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Abstract
Structural changes in the gut microbial community have 
been shown to accompany the progressive develop-
ment of colorectal cancer. In this review we discuss 
recent hypotheses on the mechanisms involved in the 
bacteria-mediated carcinogenesis, as well as the trig-
gering factors favoring the shift of the gut microbiota 
from a mutualistic to a pro-carcinogenic configuration. 
The possible role of inflammation, bacterial toxins and 
toxic microbiota metabolites in colorectal cancer onset 
is specifically discussed. On the other hand, the strate-
gic role of inflammation as the keystone factor in driv-
ing microbiota to become carcinogenic is suggested. 
As a common outcome of different environmental and 
endogenous triggers, such as diet, aging, pathogen 
infection or genetic predisposition, inflammation can 

compromise the microbiota-host mutualism, forcing the 
increase of pathobionts at the expense of health-pro-
moting groups, and allowing the microbiota to acquire 
an overall pro-inflammatory configuration. Consolidat-
ing inflammation in the gut, and favoring the bloom 
of toxigenic bacterial drivers, these changes in the gut 
microbial ecosystem have been suggested as pivotal 
in promoting carcinogenesis. In this context, it will be-
come of primary importance to implement dietary or 
probiotics-based interventions aimed at preserving the 
microbiota-host mutualism along aging, counteracting 
deviations that favor a pro-carcinogenic microbiota asset.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: By performing the co-abundance groups anal-
ysis of the publicly available datasets from microbiome 
surveys in colorectal cancer (CRC) patients, we have 
been successful in identifying pro-carcinogenic and pro-
tective groups of microorganisms, showing the poten-
tial to modulate the fate of CRC onset and progression. 
Possible mechanisms involved in microbiota-dependent 
carcinogenesis are reviewed, and the central role of 
inflammation as a trigger forcing the microbiota from 
a mutualistic configuration to a CRC-promoting asset is 
discussed. Finally, possible intervention strategies for 
modulating microbiome in order to preserve its mutual-
istic configuration along life span are suggested.
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HUMAN INTESTINAL MICROBIOTA 
Structure of the human intestinal microbiota
Outnumbering human cells 10 to 1, over 100 trillion mi-
crobes are hosted in the human body, with the majority 
of  them residing in the gut, in a continuum of  dynamic 
ecological communities, referred to as microbiome[1]. 
From 101 to 103 microbes per gram of  content in the 
stomach and duodenum, the human gut microbiota 
reaches a microbial density of  104 to 107 cells per gram in 
the jejunum and ileum, culminating with 1013-1014 cells in 
the colon and feces[2,3].

Metagenomic surveys of  the intestinal microbiota 
revealed an immense phylogenetic diversity, estimating 
more than 1000 species-level phylotypes across the hu-
man population, with at least 160 prevalent species per 
individual[4]. While phylogenetic diversity is high at the 
species level, most of  the endogenous bacteria in healthy 
adults belong to just two phyla, Firmicutes and Bacteroidetes, 
which account for > 90% of  the known phylogenetic cat-
egories of  the human gut. Members of  Actinobacteria, Pro-
teobacteria, Fusobacteria, Verrucomicrobia, Spirochaetes and Len-
tisphaerae are regularly present but scarce (< 1%-15%)[5-9].

Since the first application of  culture-independent 
methods a large inter-individual variability in microbial 
compositions was apparent[4], with twins sharing less than 
50% of  their species-level microbial taxa[10]. The multiple 
genetic and environmental factors that contribute to 
shape the individuality of  the gut microbiota composi-
tion are now beginning to be understood, reflecting 
interpersonal, geographical, lifestyle and temporal differ-
ences[11-13], and not least, perturbations caused by disease. 
Recent work has established that despite the unique fin-
gerprint of  microbial taxa per individual, a core of  > 50 
taxa can be found in nearly half  of  the human subjects 
sampled[4,8]. It has been suggested that individuals can be 
categorized into one of  three predominant variants or 
‘‘enterotypes’’ based on the abundance of  dominant gen-
era (Bacteroides, Prevotella or Ruminococcus)[14], though some 
researchers are now favoring the concept of  a continuum 
or gradient of  species functionality rather than a discon-
tinuous variation with segregated types[15]. Individuals 
have also been shown to share a set of  microbial genes 
involved in central metabolic pathways, and deviations 
from this functional core have been associated with al-
tered physiological states[16]. However, the subject-specific 
genetic diversity is remarkable and still remains largely 
unassigned, with a probably unique metagenomic geno-
type per individual[17].

Human gut microbiome and role in host physiology
The collective genome of  the human intestinal micro-
biota-microbiome-contains 3.3 million microbial genes, 
150-fold more than the human genome[4]. Adding this 
immense gene catalogue to host genetics, intestinal 

microorganisms are expected to exert a profound influ-
ence on human physiology and metabolism. In fact, gut 
microbes complement several gaps in our metabolic 
pathways, e.g., producing essential vitamins and oligo-
elements, as well as affording the extraction of  energy 
from otherwise indigestible carbohydrates[18], playing a 
major role in host energy balance and nutrition[19]. This 
function has probably been the initial evolutionary force 
toward the microbiota establishment as an animal and 
human symbiotic partner[20]. Other recognized functions 
include the support for colonization resistance against 
incoming enteropathogens. Mechanism involved in this 
barrier effect are: competition for food resources[21], inhi-
bition of  pathogen growth by means of  acetate produc-
tion[22], killing with bacteriocins[23], and immune response 
stimulation[24,25]. The gut microbiota also acts as an in-
tegral component of  the human immune system, finely 
calibrating the immunological potential and responses at 
different host ages[26,27]. The intimate interplay between 
gut microbes and the mucosal immune system has indeed 
proved to be crucial for immune education during our in-
fancy as well as for maintaining a well-balanced immune 
homeostasis along the adult life[26,28]. Of  note, accumulat-
ing data are also supporting the emerging concept of  a 
microbiota-gut-brain axis with a role in the regulation 
of  anxiety, cognition, pain and behavior, and a possible 
contribution to the pathophysiology of  central nervous 
system disorders[29-32]. 

