, TIL negative tumors tended to remain TIL negative following 

neoadjuvant chemotherapy, suggesting that assessment of TILs in pre-treatment biopsies 

may help to identify “immunologically inert” tumors, which would be unlikely to respond to 

immunotherapy approaches [210]. Inclusion of TILs as planned biomarker analyses in future 

randomized clinical trials, as has been performed in breast carcinoma, may help to reveal 

any value of TILs in predicting response to neoadjuvant chemotherapy.

The majority of ovarian malignancies are high grade serous carcinomas which often present 

at high stage and have a dismal prognosis [211]. The prognostic impact of TILs appears 

limited to high grade serous ovarian carcinomas [191], however numbers of other subtypes 

including endometrioid, clear cell and mucinous carcinomas were small. Interestingly, the 

association between TILs and MMR status seen in endometrial carcinoma does not appear to 

be recapitulated in Lynch-syndrome associated endometrioid ovarian carcinoma [212]. 
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Approximately half of high grade serous ovarian carcinomas will show defects in the 

homologous recombination pathway, most commonly BRCA1 inactivation through germline 

or sporadic mutation or methylation [213]. Higher levels of TILs are seen in BRCA1 

mutated ovarian carcinomas [214–217], which also correlate with the immunoreactive 

molecular subtype as defined by The Cancer Genome Atlas [213,218]. TILs are included in 

a set of histological criteria suggested to predict BRCA1 mutations in high grade serous 

ovarian carcinomas [219], which demonstrated a high negative predictive value but low 

positive predictive value. Conflicting results have been obtained regarding the level of TILs 

in BRCA2 mutated ovarian carcinomas and those showing other defects in the homologous 

recombination pathway [214,216,218]. Parallels may be drawn to BRCA1/2 associated 

breast carcinoma in which higher lymphocytic infiltrates are seen in BRCA1 mutated 

cancers, while BRCA2 associated breast carcinomas do not have a characteristic 

morphology [220,221]. Why BRCA1 associated tumors show high TILs while tumors with 

other homologous recombination-pathway defects including BRCA2 do not, is yet to be 

conclusively explained. The unique function of BRCA1 as a transcription factor, links 

between BRCA1 mutations and copy number alterations, or potential cancer-testis antigen 

expression, may warrant further investigation in this context [222].

TILs in head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma encompasses a heterogeneous group of tumors 

arising in different sub-sites within the upper aerodigestive tract, including the oral cavity, 

the oropharynx, larynx and hypopharynx. While many cancers are etiologically related to the 

traditional risk factors of tobacco and alcohol, others are associated with human papilloma 

virus (HPV) infection. These HPV-related tumors typically arise in the oropharynx, are 

found in younger, never-smokers and are associated with better prognosis. Following Wolf’s 

description in 1986 of improved outcome in tumors with increased lymphocyte infiltration in 

a small cohort of patients with oral cavity squamous cell carcinoma [223], many studies 

have described immune cell infiltrates in head and neck squamous cell carcinoma and 

correlated these with outcome [224–226]. While the presence of TILs has generally been 

associated with improved prognosis, differences have been reported according to anatomic 

sub-site, tumor compartment (intra-tumoral vs. stromal) and importantly in HPV-positive 

(HPV+) compared to HPV-negative (HPV−) head and neck squamous cell carcinomas.

Biological and immunological differences exist between tumors arising in different anatomic 

sub-sites of the head and neck. Oropharyngeal squamous cell carcinomas, which arise from 

the squamous epithelium associated with the lymphoid tissue of the tonsils and base of 

tongue, have higher numbers of infiltrating iTILs and sTILs compared with other sub-sites 

[227]. The pre-existing background lymphoid stroma will clearly complicate TIL assessment 

in these tumors, and an approach similar to that used to assess metastatic deposits in lymph 

nodes is recommended, that is, to discount any established lymphoid stroma and focus on 

iTILs in this setting if no desmoplastic stroma is present. Alternatively, it has been suggested 

that this pre-existing lymphoid stroma is not simply a bystander, but may contribute to the 

improved prognosis of oropharyngeal squamous cell carcinomas compared to squamous cell 

carcinomas in other regions of the head and neck [228]. This interesting question requires 

further investigation.
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Importantly, within the subset of oropharyngeal tumors, there are significant genomic and 

immunologic differences between HPV+ and HPV− tumors. Many studies have reported a 

higher number of TILs, in particular CD8+ T cells within tumor and stroma, in HPV+ tumors 

compared with HPV− tumors [229–233]. Increased numbers of FOXP3+ Tregs, PD-1+ T cells 

and CD20+ B cells within immune infiltrates in HPV+ tumors have also been described 

