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Abstract
The potential for bias due to misclassification error in regression analysis is well understood by
statisticians and epidemiologists. Assuming little or no available data for estimating
misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an
estimated effect to variations in the assumed values of those probabilities. We present an intuitive
and flexible approach to such a sensitivity analysis, assuming an underlying logistic regression
model. For outcome misclassification, we argue that a likelihood-based analysis is the cleanest and
the most preferable approach. In the case of covariate misclassification, we combine observed data
on the outcome, error-prone binary covariate of interest, and other covariates measured without
error, together with investigator-supplied values for sensitivity and specificity parameters, to
produce corresponding positive and negative predictive values. These values serve as estimated
weights to be used in fitting the model of interest to an appropriately defined expanded data set
using standard statistical software. Jackknifing provides a convenient tool for incorporating
uncertainty in the estimated weights into valid standard errors to accompany log odds ratio
estimates obtained from the sensitivity analysis. Examples illustrate the flexibility of this unified
strategy, and simulations suggest that it performs well relative to a maximum likelihood approach
carried out via numerical optimization.
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1. Introduction
As a special case of covariate measurement error [1], the misclassification of categorical
predictor variables in regression analysis is known to pose a potentially serious threat to the
validity of parameter estimates and statistical inferences. Errors in measuring binary
outcome variables are an equally real possibility in applied research. As such,
misclassification has long been a topic of interest to statisticians and epidemiologists,
beginning with classic papers characterizing its effects upon the estimation of odds ratios
based on tabular data [2--4]. These references provided groundwork for methods
incorporating validation [5--7] or reproducibility data (e.g. [8, 9]) into statistical corrections
in order to obtain valid point and interval estimates.
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Often, however, investigators may suspect the potential for misclassification but have no
auxiliary data available for estimating sensitivity and specificity parameters upon which one
would base a correction. In such cases researchers might turn to sensitivity analysis, in
which these parameters would generally be assumed to be known and then a value for the
desired measure of effect (usually an odds ratio) is inferred based on those assumptions. By
varying the assumed values of the misclassification parameters, one can get a feel for the
feasible range of the association parameter of interest and for the extent to which its
estimated value based on the error-prone covariate data may be misleading.

Examples of sensitivity analysis in the misclassification context are prevalent in the recent
epidemiologic and statistical literature [10--14]. We agree with these previous authors about
the utility of such analyses, and the importance of making tools for conducting them
available for statistical and epidemiologic research. Most prior work has focused on standard
tabular data, with a binary risk factor subject to misclassification. Fox et al. [11] offered an
extension by providing a computer macro to apply sensitivity analysis toward the odds ratio
associated with a misclassified binary variable, adjusted for other covariates via logistic
regression. Here, we seek to further extend the focus within the logistic regression setting
while enhancing the conceptual and computational accessibility of such sensitivity analyses.

Our approach is to treat the problems of outcome and covariate misclassification separately.
In the former case, we find a likelihood-based analysis to be straightforward and consistent
with prior literature [15]. When a predictor variable is misclassified, however, the choice of
an ideal approach is less clear-cut. In this case our goal is to propose a unified
methodological framework that allows one to account for implied restrictions on parameters,
and to generalize sensitivity analyses into new and important directions. While some
programming is required, our recommended approach is less simulation-driven than prior
proposals [10, 11] and we provide sufficient detail to make it readily programmable by
potential users. Estimated odds ratios reflecting the assumed misclassification rates are
obtained using standard software for logistic regression, with appropriately defined weights.
The result is a complete set of estimated regression parameters corresponding to the desired
logistic regression model, with jackknife-based standard errors recommended to properly
account for variability in the observed data. The weighting approach provides welcome
flexibility and generalizations, and we draw comparisons between it and direct maximum
likelihood (ML) as an alternative.

A note about the approaches to be described below is that their applicability is somewhat
dependent upon study design considerations. In general, the methods aimed at adjusting for
covariate misclassification are most readily applicable in cross-sectional or retrospective
(case-control) study designs, as opposed to studies in which the distribution of exposure is
controlled by the investigator. Similarly, methods aimed at outcome misclassification tend to
be most suitable under cross-sectional or prospective sampling schemes.