Microbiota dynamics in response to 
diet-inflammation-age
The intestinal microbiota composition was believed to 
be stable throughout adulthood until few years ago[33,34]. 
More recently, with the bloom of  longitudinal studies 
in humans, the plasticity of  this ecosystem has become 
evident, highlighting that diet, environment, and physi-
ological changes can impact on both composition and 
functionality of  the gut microbiota[12,27]. Faith et al[35] 
investigated the normal long-term plasticity of  the hu-
man gut microbiota in healthy subjects. By applying a 
low-error amplicon sequencing approach, the Authors 
demonstrated that 40% of  the individual microbiota was 
variable over the time course of  5 years.

The effect of  changes in dietary habits is the plainest 
manifestation of  the ability of  the microbiota to adapt its 
architecture in response to environmental stimuli, with 
the speed and efficacy required for the maintenance of  
the nutritional function of  the host-microbiota symbiosis. 
Indeed, short-term dietary responses of  the microbiota 
composition were detected after 24 h and seemed to be 
driven principally by the type of  ingested fermentable 
carbohydrates[36,37]. These fluctuations could be consid-
ered a necessary feature of  an intestinal microbial ecosys-
tem able to rapidly adapt itself  to the host requirements, 
maximizing the efficiency of  nutrient extraction and sup-
porting health. Remarkably, the same changes in diet in 
different persons did not result in the same final micro-
biota configuration since the diet-related variations did 
not overcome the inter-individual differences. Conversely, 
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in the long term, people with similar dietary patterns may 
end up sharing a similar architecture of  the gut microbio-
ta; in fact, it has been shown that the presence or absence 
of  several bacterial taxa can be associated with the intake 
of  different nutrients[37]. 

Along with the dietary influence, a certain plasticity 
of  the human intestinal ecosystem is being observed in 
response to less obvious environmental stressors, such as 
climate and geography[38,39], as well as the degree of  ex-
posure to environmental bacteria, the latter being of  pri-
mary importance for the education and the maintenance 
of  the functionality of  the immune system from birth to 
adulthood[40-42]. Moreover, the consumption of  drugs, es-
pecially antibiotics but also anti-inflammatory medicines, 
impacts on the gut microbiota composition[43-45] and dif-
ferent configurations of  the microbiota, in turn, have the 
ability to promote or reduce the metabolization and ef-
fectiveness of  drugs[46]. Along adulthood and later in life, 
natural physiological changes add themselves to the list 
of  drivers of  modification in the microbiota structure, 
both temporarily (i.e., pregnancy or lactation[47]) and per-
manently, as in the aging process.

Aging can impact on the gut microbiota structure di-
rectly, by means of  age-related physiological processes in-
volving local and systemic inflammation (i.e., immunose-
nescence and inflamm-aging; see below), and indirectly, 
causing changes in dietary habits and lifestyle[48]. In-
creased threshold for taste and smell, together with chew-
ing problems caused by teeth and muscle loss, can lead to 
the consumption of  a restricted diet, poor in fibers and 
proteins that are known to strongly impact on microbiota 
composition[36,37]. Moreover, poor diet and diminished 
physical activity contribute to increase the chances of  
constipation and, consequently, of  slower intestinal tran-
sit time, which may impact on the composition of  the co-
lonic microbiota due to the reduced bacterial excretion[48]. 
The age-related increased drug consumption[49] and the 
interaction between different medicines can also be listed 
among the possible factors that rule changes in the gut 
microbiota. The subject-specific combination of  all these 
impacting environmental variables may be responsible for 
the inter-individual variability of  the gut microbiota com-
position that is known to increase along with aging[50,51]. 

The aged-type gut microbiota is typically character-
ized by a reduced biodiversity, an increased abundance 
of  opportunistic facultative anaerobes, and a decreased 
abundance of  species with anti-inflammatory properties 
(i.e., Faecalibacterium prausnitzii and other butyrate pro-
ducers)[7,44,52-55]. Interestingly, these deviations from the 
healthy adult-like profile overlap with those known to 
accompany several disorders characterized by systemic 
and/or chronic inflammation, such as obesity, metabolic 
syndrome and inflammatory bowel diseases[21,56,57]. Indeed, 
aging itself  involves chronic immune and inflammatory 
unbalances. Elderly are generally affected by a process 
called “immunosenescence” that causes a decline in im-
mune system functionality, and a chronic inflammatory 
status (“inflamm-aging”) characterizing the whole organ-
ism[58,59]. At the level of  the gut, inflamm-aging could be 

responsible for an increased stimulation of  the inflamma-
tory response, allowing opportunistic pathogens (patho-
bionts) to thrive to the detriment of  symbionts[60,61]. The 
age-related proliferation of  opportunistic bacteria could 
both contribute to and be nurtured by inflamm-aging, in 
a sort of  self-sustaining loop[55], possibly creating a pre-
disposing environment for diseases the risk of  which 
is known to increase along with age, such as colorectal 
cancer.