[234,235]. Using gene expression analysis, Wood et al found increased expression of genes 

encoding PD-1, CTLA-4, and TIM3 in HPV+ tumors, indicating an exhausted immune 

response [236]. Interestingly, a B cell signature distinguished HPV+ from HPV− tumors, 

suggesting B cells rather than T cells account for the increased TILs seen in HPV+ tumors 

[236]. Immunohistochemical studies have shown CD8+ and FOXP3+ TILs to significantly 

correlate with improved prognosis in oropharyngeal HPV+ tumors [229–236] and probably 

also HPV− tumors [233,236].

Genomic analyses have also highlighted the importance of immune cell infiltrates in head 

and neck squamous cell carcinomas. Using unsupervised clustering of gene expression data, 

Keck et al identified immune mesenchymal subtypes of HPV+ and HPV– head and neck 

squamous cell carcinomas, which were associated with increased expression of immune 

markers, increased CD8+ TILs and improved outcomes [237]. Mandal et al, in an analysis of 

transcriptome data from 280 head and neck squamous cell carcinomas from The Cancer 

Genome Atlas, found that HPV+ tumors had higher levels of T cell and overall immune gene 

signatures, together with higher expression of markers of immune activation such as 

granzyme B and perforin [238]. Patients with tumors showing high immune gene expression 

had superior overall survival, and when controlled for HPV status, CD8+ T cells were 

significantly associated with survival. Tregs and CD56dim NK cells were also associated with 

favorable prognosis [238].

Studies including tumors from other sub-sites have also identified improved outcome with 

higher immune cell infiltrates. In tumors of the oral cavity, a three-tiered qualitative 

assessment of the lymphocytic infiltrate on H&E sections was found to be an independent 

prognostic factor for local recurrence and overall survival in multivariate analysis [239]. 

Similar favorable findings were seen with increased intra-tumoral or stromal CD8+ cells 

[240], while increased numbers of FOXP3+ Tregs may have detrimental effects oral cavity 

squamous cell carcinoma outcome [241]. Vassilakopoulou et al and Wang et al applied the 

consensus TILs scoring guidelines from the International Immuno-Oncology Biomarkers 

Working Group [1] to laryngeal squamous cell carcinoma, and both studies found that the 

sTILs score was an independent prognostic factor for disease free and overall survival 

[242,243].

Studies using semi-quantitative scoring of IHC to describe TILs in head and neck squamous 

cell carcinomas have suggested a potential predictive role of infiltrating CD3+ and CD8+ T 

cells [244,245]. High levels of CD3+ and CD8+ iTILs correlated with improved outcome 

following definitive chemoradiotherapy, while sTILs showed no significant association 

[244]. In a subsequent cohort of 161 patients treated with surgery followed by adjuvant 

chemoradiation, CD3+ and CD8+ TILs in the stromal, intra-tumoral and tumor periphery 

compartments were all associated with improved outcome [245]. Large prospective clinical 

trials of treatment modalities would be an ideal setting to further investigate the potential 
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role of TILs in predicting the efficacy of chemoradiation in head and neck squamous cell 

carcinomas.

As discussed in a recent review [224], TILs in head and neck squamous cell carcinomas may 

not yet be ready for implementation as a clinical biomarker. Studies evaluating TILs in head 

and neck squamous cell carcinomas have been limited by small cohort sizes, retrospective 

approaches, inclusion of heterogeneous populations, univariate analyses, and lack of 

standardized methodology for TIL quantification. This argues for the need for larger studies 

with prospective validation that take into account factors such as tumor site and HPV status, 

and which also determine the relationship between immune infiltrates and immune 

regulatory markers such as PD-L1. This will be particularly important in the context of 

predicting response to immune therapies such as PD-1 or PD-L1 inhibitors that are showing 

promising efficacy in head and neck squamous cell carcinomas [246,247]. It is encouraging 

that different research groups have been able to adapt the consensus guidelines for TILs 

assessment in breast cancer to head and neck squamous cell carcinomas, and demonstrate 

significant results with regards to prognosis. A standardized methodology will help to 

overcome many of the barriers to clinical implementation.