2. Methods
2.1. The no-covariate case: basic sensitivity analysis

To begin, consider estimating a crude odds ratio corresponding to a potentially misclassified
binary risk factor. Table I revisits data from an often-cited case-control study of the
relationship between maternal antibiotic use during pregnancy and the odds of sudden infant
death syndrome (SIDS) [5--7, 16]. The observed exposure data reflect self-reported
antibiotic use (Z), whereas the aim is to associate the true binary variable of antibiotic use
(X) with SIDS status (Y).
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The observed odds ratio (OR) associated with Table I is 1.309, corresponding to an
estimated ln(OR) (std. error) of 0.269 (0.150). A sensitivity analysis to examine potential
effects of misclassification would be based on one or more sets of assumptions about the
underlying sensitivity (SE) and specificity (SP) parameters. These consist of SE=Pr(Z =1|X
=1) and SP=Pr(Z =0|X =0) or, for differential misclassification [17], SEy=Pr(Z =1|X =1, Y =
y) and SPy=Pr(Z =0|X =0, Y = y)(y=0, 1).

In this simple 2×2 case-control setting, the most straightforward approach to sensitivity
analysis may be to base it directly on writing familiar ‘matrix-method’-type identities in
terms of probabilities [3, 18]. In particular, it is easily shown that

(1)

where πy =Pr(X =1|Y = y) and  (y =0,1). Given estimates of  from the
observed data, one may supply values for SEy and SPy and then calculate the resulting true

exposure probabilities via (1). The estimate  follows as π1(1−π0)[π0(1−π1)]−1, where
typically we would examine several (SEy, SPy) combinations to obtain a range of estimated
ORs. The delta method may readily be used to estimate the variance of each ln(OR)
estimate, accounting for uncertainty in the estimates  and  based on the observed data.

Equation (1) is also useful in that it implies two important restrictions that should be
considered when conducting the analysis:

(2)

Choosing values of SEy and SPy that are incompatible with these restrictions (upon replacing
the ’s by their estimates) will generally lead to numerical issues with the sensitivity
analysis.

As an alternative procedure for determining the sensitivity analysis-based log(OR) estimate
and its standard error, one could also adopt an ML approach. For instance, assume the
underlying logistic regression model of interest:

(3)

where primary interest is in the log(OR) parameter (β). Observed-data likelihood
contributions corresponding to investigator-supplied SEy and SPy values are expressible in a
traditional manner applicable to covariate measurement error settings [1], with a slight
adjustment to account for potentially differential misclassification:

(4)

Note that the first term on the right side of (4) is determined by the assumed (SEy, SPy)
values, whereas the second term follows from model (3) and the last is an estimable
nuisance parameter. Numerically maximizing the log-likelihood determined by the
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contributions in (4) provides  with its standard error estimable by approximating
the observed information matrix.

In the following section, we outline a third approach to sensitivity analysis for covariate
misclassification that facilitates implementation and generalization, while making an
intriguing alternative to the direct ML approach based on equation (4).

2.2. The no-covariate case: predictive value weighting
While basing sensitivity analysis on the matrix-method identity in (1) may offer the most
direct route in the no-covariate setting, several authors [10, 11] have proposed methods
based on positive and negative predictive values. The basic idea is to ‘reconstruct’ data that
might have been observed under no misclassification, by using the observed data (e.g. Table
I) together with assumptions about (SEy, SPy) to arrive at estimates of PPVy =Pr(X =1|Z =1,
Y = y) and NPVy =Pr(X =0|Z =0, Y = y). Once these predictive value estimates based on the
observed data and the assumed (SE, SP) values are in hand, we note that the following
identity analogous to (1) may be applied to execute sensitivity analysis:

(5)

This identity underlies the ‘inverse’ matrix method [6], which proves particularly useful
when adjusting for differential misclassification in the presence of internal validation data
[18, 19].