INTESTINAL MICROBIOTA AND 
COLORECTAL CANCER
Colorectal cancer (CRC) is the fourth most commonly 
diagnosed cancer in the Western world[62,63]. With more 
than one million of  new cases and 600000 deaths per 
year, CRC undoubtedly constitutes a significant burden 
for public health in Western world. 

CRC is the result of  a multistep process whose pro-
gression is associated with the gradual accumulation of  
genetic and epigenetic mutations. Sporadic in more than 
90% of  the cases, CRC develops gradually, proceeding 
from normal epithelium to adenomatous polyps and 
invasive carcinoma, defining a process that can be slow, 
taking more than 10 years depending on the mutation 
frequency[64]. Several genetic predispositions which can 
increase cancer risk have been identified. The principal 
driver mutations involved in CRC include tumor suppres-
sors adenomatous polyposis coli gene, β-catenin gene, 
deleted in colorectal cancer gene and p53[64], as well as the 
oncogenes Kirsten rat sarcoma[65] and myelocytomatosis 
oncogene[66,67]. However, even if  within the last years 
a growing number of  acquired genetic mutations have 
been described in CRC, trigger factors leading to their ac-
cumulation remain to be determined.

Environmental factors have been reported as the 
leading causes involved in CRC onset[68]. Chronic inflam-
mation and diet have been historically recognized as the 
prominent CRC drivers[69,70], however, recently, a new 
potential factor in CRC is emerging: the human intestinal 
microbiota[71-73]. For instance, the relevance of  a compro-
mised microbiota-host homeostasis in CRC onset has 
been highlighted by the recent finding that mice defec-
tive in the inflammasome function have an increased risk 
to develop CRC[74]. While the involvement of  diet and 
inflammation in CRC has been proved by “traditional” 
observational and epidemiological studies[70,75-77], only 
the recent widespread of  next-generation sequencing 
(NGS)-based approaches for gut microbiota characteriza-
tion allowed to identify characteristic ecosystem changes 
associated with CRC. Comparative NGS studies of  the 
gut microbiota structure in stools, luminal samples and 
swabs from CRC patients and age-matched healthy con-
trols have been carried out[78-80]. With respect to healthy 
controls, CRC patients were significantly enriched in 
fecal Fusobacterium, Enterococcaceae, Campylobacter, Erysip-
elotrichaceae, Collinsella, Peptostreptococcus and Anaerotruncus, 
and depleted in members of  the Clostridium cluster Ⅳ, 
such as Faecalibacterium prausnitzii (F. prausnitzii) and Rose-

910 January 28, 2014|Volume 20|Issue 4|WJG|www.wjgnet.com

Candela M et al . Inflammation, gut microbiome and colorectal cancer



911 January 28, 2014|Volume 20|Issue 4|WJG|www.wjgnet.com

analysis must be taken with caution since based on a lim-
ited dataset, we can hypothesize the existence of  3 pro-
carcinogenic CAGs (Fusobacterium CAG, Prevotella CAG 
and Coprobacillus CAG) and 2 CRC protective CAGs (Bifi-
dobacterium CAG and Faecalibacterium CAG).    

Suggesting the involvement of  specific microbiota 
dysbiosis in CRC, NGS-based microbiome studies are 
imposing a more holistic vision of  the interplay between 
environment and genetics in CRC, where dietary fac-
tors and inflammation need to be considered against the 
background in the microbiota-host interaction process 
(Figure 2). However, the static nature of  these studies 
did not permit to comprehend whether dysbiosis are a 
cause or a consequence of  the disease onset. Further, 
these descriptive studies did not provide information 
on either the mechanisms by which members of  the gut 
microbial ecosystem can influence the CRC, or, more 
importantly, the triggers that shift the microbiota towards 
a carcinogenic configuration. With the attempt to deal 
with these questions, a new approach to study the role of  
microorganisms in CRC onset is emerging. Pairing NGS-
based microbiota surveys and the usage of  germ-free 
(GF), conventionalized and mono associated mice to test 
mechanistic hypotheses, new insights on the microbial 
ecology of  CRC have been provided[73]. 

Bacterial driver-passenger model 
Recently, a first dynamic model of  the microbial ecology 
involved in CRC onset and progression has been pro-
posed by Tjalsma et al[73]: the bacterial driver-passenger 
model. According to this model, CRC development is 
initiated by indigenous bacteria with pro-carcinogenic 
features - defined as bacterial drivers - that drive epithe-
lial DNA damage and contribute to CRC initiation. In a 
subsequent step, the local microenvironment is altered as 
a consequence of  the ongoing tumorigenesis and bacte-
rial drivers are replaced by bacterial passengers, microor-
ganisms showing a competitive advantage in the tumor 
microenvironment and being capable of  nurturing tumor 
progression. For instance, nutrients and co-factors specif-
ic of  the tumor microenvironment - such as the presence 
of  reactive oxygen species - can be selectively utilized by 
specific bacterial passengers[91].