TILs in genitourinary carcinomas

Urothelial carcinoma

The successful introduction of intravesical bacillus Calmette-Guerin (BCG) therapy for 

high-risk non-muscle invasive urothelial carcinoma over the past decades can be regarded as 

early proof of the potential effectiveness of immunotherapy in urothelial carcinoma 

[248,249]. The induction of inflammation and a Th1 cytotoxic immune response by BCG 

administration can control in situ carcinoma and prevent progression to invasive disease 

[249]. Further support for immunotherapy in bladder cancer has been sparked by the recent 

FDA approval of the PD-L1 inhibitor atezolizumab for use in advanced urothelial carcinoma 

[250] and encouraging results from early trials of PD-1 inhibitor pembrolizumab [251]. 

Response is correlated with the expression of PD-L1 on stromal immune cells [250,251], 

hence the presence of an immune infiltrate in urothelial carcinoma is critical for the 

effectiveness of these novel treatments. The presence of TILs in urothelial carcinoma has 

gained more and more interest during the last few decades. Currently, we can discriminate 

two types of studies on TILs in UC: those focusing on the prognostic relevance of TILs and 

those focusing on TILs as predictors of treatment response.

Studies of the prognostic relevance of TILs in urothelial carcinoma, largely based on 

immunohistochemical quantification of different TIL subsets, have returned somewhat 

conflicting results. Several decades ago it was reported that the presence of TILs in 

urothelial carcinoma was associated with a favorable prognosis [252,253]. In a retrospective 

study on a cohort of 69 UC cases, Sharma et al found that high numbers of CD8+ intra-

tumoral T cells in urothelial carcinoma correlated with improved disease free and overall 

survival [254]. The presence of FOXP3+ TILs in urothelial carcinoma and the presence of 

CD3+ TILs in non-muscle invasive urothelial carcinoma have also been associated with a 

better prognosis [255,256]. In contrast, others have reported that CD3+ and CD8+ TILs are 

predictive of disease recurrence in patients with solitary low grade non-muscle invasive 
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urothelial carcinoma and that CD4+ T cells are associated with a poor prognosis in this 

setting [257,258]. Another study showed that high CD3+ and CD8+ T cell infiltrates 

demonstrated trends towards better prognosis, but that high FOXP3/CD3 and FOXP3/CD8 

ratios were correlated with poor outcomes [259]. Similar observations were made by Parodi 

and coworkers, who reported that the intra-tumoral T effector/Treg cell ratio in urothelial 

carcinoma patients with disease recurrence is invariably less than one, while it is always 

greater than one in patients without recurrence [260]. Interestingly, PD-L1 expression on 

TILs was shown to be significantly associated with better overall survival in urothelial 

carcinoma patients who subsequently developed metastatic disease and received platinum-

based chemotherapy [261]. Studies investigating TILs as a prognostic marker in urothelial 

carcinoma have been largely retrospective in relatively small cohorts, with variable 

definitions of TILs, inclusion of iTILs and/or sTILs, and the scoring methodology 

employed. These inconsistencies hamper comparisons across studies and extrapolation of 

findings to clinical settings. Large studies investigating the potential prognostic value of 

TILs as assessed on H&E are lacking.

Platinum-based combination chemotherapy remains the standard first-line treatment for 

patients with metastatic urothelial carcinoma [262]. In the second-line setting, many drugs 

have been tested, but none have become established as a standard of care because of a low 

frequency of response. In the context of the success of BCG immunotherapy, and the recent 

development of immune checkpoint inhibitors as an exciting option for second-line systemic 

therapy, the potential predictive value of TILs has earned significant scientific interest. 