The use of (5) for sensitivity analysis is less direct than using (1), because of an additional
step needed to obtain the appropriate PPVy and NPVy values by combining the assumed
(SEy, SPy) combinations with the estimates of  (y =0,1). One can show that PPVy and
NPVy are found as the solution to two linear equations, represented compactly as follows:

(6)

where

and we replace the ’s by observed data-driven estimates. Use of this result in conjunction
with (5) would also complicate standard error calculations relative to using (1). However,
the estimated predictive values in (6) are the key to the approach advocated henceforth, in
which we use them as weights for fitting a desired logistic regression model while adjusting
for covariates.

To outline the proposed approach in the no-covariate case, consider viewing each (Z,Y)
record in Table I as reflecting two possible (X,Y) records (one with x =0, the other with x
=1). Thus, the four possible (Z,Y) pairs yield a total of eight (X,Z,Y) combinations, each of
which we weight appropriately as indicated in Table II. The fourth column in Table II
defines the predictive value weights that are central to our approach, whereas the two right-
most columns provide the estimated values of these weights corresponding to the observed
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data in Table I for the non-differential and differential example scenarios detailed in Section
3.1.

The appeal of this approach is that the desired model associating Y with the true binary
exposure variable (X) may now be fit directly to the (y, x) data in Table II. Formally, we
maximize the weighted log-likelihood given by

(7)

where the nzy’s represent the observed-data cell counts where Z = z and Y = y (z, y =0, 1)
and lxy(θ) is the log-likelihood contribution for a (y, x) pair. In practice, this simply means
that we fit the logistic regression model (3) to the (y, x) data in Table II, applying the
weights (wxzy). This can be accomplished via standard software, e.g. by direct application of
the SAS LOGISTIC procedure with a ‘WEIGHT’ statement [20] to the expanded data set.
This straightforward one-step weighting process removes any need for simulation (e.g.
[11]). Note that we fit the logistic model to a total of twice the number of observations as
originally obtained (i.e. 2288 for the Table I example), since each observation is replicated
to allow either x =0 or x =1.

To obtain a standard error accounting for the uncertainty in the observed-data estimates of 
(y=0, 1) used to compute the weights, we suggest a standard bootstrap [21] or jackknife [21,
22] procedure. We use the jackknife estimator henceforth, as we find it much less
susceptible to numerical problems. Specifically, the potential for conflicts with the necessary
restrictions in (2) is very small when employing the jackknife but can be substantial under
bootstrap sampling. For each ‘leave one out’ sample from the original observed data, we re-
calculate the weights via (6) and re-fit the weighted [summationtext] [summationtext]
logistic regression in (7) using standard software. The jackknife standard error is calculated

based on the  resulting θ estimates.

2.3. Outcome misclassification in the no-covariate case
When the outcome (Y) rather than the exposure (X) is potentially misclassified, the problem
has been more broadly discussed in the literature [15, 23, 24]. Magder and Hughes [15]
facilitated EM algorithm-based ML analysis via weighting of observations in a manner
somewhat akin to our proposal for risk factor misclassification in the previous section. We
favor a direct ML approach for outcome misclassification, given the straightforward manner
in which the appropriate likelihood can be specified and numerically maximized. Assume
that we desire to fit model (3), but that an error-prone variable Y* is observed in place of the
true binary outcome Y. The sensitivity and specificity of Y* are given by SEx =Pr(Y* =1|Y
=1, X = x) and SPx =Pr(Y* =0|Y =0, X = x) (x =0, 1). Observations contribute to the
likelihood as follows:

(8)

with the first term given by the assumed (SEx, SPx) values and the second by the desired
model (3). This function is readily handled using standard optimization routines such as
those available in SAS IML [25], Splus [26], and R [27]. Standard errors for all parameters
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in model (3) are also readily obtained using such software via close numerical
approximations to the observed information matrix. Note that when specifying SEx and SPx,
restrictions identical to those in (2) should be observed, except with ‘x’ replacing ‘y’ in the
subscripts.