Bacterial drivers are defined as intestinal bacteria 
showing pro-carcinogenic features - either transient or 
autochthonous microbiota components - that may initiate 
the process of  carcinogenesis. Several candidate bacterial 
drivers have been identified (Table 1), such as superoxide-
producing strains of  Enterococcus faecalis[92], genotoxin-
producing Escherichia coli strains[93], and toxigenic strains 
of  Bacteroides fragilis[94]. Furthermore, pro-inflammatory 
members of  Enterobacteriaceae, such as Shigella, Citrobacter 
and Salmonella have been associated with early stages of  
CRC as possible bacterial drivers[95,96]. Occasionally, bacte-
rial drivers act in concert with helper bacteria (or α-bugs) 
in carcinogenesis promotion[97]. Generally belonging to 
pro-inflammatory Enterobacteriaceae, these microorganisms 
are proposed to crowd out symbiont CRC-protecting 
anti-inflammatory microbiota components, such as F. 

buria. On the intestinal mucosa, CRC patients showed an 
increase of  Porphyromonas, Fusobacterium, Peptostreptococcus 
and Mogibacterium, whereas Faecalibacterium, Blautia and 
Bifidobacterium were depleted. This CRC-associated mi-
crobiome is enriched in pro-inflammatory opportunistic 
pathogens, e.g., Fusobacterium, Enterococcaceae and Campy-
lobacter[81-85], and microorganisms commonly associated 
with metabolic disorders, such as Erysipelotrichaceae[86,87], 
while depleted in microbial partners strategic to preserve 
the intestinal homeostasis[88], such as well-known butyrate 
producers (i.e., F. prausnitzii and Roseburia) and protective 
bifidobacteria[22,89]. These NGS data reflect an overall 
pro-inflammatory configuration for the CRC-associated 
gut microbial ecosystem, which can concur in compro-
mising the microbiota-host mutualism and, eventually, 
consolidate the disease state. Very recently, comparative 
analyses of  mucosal microorganisms on cancerous tissue 
and matched non-cancerous tissue have been carried out, 
allowing to detect microorganisms specifically enriched 
on CRC tumor sites[79,84,85]. Cancerous mucosa showed an 
overall decrease in bacterial diversity with respect to non-
cancerous tissues, and was characterized by a reduction 
in Faecalibacterium and higher abundances of  Fusobacterium, 
Bacilli and Phascolarctobacterium. These pro-inflammatory 
microorganisms can modulate the tumor microenviron-
ment, affecting the course of  CRC progression.

In order to explore dysbiosis of  the gut microbiota 
in CRC at the community level, we sought associations 
between individual genera. To this aim, we obtained co-
abundance groups (CAGs), groups of  microorganisms 
which correlate and cluster together, by a bioinformatics 
analysis[90] of  the publicly available dataset from Wu et al[80], 
a well characterized case-control study of  the CRC-as-
sociated microbiome. Six CAGs displaying significantly 
different inter-relationships from each other (P < 0.001) 
have been identified: Fusobacterium CAG, Prevotella CAG, 
Barnesiella CAG, Coprobacillus CAG, Faecalibacterium CAG 
and Bifidobacterium CAG. Significant associations between 
bacterial genera have been calculated and represented in a 
Wiggum plot (Figure 1). This network analysis allowed us 
to describe - to our knowledge for the first time - micro-
bial co-abundance networks which include microorgan-
isms previously associated with CRC risk or protection. 
According to our analysis, the CRC-associated microor-
ganisms Fusobacterium and Erysipelotrichaceae belong to the 
same CAG (Fusobacterium). Analogously, CRC-associated 
groups as Enterobacteriaceae, Escherichia, Shigella and Kleb-
siella co-vary within the same cluster (Prevotella). On the 
other hand, a common CAG (Bifidobacterium) is shared by 
non-CRC-associated groups as Bifidobacterium and Lachno-
spiraceae (a family member of  the Clostridium cluster Ⅳ). 
Other health-promoting mutualists belonging to the Clos-
tridium cluster IV, such as Faecalibacterim, Blautia, Roseburia, 
Dorea and Lachnospiraceae, group together in Faecalibacterim 
CAG. Finally, we identified one CAG (Barnesiella) includ-
ing both pro-carcinogenic microorganisms as Porphyro-
monadaceae and Eubacterium, as well as protective members 
of  the Clostridium cluster Ⅳ (Ruminococcus, Butyrococcus 
and Oscillibacter). Even if  data from this computational 
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prausnitzii, Roseburia or Bifidobacterium, favoring the subse-
quent tissue colonization by drivers. 

Passenger bacteria are always autochthonous mem-
bers of  the gut microbial community. Relatively poor 
colonizer of  a healthy intestinal tract, passengers show a 
competitive advantage in the tumor microenvironment 
(Table 1). However, differently from drivers, which are 
always pro-carcinogenic, passenger bacteria can be of  ei-
ther pro-carcinogenic or protective nature, depending on 
the microorganism. While in some cases the carcinogenic 
tissue has been shown to be selectively colonized by op-
portunistic pathogens, such as Fusobacterium[78,83,84], Strepto-
coccus gallolyticus[98] and Clostridium septicum[99], which can be 
involved in CRC progression, in other circumstances the 
tumor sites were enriched in passenger bacteria belonging 
to well-known mutualistic microbiota components, as Co-
rynebacteriaceae, Roseburia and Faecalibacterium, suggesting a 
possible protective role for these microorganisms as CRC 
quencher[78].  

Mechanisms possibly involved in microbial CRC 
promotion 
Gut microorganisms may promote CRC onset and pro-
gression by different processes (Table 1)[71], such as (1) 
the induction of  a chronic inflammatory state; (2) the 
biosynthesis of  genotoxins interfering with the cell cycle 
regulation or directly damaging DNA; (3) the production 
of  toxic metabolites; and (4) the activation of  dietary het-
erocyclic amines to pro-carcinogenic compounds. Here 
we will specifically discuss the role of  three of  these fac-
tors - inflammation, genotoxins and toxic metabolites – 
in CRC onset and progression. 