Intravesical BCG therapy induces an immune response, with a significant increase of CD3+, 

CD4+ and CD8+ T-cells in tissue specimens observed after treatment, although no significant 

differences between responders and non-responders have been found [263]. Several studies 

confirmed that a large number of tumor associated macrophages and an increased cancer 

cell-to-lamina propria tumor associated macrophage ratio were associated with a poor 

oncologic outcome after BCG [264–266]. These macrophages play important roles in 

coordinating polarization of the immune response to either protect or attack the tumor. 

Pichler et al reported similar findings of an inverse correlation between tumor associated 

macrophages, Tregs and T-bet+ T-cells and disease free survival following BCG therapy 

[267]. High levels of CD4+ and GATA-3+ T cells were associated with improved disease 

free survival [267].

The hypothesis that the immune system also plays a role in the response of urothelial 

carcinoma to systemic chemotherapy is supported by a recent study by Baras et al, in which 

ratio of CD8+ TILs to CD25+ Tregs was strongly associated with response to platinum-based 

neoadjuvant chemotherapy [268]. As mentioned above, it appears that in urothelial 

carcinoma the expression of checkpoint molecule PD-L1 on the cells of the immune 

infiltrate is more relevant in predicting response to PD-1 and PD-L1 inhibitors than 

expression on tumor cells [250,251]. Of note is the definition of immune cell positivity used 

in these clinical trials, scoring the percentage of tumor stroma that is covered by PD-L1 

positive immune cells, with a cut-off of 1% [250,251]. Scoring sTILs on H&E as a 

percentage of tumor area is therefore easily comparable with, and translatable into, immune 

cell scoring on PD-L1 IHC. The expression of PD-L1 on stromal immune cells correlated 

with CD8+ T cell infiltration assessed on IHC, which also correlated with response to 
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atezolizumab [250]. Up-regulation of immune checkpoint molecules is linked to the 

activation of T cells and is dependent on their presence in the tumor microenvironment 

[269]. As these two parameters are strongly correlated, TIL assessment alone may prove 

valuable in predicting response to immune checkpoint inhibition, as more novel agents 

targeting different or multiple checkpoint or stimulatory pathways are developed. An 

illustrated tutorial for TILs assessment in urothelial carcinoma is available in Supplementary 

File 6.

Prostate carcinoma

Traditionally, prostate cancer has not been associated with a florid immune response and the 

potential of prostate cancer to respond to immunotherapy is still questioned [270]. Most 

reports on TILs in prostate cancer have focused on the prognostic relevance of TILs, with 

fewer studies investigating the predictive value to drug therapies. Reports on the 

composition of TILs in prostate cancer are heterogeneous and sometimes conflicting. One 

study found that TILs in prostate cancer are predominantly CD8+ T-lymphocytes [271], 

whilst other studies reported opposite findings with predominant populations of CD4+ T 

lymphocytes and sparse CD8+ T cells [272]. A pronounced presence of CD25+ and FOXP3+ 

Tregs in the TIL-infiltrate has been reported [272–275]. Another study found that a high 

proportion of CD8+ TILs in prostate cancer showed expression of PD-1 and had undergone a 

clonal expansion to an as yet unidentified antigen [276].

In prostate cancer the relationship between TILs and survival is still unclear, although 

surprisingly, most reports show evidence for a correlation between TILs and poor prognosis. 

A high TIL infiltrate has been associated with increased risk of recurrence [277–279], 

metastasis [280], and poor cancer specific survival [281]. Flammiger and co-workers have 

published the largest cohort on the prognostic effect of TILs in prostate cancer to date and 

concluded that patients with either a high or very low number of CD3+ lymphocytes in 

tumor epithelial areas had a shorter time to biochemical recurrence [282]. They did not, 

however, investigate how the different subsets of T lymphocytes contributed to the clinical 

outcome. Ness et al showed that the negative prognostic effect may be mediated primarily 

through CD8+ lymphocytes rather than the overall density of T lymphocytes as measured by 

CD3 positivity [283], while Davidsson et al attributed the poor prognostic effect to Tregs in 

the prostate cancer microenvironment [284]. Others have reported a correlation between 

FOXP3+ TILs in prostate cancer and biochemical recurrence [285], though Vesalainen et al. 

reported that tumors with dense TILs were associated with higher survival rates than tumors 

with absent or decreased TILs [286]. In a recent study it was found that higher CD8+ and 

lower PD-1+ TIL scores correlated to a longer biochemical-recurrence free survival in 

patients subjected to salvage radiotherapy after biochemical relapse [287]. The contribution 

of B cells to clinicopathological features of prostate cancer, recurrence and survival is also 

unclear [278,282,288–290] and requires further investigation. This apparent association 

between high TILs and poor prognosis in prostate cancer contrasts with most other solid 

tumors, as discussed in other sections, and requires validation in large cohorts using a 

standardized methodology.
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Androgen deprivation therapy is the mainstay of systemic treatment for prostate cancer, and 

has been shown to have immunomodulatory effects, triggering an influx of CD4+ and CD8+ 

TILs [291,292]. Despite the traditional view of prostate cancer as a poorly immunogenic 

tumor, sipuleucel-T, an autologous dendritic cell vaccine, became the first cancer vaccine to 

receive FDA approval in 2010 [293]. Following the development of more effective 

chemotherapy for metastatic castrate resistant prostate cancer, sipuleucel-T currently has a 

limited role in this setting [294]. Trials of immune checkpoint inhibition in prostate cancer 

have been largely disappointing [295–297], however a small phase II trial of pembrolizumab 

in enzalutamide-resistant prostate cancer found tumors with T cell infiltrates and PD-L1 

expression may show more promising results [298]. Further exploration of the immune 

contexture of prostate cancer, its association with prognosis and potential as an 

immunotherapy biomarker will be of great interest to clinicians and researchers.

Renal cell carcinoma

Prior to the introduction of tyrosine kinase inhibitors with anti-angiogenic actions such as 

sunitinib, and mTOR inhibitors such as everolimus, immunotherapy was the mainstay of 

systemic treatment for metastatic renal cell carcinoma [299]. High dose IL-2 therapy could 

result in durable complete responses but significant toxicity limited its application [299]. 

Recently, excitement has grown over the potential of immune checkpoint inhibitor therapy, 

with anti-PD-1 agent nivolumab receiving FDA approval for advanced renal cell carcinoma 

in 2015 [300]. These clinical successes suggest that the immune system plays an important 

role in the control or progression of renal cell carcinoma, however the prognostic and 

predictive value of TILs in this setting remains under investigation.

Early reports showed that TILs in renal cell carcinoma are predominantly T cells and natural 

killer cells with minor populations of B-cells [301–305]. T lymphocytes in renal cell 

carcinoma were found to be enriched in functional CD4+ cells of the Th1 lineage and in 

effector memory CD8+ cells [306]. Additionally, several populations of CD4+ and CD8+ 

Tregs were identified that may synergize to locally dampen antitumor T cell responses [306–

308]. Several studies have investigated the relation between TILs and clinical outcome in 

renal cell carcinoma. Interestingly, increased TILs, both CD4+ and CD8+ T cells, appear to 

correlate with tumor recurrence and poor prognosis in renal cell carcinoma [305,309–312]. 

Potentially of most relevance was the ability of some studies to differentiate between the 

effector cytotoxic CD8+ T-cells and their exhausted counterparts [309]. When dichotomized 

in such a way, Giraldo et al were able to clearly demonstrate good prognosis with the former 

CD8+ T-cell population, and poor prognosis with the latter [313]. Similarly, Nakano et al 

showed that TILs with high CD8+ T cell content that exhibited high proliferative activity 

were associated with improved survival among patients with advanced renal cell carcinoma 

[311]. High numbers of FOXP3+ Tregs, both in the tumor microenvironment and the 

peripheral blood, have been associated with metastasis, short disease-free survival, and poor 

prognosis [308,314–317]. The presence of CD4+CD25+FOXP3− Tregs in renal cell 

carcinoma was also significantly associated with poor outcome [311]. In clear cell renal cell 

carcinoma, PD-1+ TILs were independent prognostic indicators for overall survival 

[315,318], however no significant association was found in non-clear cell renal cell 

carcinoma [319]. Others have reported on the independent prognostic values of concomitant 
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quantification of densities of CD8+, PD-1+, and LAG-3+ lymphocytes in addition to PD-

L1/PD-L2 expression by tumor cells [313]. These somewhat confusing results from 

retrospective observational studies using different techniques require validation and 

clarification.