Chronic inflammatory disorders are associated with a 
higher risk of  cancer development[100]. Inflammation can 
nurture carcinogenesis by inducing gene mutations, inhib-
iting apoptosis or stimulating angiogenesis and cell pro-
liferation. By regulating cell survival, inflammation and 
immunity, nuclear factor (NF)-kB is at the connection 
between inflammation and cancer. In particular, experi-

ments carried out in mouse models of  colitis-associated 
cancer have been successful in demonstrating a dual role 
for NF-kB in carcinogenesis, which depends on the cell 
type[101]. While in enterocytes NF-kB contributes to tu-
mor initiation by suppressing apoptosis, in myeloid cells it 
is involved in the promotion of  tumor growth by means 
of  the production of  inflammatory mediators. Further, 
it has been recently demonstrated that elevated NF-kB 
signaling can activate mutations in the Wnt pathway, lead-
ing to the differentiation of  epithelial non-stem cells into 
tumor-initiating cells[102]. Generally, the activation of  NF-
kB results in the expression of  inflammatory cytokines 
[e.g., tumour necrosis factor-alpha, interleukin (IL)-1, IL-6 
and IL-8), adhesion molecules, enzymes involved in pros-
taglandin synthesis, nitric oxide synthase, angiogenic fac-
tors and anti-apoptotic genes, providing survival advan-
tages to precancerous or tumor cells in the gut[75,103]. The 
activation of  NF-kB as a result of  microbial sensing via 
the host Toll-like receptors (TLRs) has been proposed to 
support intestinal tumor growth under steady-state con-
ditions[104,105]. Several evidences have been reported in 
support of  the role of  the gut microbiota in the inflam-
mation-dependent carcinogenesis in the gut. Crohn’s 
disease and ulcerative colitis are often associated with an 
increased risk of  developing CRC and epidemiological 
data suggest that duration and severity of  chronic colitis 
represent a significant risk factor for colitis-associated 
CRC[106,107]. Furthermore, microbiota unbalances in favor 
of  pro-inflammatory opportunistic pathogens as Entero-
bacteriaceae and Clostridium difficile have been indicated to be 
involved in tumor progression[108,109] and, in the context 
of  the bacterial driver-passenger model, several bacterial 
drivers, such as Shigella, Citrobacter, Salmonella and toxigenic 
Bacteroides fragilis (B. fragilis), as well as the passengers Fuso-
bacterium and Streptococcus gallolyticus and Clostridium septicum, 
have been reported to support carcinogenesis by the 
induction of  a pro-inflammatory response[73]. Strikingly, 
by inducing azoxymethane (AOM)-colitis in conventional 
and GF IL-10 knockout (Il10-/-) mice, Uronis et al[110] were 

  Microorganism Role in CRC Mechanism Ref.

  E. faecalis Driver Production of superoxide [92]
  E. coli NC101 Driver Genotoxin production (colibactin) [122]
  B. fragilis Driver Genotoxin production (fragilisin) [94]
  Shigella Driver Induction of inflammation [73]
  Citrobacter Driver Induction of inflammation [73]
  Salmonella Driver Induction of inflammation [73]
  Enterobacteriaceae Helper Induction of inflammation [73]
  Fusobacterium Passenger Induction of inflammation [84]
  S. gallolyticus Passenger Induction of inflammation [98]
  C. septicum Passenger Induction of inflammation [99]
  F. prausnitzii Protective Butyrate production; anti-inflammatory properties [78]
  Roseburia Protective Butyrate production; anti-inflammatory properties [78]
  Bifidobacterium Protective Protection from pathogens; anti-inflammatory properties [71]
  Corynebacteriaceae Protective Anti-inflammatory properties [78]

Table 1  Microorganisms involved in colorectal cancer

Microorganisms involved in colorectal cancer (CRC), their role as driver, passenger or protective bacteria and the mechanisms involved in CRC induction 
or protection. E. faecalis: Enterococcus faecalis; E. coli: Escherichia coli; B. fragilis: Bacteroides fragilis; S. gallolyticus: Streptococcus gallolyticus; C. septicum: Clos-
tridium septicum; F. prausnitzii: Faecalibacterium prausnitzii.
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successful in demonstrating that microbial sensing via 
TLRs is essential to develop colitis-associated CRC. 

Inflammation also represents a molecular link be-
tween host immune response, intestinal microbiota and 
genotoxic events in the inflammation-associated CRC[111]. 
Several bacterial taxa that belong to the human gut mi-
crobiome in a subset of  the healthy population contain 
toxin-producing strains[5]. The long-term effects of  
chronic exposure to low doses of  such bacteria as well as 
the eventual contribution to the carcinogenic process of  
bacterial toxins remain to be elucidated. Toxins impinge 
on key eukaryotic processes, such as cellular signaling, 
and some directly attack the genome[112] these last by 
damaging DNA, either directly, by enzymatic attack, or 
indirectly, by provoking an inflammatory reaction that 
produces free radicals. Also, they can affect DNA repair 
mechanisms.

The capacity of  the B. fragilis toxin (BFT)-producing 
strains to promote colon tumorigenesis is mediated by 
the increased expression of  STAT3 that leads to the re-
cruitment of  the highly pro-inflammatory subset of  T 
helper type 17 lymphocytes, suggesting that the pro-carci-
nogenic role of  BFT is to promote a de-regulated inflam-
matory response[113]. BFT is a metalloprotease known to 
bind to colonic epithelial cells and stimulate cleavage of  
E-cadherin, thus increasing intestinal barrier permeabil-
ity and augmenting cell signalling via the β-catenin/Wnt 
pathway, which is constitutively activated in essentially all 
CRC. As a result, BFT stimulates proliferation and migra-
tion of  human colon cancer cells in vitro[114]. It is worth 
noting that the enterotoxigenic form of  B. fragilis (ETBF) 
is only present in approximately 10%-20% of  the healthy 
population whereas the fecal carriage of  ETBF is in-
creased of  about 40% in CRC patients[94,115]. 