Early data suggest that anti-angiogenic targeted therapies in renal cell carcinoma may have 

immunomodulatory effects. For example, pre-treatment with sunitinib increased the ability 

of the investigators to expand TILs from the tumor ex-vivo [320]. In a phase 1 clinical trial, 

the anti-angiogenic drug bevacizumab increased immune cell infiltration and Th1 gene 

expression when combined with atezolizumab in metastatic renal cell carcinoma [321]. Data 

on the potential predictive value of TILs in this setting are limited, however in one study, 

higher intra-tumor CD8+ T cell counts were independently associated with shorter overall 

survival in patients receiving tyrosine kinase inhibitor therapy [322]. Studies of immune 

checkpoint inhibitors in renal cell carcinoma have largely focused on PD-L1 expression on 

tumor cells as a potential predictive biomarker [300,323], however data from other tumor 

types such as urothelial carcinoma suggest that the immune infiltrate may also have 

predictive value in this setting and this should be investigated further.

TILs in brain tumors

The central nervous system has long been considered an immune-privileged organ, but this 

view is being increasingly challenged as it has become clear that the immune system is 

active and important in many central nervous system disorders, including neoplastic disease. 

A prognostic role of TIL infiltration has been shown in some small and retrospective studies 

for gliomas and brain metastases (reviewed by Bienkowski et al [324]). The principles of 

TIL assessment described for the respective primary tumor types in this review (for example 

breast cancer, lung cancer, melanoma, etc.) are also likely to be applicable in brain 

metastases (discussed further in part 1 of this review). However, the histomorphology of 

most primary brain tumors is unique and distinct from other solid cancers and therefore 

specific TIL assessment algorithms may need to be developed. Nevertheless, here, we 

summarize the current knowledge on the most common primary brain tumor types, namely 

gliomas and meningiomas.

Gliomas

TILs are frequently present in gliomas, although in most cases at relatively low densities 

[325]. TILs in gliomas are often found in perivascular areas or show perivascular 

accentuation when infiltrating the tumor tissue. In addition, TILs may be observed in the 

invasive edge of the tumor, an area much larger and less definable than the invasive margin 

of epithelial tumors. Immunohistochemical studies in gliomas have identified microglia/

macrophages and various lymphocyte subsets including CD8+, CD4+, FOXP3+, and 

CD45R0+ lymphocytes among others [326–328]. Rutledge et al used a simple H&E based 

three-tiered scoring system to assess TILs in glioblastomas and identified significant 

associations with the sarcomatous, gemistocytic, epithelioid, and giant cell histological 

subtypes, which cluster within the mesenchymal molecular class [327]. A number of studies 

have addressed the prognostic role of TILs in gliomas, however, the strength of these studies 

Hendry et al. Page 22

Adv Anat Pathol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is generally limited by sample size issues, retrospective design, and non-standardized 

assessment of lymphocytic infiltration. As a result the studies are inconsistent with some 

showing a prognostic role of certain TIL subsets and others showing no association with 

patient outcome (reviewed by Bienkowski et al [324]). Adequately designed studies 

investigating a predictive role of TILs for response to immunotherapies in gliomas are not 

yet available.

As the methodology of TIL assessment in gliomas varies between studies no clear 

recommendations on preferred assessment algorithms can be made. Visualization of TIL 

subsets may require immunohistochemical staining for specific immune cell markers to 

facilitate clear separation from other cell types of the glioma microenvironment, such as pre-

existing or neoplastic small astrocytic or oligodendroglial cells. However, there are no 

systematic studies investigating the optimal method of TIL enumeration or classification and 

there is great variability in the techniques used in published studies, including estimation of 

TIL content by visual impression, manual counting, and computer-assisted evaluation. 

Another area of uncertainty is the tumor compartment in which TILs should be assessed as 

areas of interest include perivascular spaces, intratumoral areas, perinecrotic areas, the 

invasive edge, and, where present, the tumor stroma compartment.

The exact role of immune cells in glioma and their potential as clinically relevant biomarkers 

informing patient management and treatment decisions also remains unclear. Currently, 

many immunotherapeutic clinical trials enrolling glioma patients are ongoing and 

investigation of immune cell infiltration as prognostic or predictive markers should be 

systematically analyzed in translational companion projects of these studies. An important 

issue that needs to be addressed in this context is the definition of standardized assessment 

algorithms of TIL infiltrates for gliomas. Given the specific architecture and 

histomorphology of gliomas, our proposed guidelines for other tumor types such as 

carcinomas may not be directly applicable to these tumors.

Meningiomas

Lymphocyte infiltration of variable extent is commonly found in meningiomas. In most 

cases TILs are not very prominent, but rare cases display striking amounts of intratumoral 

immune cells, for example, the lymphoplasmacyte-rich meningioma subtype [329]. Some 

studies have reported higher TIL amounts in atypical and malignant meningiomas as 

compared with benign meningiomas, while other studies have observed lower TIL numbers 

with higher meningioma grade [324,325,330]. TILs in meningiomas can be present in the 

perivascular area or intratumorally, and may include CD8+, CD4+, CD45+, and CD20+ 

lymphocytes, natural killer cells, and others. The biological and clinical significance of TILs 

in meningioma is unclear and further study is required. Of note, immunotherapy with 

immune checkpoint inhibitors of the PD-1/PD-L1 axis has been suggested as a potential 

therapeutic option in recurrent meningioma, and TIL infiltration may be a candidate 

biomarker that should be investigated in such studies [331]. However, as for gliomas, the 

methodology of TIL assessment is non-standardized and needs to be elaborated in 

systematic investigations.
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Discussion

In this review, we have focused on common solid tumors in which data about the potential 

significance of TILs is available or emerging. The importance of TILs and host-tumor 

immune interactions is clearly not limited to these tumor types, and further exploration of 

less common or less well-studied tumors such as cervical carcinoma, sarcomas, and 

pediatric malignancies is anticipated with interest. As can be seen from the above 

discussion, approaches to TIL scoring have varied both between and within tumor types. 

Through the efforts of researchers, clinicians and pathologists, the significance of TILs is 

gaining increasing recognition. However, a standardized methodology would help to 

increase the quantity and quality of comparable evidence and enable the implementation of 

TIL scoring in large-scale clinical trials and routine histopathological practice. The 

consensus methodology we propose has limitations and many open questions remain, as 

discussed in part 1 of this review. These methods should be considered a tool for further 

research, to investigate both the significance of TILs in solid tumors and how we can best 

assess and describe the host immune response to tumors. They can be used as a reference 

against which other methods can be tested, and should be thoroughly validated for 

reproducibility and utility. Significant results have already been demonstrated using this 

methodology in diverse tumor types including gastric cancer, lung cancer and laryngeal 

squamous cell carcinoma. However, these recommendations may not be translatable into 

other tumor types, such as gliomas, for which further work is required to develop a 

standardized, reproducible and valid methodology. As more evidence becomes available, 

recommendations will be reviewed, expanded and clarified. It is hoped this proposed 

standardized methodology will help clinicians, researchers and pathologists to evaluate the 

utility of TILs assessment with a view to both prognosis and prediction of response to 

treatment.
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Figure 1. 
Applying the proposed standardized methodology to evaluate TILs in melanoma. Although 

traditional scoring systems have only considered intra-tumoral TILs in melanoma, both 

stromal and intra-tumoral TILs may be evaluated in the research setting. Areas of necrosis or 

ulceration are excluded.
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Figure 2. 
When assessing TILs in non-small cell lung carcinoma, include lymphocytes in the 

fibrovascular cores of papillary structures (marked sTILs), and exclude alveolar 

macrophages.
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Figure 3. 
An example of an ultramutated endometrial carcinoma with POLE mutation. Characteristic 

histological features include expansile growth with a pushing border, solid areas and serous-

like morphology (panel A), as well as high FIGO grade and prominent stromal and intra-

tumoral lymphoid infiltrate (panel B).
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Figure 4. 
Examples of a range of stromal TILs percentages in high-grade serous ovarian carcinoma.
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