However, although the B. fragilis toxin has been pro-
posed as one of  the main CRC driving suspects on the 
basis of  experimental work[113,116], very recent studies 
show that the most actively transcribed toxins in tumor 

tissue and surrounding mucosa from CRC patients are 
those derived from Escherichia coli (E. coli), Salmonella en-
terica and Shigella flexneri. This suggests a strong involve-
ment of  enterobacterial toxins in tumorigenesis. Also in 
this context, inflammation has been shown to increase 
toxigenic E. coli strains, promoting their adhesion to the 
host epithelia[111]. A number of  E. coli strains produce a 
wide array of  toxins, some of  which are turning out to be 
potentially harmful in humans, either directly damaging 
DNA or specifically disrupting cell signaling. 

The cytolethal distending toxins (CDTs), which com-
prise a family of  intracellular-acting bacterial protein tox-
ins produced by several gram-negative bacteria, belong to 
the first group. Their activity upon eukaryotic cells results 
in several consequences, the most characteristic of  which 
is the induction of  G(2)/M cell cycle arrest[117]. Active 
CDTs consist of  three subunits: CdtA and CdtC, which 
guide internalization, and CdtB, which enzymatically 
induces DNA double-strand breaks that recruit and acti-
vate the ataxia telangiectasia mutated kinase, thus trigger-
ing a DNA damage response (DDR). The DDR provides 
an efficient barrier to tumorigenesis through induction of  
cell death or senescence[118]. Cells exposed to sub-lethal 
doses of  the CDTs from Helicobacter hepaticus (H. hepati-
cus) or Haemophilus ducreyi exhibit increased frequency of  
mutations, accumulation of  chromosomal aberrations 
and enhanced anchorage-independent growth[119]. Fur-
thermore, chronic infection of  mouse liver and intestine 
with CDT-producing H. hepaticus or Campylobacter jejuni, 
respectively, is associated with dysplasia[119], confirming 
the capacity of  CDT-producing bacteria to induce pre-
neoplastic lesions in vivo. Very recently, Buc et al[120] dem-
onstrated a high prevalence of  genotoxin- and cyclomod-
ulin-producing mucosa-associated E. coli strains in CRC 
patients.

Furthermore, some commensal E. coli strains of  the 
phylogenetic group B2 harbour a 54 kb polyketide syn-
thase (pks) pathogenicity island encoding the enzymes 
required for the synthesis of  a putative hybrid peptide-
polyketide genotoxin, named colibactin[121]. Infection of  
mice with a pks+ E. coli strain has been linked to the ex-
pression of  pks genes required for colibactin production 
as well as to DNA damage induction[122]. The capacity 
of  colibactin to promote tumorigenesis in vivo has been 
recently proven in an animal model of  colitis-associated 
CRC. GF IL-10 knockout mice treated with the colon-
specific carcinogen AOM and monocolonized with pks+ 
E. coli showed a high incidence of  invasive adenocarcino-
ma if  compared to mice infected with an isogenic pks-de-
ficient strain or the control commensal bacterium pks-E. 
faecalis[93]. The detection of  E. coli isolates carrying the pks 
island in 66.7% CRC patients compared to 20% found 
in non-inflammatory bowel disease/non-CRC controls 
suggests a concerted action of  host inflammation and 
E. coli-derived pks in giving rise to a host microenviron-
ment that promotes DNA damage and tumorigenesis[93]. 
These authors also showed that optimal colonization by 
colibactin-producing E. coli strains is established in an 

Intestinal 
microbiome

Inflammation

Diet

Bacterial
toxins

Colorectal cancer

Figure 2  Colorectal cancer arises from the interplay between endogenous 
and exogenous factors, such as inflammation, diet, intestinal microbiome 
structure, and transcription and activity of bacterial genotoxins.
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already-inflamed gut. In fact, by remodeling the intestinal 
immune response and shifting the colonic bacterial com-
munity to one that further promotes CRC, bacterial driv-
ers permit the colonization of  colibactin-producing E. 
coli strains that actively contribute to disease progression.

A second group of  toxins includes those disrupt-
ing the cell signaling that regulates cell proliferation or 
induces inflammation. The E. coli cytotoxic necrotizing 
factor 1 (CNF1), which is expressed by many human 
isolates, activates the Rho GTPases[123], inducing dysfunc-
tions in already transformed epithelial cells, such as apop-
tosis counteraction, pro-inflammatory cytokines’ release, 
COX2 expression, NF-kB activation and boosted cellular 
motility. Also, CNF1 induces quiescent cells to enter 
the cell cycle and undergo DNA synthesis[124], interferes 
with normal cytokinesis, resulting in the production of  
multinucleated cells and in the onset of  aneuploidia. As 
cancer may arise when the same regulatory pathways are 
affected, it is conceivable that CNF1-producing E. coli 
infections can contribute to cancer development[125]. Our 
hypothesis is that these bacteria may act as passengers, 
reinforcing and favoring but not causing the development 
of  colorectal cancer. The pro-inflammatory capacity of  
CNF1 has recently been confirmed in Drosophila, where 
the toxin could activate one of  the key transcription fac-
tors of  the innate immune response, namely NF-kB, 
independently of  the triggering of  pathogen recognition 
receptors. Indeed, the CNF1-mediated activation of  the 
Rac2 GTPase triggers protective immunity via the in-
nate Rip kinase signaling that functions upstream of  NF-

kB[126]. Taken altogether, these data support the strategic 
role of  toxigenic E. coli strains in CRC onset and progres-
sion.

The gut microbiome is a major driver in shaping the 
gut metabolome[127]. Among microbial metabolites, sev-
eral have been identified as potentially important carcino-
gens or protective. Secondary bile acids in particular have 
been detected in elevated levels in CRC patient stools 
and have been shown to have carcinogenic properties in 
vitro[128]. A long list of  other metabolites are suspected at 
varying degrees to be implicated in CRC development, 
such as hydrogen sulfide[129], proteolysis products (ammo-
nia, amines, phenols)[130], and acetaldehyde[131]. Butyrate is 
the most sought-after beneficial metabolite as it is a ma-
jor energy source for colonocytes and more importantly 
has an anti-proliferative activity and induces apoptosis of  
CRC cells in vitro[132].

Triggering factors that force microbiota to become 
carcinogenic
Besides its role in CRC onset, inflammation surely exerts 
a central role in triggering the carcinogenic potential of  
the gut microbial ecosystem (Figure 3)[93]. Experiments 
relying on mice defective in components of  the immune 
system successfully demonstrated that chronic inflam-
mation alters the intestinal microbial community com-
position towards a configuration that predisposes to the 
disease[133]. According to Garrett et al[134], Tbet-/-/Rag2-/- 
mice, which are deficient in adaptive and innate immune 
function, developed a colitis phenotype transmissible 
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Figure 3  Environmental triggers, such as diet, aging and pathogen infections, can force microbiota changings that, in a genetically susceptible host, can 
drive to chronic inflammation in the gut. Inflammation shifts the gut microbiota towards a pro-inflammatory configuration, supporting colorectal cancer (CRC) driv-
ers as pathobionts at the expense of health-promoting CRC-protective microbiota components. As a consequence, a pro-inflammatory loop is established in the gut, 
directly supporting CRC onset and favoring colonization by toxigenic bacterial drivers directly involved in CRC promotion.
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to wild-type mice by the adoptive transfer of  their gut 
microbiota. Analogously, mice lacking the bacterial fla-
gellin receptor TLR5 exhibited a syndrome encompass-
ing insulin resistance, hyperlipidemia, and increased fat 
deposition associated with microbiota alterations. Strik-
ingly, these metabolic changes were transferable to wild-
type mice by acquiring the Tlr5-/- gut microbiota[134]. In 
this context, Arthur et al[93] specifically demonstrated that 
intestinal inflammation can boost the cancer-inducing 
activity of  the gut microbiota. According to the Authors, 
chronic inflammation in Il10-/- mice was sufficient to 
prompt microbiota shifts, supporting the AOM-induced 
carcinogenesis. Favoring the adhesion of  driver bacteria 
with genotoxic potential to the colonic mucosa - as well 
as the overall expansion of  pro-inflammatory Enterobacte-
riaceae in the gut - inflammation creates the environment 
that supports a bacteria-mediated carcinogenesis process. 
In particular, Arthur et al[93] showed that chronic colitis in 
Il10-/- mice was sufficient to favor a dramatic expansion 
of  E. coli NC101 on the intestinal mucosa. Harboring 
a pks pathogenicity island, E. coli NC101 codes for the 
genotoxin colibactin[121] that allows this microorganism 
to accelerate progression from dysplasia to invasive carci-
noma. Inflammation in the gut is also pivotal to initiate a 
microbiota-dependent pro-inflammatory loop detrimental 
for host health[71]. An aberrant inflammatory response in 
the gut can shift the balance between protective mutual-
ists and pathobionts in favor of  the latter[135,136]. By induc-
ing a pro-inflammatory loop, these microorganisms can 
work as bacterial drivers, consolidating the inflammatory 
state[28] and resulting in a self-sustained pro-inflammatory 
response that affects the microbial ecology of  the human 
gut, further compromising the microbiota-host mutual-
ism and supporting CRC.

Abnormal dietary inputs can lead to the expansion of  
pro-inflammatory microbes in the gut[137]. For instance, a 
diet rich in saturated milk fat has been reported to induce 
the expansion of  Bilophila wadsworthia, which may favor 
carcinogenesis in the gut by promoting pro-inflammatory 
TH1[138]. Indeed, high-fat diet impacts on gut microbiome 
have seen increased interest in the recent years as fat has 
been linked epidemiologically to intestinal inflammation 
and diseases. While as expected a high-fat diet modifies 
the microbiome, the fact that different fat compositions 
induced different changes in animal models calls for a 
more controlled dietary intervention in humans. For 
example, observational data suggested that Western diet 
(protein- and fat-enriched) and African diet (polysac-
charide-enriched) drive strikingly different microbiomes, 
possibly explaining different CRC rates[13,38,139]. Reciprocal 
diet exchanges indeed demonstrated that the microbiome 
and metabolome were rapidly responsive towards respec-
tive “beneficial” and “detrimental” states, as well as mark-
ers of  mucosal proliferation[13].

The process of  human aging has a well-documented 
impact on the gut microbiota structure[48,140], raising the 
question of  whether age-related microbiota dybioses 
can trigger a microbiota-dependent carcinogenic pro-
cess in the gut. Showing a pro-inflammatory configura-

tion, the aged-type gut microbial ecosystem can force a 
microbiota-dependent pro-inflammatory loop in the gut, 
compromising the microbiota-host mutualism and sup-
porting carcinogenesis. Strengthening this hypothesis, the 
incidence of  CRC has been reported to increase in the 
elderly; about 50% of  the Western population develops 
colorectal polyps at the age of  70 and 5% of  these pol-
yps progress to cancer[141]. 

The pervasive role of  genotoxins in CRC onset and 
progression, led researchers to investigate triggering fac-
tors that govern toxin biosynthesis and activity. Environ-
mental changes in the gut ecosystem, such as changes in 
pH, in oxygen availability or the presence of  a specific 
metabolite, have been suggested to have a role in the 
modulation of  toxin transcription. Intriguingly, interspe-
cies quorum sensing resulting from microbe/microbe 
interaction processes has been suggested to play a role 
in governing bacterial toxin production in the gut[72,142]. 
Even if  research in this field is still in its infancy, recent 
experimental works demonstrated the strategic role of  
microbe/microbe, microbe/host and microbe/environ-
ment interaction processes in regulating bacterial viru-
lence and toxin activity. In a recent experimental research 
based on GF and conventional mice, Kamada et al[143] 
demonstrated that changes in dietary substrates can result 
in a microbiota-dependent regulation of  virulence fac-
tors. According to the Authors, dietary changes can boost 
commensals capable to outcompete toxigenic patho-
gens for food sources, resulting in the down-regulation 
of  virulence genes and eventually pathogen clearance. 
Further, Marks et al[144] demonstrated that interkingdom 
signaling as a result of  the host response to the influenza 
A virus infection was sufficient to trigger the expression 
of  Streptococcus pneumoniae virulence genes, resulting in the 
transition from commensalism to pathogenicity. Even if  
S. pneumoniae is a common human nasopharyngeal oppor-
tunistic bacterium, these findings allow us to hypothesize 
the existence of  analogous processes in the gut ecosys-
tem, resulting in the activation of  a virulence phenotype 
and toxin transcription of  enterotoxigenic CRC drivers.

CONCLUSION
The worldwide diffusion of  NGS-based microbiota 
surveys in CRC patients, alongside the utilization of  GF, 
mono associated and humanized mice, led to an increas-
ing perception of  the pivotal role exerted by the gut mi-
crobiota in CRC onset and progression. Lights on the mi-
crobial ecology of  the process have been provided, and 
possible mechanisms involved suggested. This brought 
the researchers to focus their attention on triggering fac-
tors that turn the intestinal microbiota from a mutualistic 
configuration to a CRC-promoting asset. Inflammation 
has undoubtedly a central role in this process, being a 
common outcome shared by different triggering factors, 
such as diet, aging, microbe-microbe and microbe-host 
interactions (Figure 3). In fact, changes in diet, aging, as 
well as pathobiont-dependent pro-inflammatory dysbio-
sis of  the gut microbiota, can force the gut microbiota to 
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a pro-inflammatory asset, changing the microecology of  
the gut ecosystem and activating toxigenic CRC bacterial 
drivers. In this context, of  extraordinary importance will 
be the development of  strategies able to interfere and/or 
block these triggering factors, preserving the microbiota-
host mutualism along the entire life span. Different ap-
proaches can be implemented. Since diet represents the 
pivotal strategy to modulate composition and functional-
ity of  the gut microbiota, the most promising approach 
to preserve microbiota-host mutualisms relies on dietary 
interventions. For instance, diet can be modulated to 
boost health-promoting microbiota groups, such as anti-
inflammatory members of  the Clostridium cluster Ⅳ or 
short chain fatty acid producers of  the Clostridium cluster 
XIVa. Strengthening this perspective, in a life-long lon-
gitudinal study carried out in mice, Zhang et al[145] dem-
onstrated that different diets modulated differently the 
microbiome trajectories along with aging. In particular, 
according to the Authors low-fat diet and caloric restric-
tion increased the relative abundance of  phylotypes posi-
tively associated with the life span in the middle-life, and, 
at the same time, lowered the abundance of  opportunis-
tic pro-inflammatory pathogens, which could represent 
CRC bacterial drivers. 

A second approach for CRC prevention surely relies 
on the usage of  probiotic bacteria, such as Bifidobacterium 
and Lactobacillus. Probiotics have been demonstrated to be 
effective in reducing CRC risk in humans[146-149]. Showing 
immunomodulating properties, antimicrobial activities, 
as well as the capacity to interfere with toxin synthesis 
and activity, probiotic bacteria can act simultaneously on 
different CRC triggering factors. In fact, probiotics have 
been reported as effective in quenching host inflamma-
tory response[150], in inhibiting the colonization of  known 
CRC drivers[22,151] and in inactivating bacterial toxins[152] or 
interfering with their production[153,154]. 

Even if  significant steps forward have been carried 
out, we are still far from fully appreciating the multifacto-
rial role of  the intestinal microbiota in CRC. More longi-
tudinal microbiome surveys need to be carried out, and 
intestinal polyps as well as adenocarcinoma tissues must 
be sampled, in order to follow the gut microbiota dynam-
ics over time for the development of  colonic neoplasia. 
Microbiota on tumor sites needs to be compared with 
off-tumor matched tissues, as a better comparison than 
mucosal samples from healthy patients. Associations be-
tween structure and dynamics of  the gut microbiome and 
the different stages of  colonic neoplasia need to be better 
defined, causality should be further explored, possibly by 
using GF, mono associated as well as humanized animal 
models. Finally, meta-analysis integrating epidemiological 
studies with microbiome datasets will allow us to better 
define triggering factors that force the microbiota to be-
come carcinogenic, so that hypotheses can be verified in 
mice where possible intervention strategies can be tested. 
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