2.4. Adjusting for covariates: predictive value weighting and ML
We now turn to the more common setting in which interest lies in one or more covariate-
adjusted odds ratios, normally estimable by the following multiple logistic regression model:

(9)

As before, we assume that X is subject to misclassification and that one only has access to
the error-prone binary variable Z. We assume that the covariates Cj(j =1, …, J) are observed
without error.

Although one might initially contemplate covariate-adjusted sensitivity analysis using a
generalization of equation (1), there are some fundamental drawbacks to such a strategy. A
more promising approach is to generalize the likelihood in equation (4). In this case, the
investigator specifies the parameters SEyc=Pr(Z =1|X =1, Y =y, C=c) and SPyc=Pr(Z =0|X
=0, Y =y, C=c) (x, y, z=0, 1). Observed-data likelihood contributions corresponding to these
specified values are given by Pr(Y =y, Z =z|C=c), which may be expressed as follows:

(10)

As before, the first term in (10) reflects the assumed (SEyc, SPyc) values, whereas the second
term reflects the desired model (i.e. (9)). The last term might be modeled, e.g., via a second
logistic regression model of X on C.

Alternatively, the predictive value weighting approach introduced in Section 2.2 remains
conceptually straightforward and accessible in the covariate-adjusted case based on the
following multivariable extensions of (5) and (6):

(11)

and

(12)

where
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and . Here, the predictive value parameter definitions have been
generalized in the expected manner, i.e. PPVyc =Pr(X =1|Z =1, Y = y, C=c) and NPVyc
=Pr(X =0|Z =0, Y = y, C=c). With the (SEyc, SPyc) parameters specified by the investigator,
the method proceeds exactly as before. We propose estimating the ’s via logistic
regression, with attention to model fitting. For example, the assessment of potential
interactions between Y and the Cj’s may validate the model

(13)

Otherwise, model (13) may be enriched with product terms to account for interactions
present in the observed data, in the interest of valid  estimates for use in (12). Note that
predictive value weighting requires a model for Z|(Y, C), whereas ML via (10) requires a
model for X|C.

We emphasize again the need for caution with respect to restrictions implied by the
extension to equation (1) to incorporate covariates. Analogous to (2), it follows that

(14)

for all (y, c) combinations. Investigator-supplied values of SEyc or SPyc that fail to honor
these restrictions (when replacing the ’s by their estimates) can contribute to numerical
problems with ML based on (10), and produce predictive value weights via (12) that are
outside the (0, 1) range. Thus, it is reasonable to allow the observed data to inform one’s
(SE, SP) choices, as suggested in (14). When all predictor variables are categorical in nature,
it is straightforward to incorporate these restrictions into the selection of SEyc or SPyc. With
one or more continuous predictor (C) variables, we suggest the use of the following
adjustments for this purpose:

(15)

where  and  are the a priori investigator-supplied values and  is estimated, e.g.,
via the logistic regression of Z on (Y, C) in (13). In the case of predictive value weighting,
the adjustments in (15) simply equate to setting negative weights produced by the original

 values equal to 0, while setting weights in excess of 1 equal to 1.

2.5. Adjusting for covariates: outcome misclassification
For covariate-adjusted sensitivity analysis to outcome misclassification via model (9), we
prefer a direct likelihood approach as in Section 2.3. The form for the likelihood
contributions becomes

(16)
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where the second term in the summation follows from (9) and the first term is determined by
the user-specified values SExc =Pr(Y* =1|Y =1, X = x, C=c) and SPxc =Pr(Y* =0|Y =0, X = x,
C=c) (x=0, 1). Restrictions as in (14) apply, except again with ‘x’ replacing ‘y’ in the
subscripts.

2.6. Extensions
An advantage of the predictive value weighting approach is that extensions to more complex
scenarios are conceptually straightforward. For example, suppose one was interested in
sensitivity analysis in a situation where two binary predictors (X1 and X2) are subject to
misclassification via corresponding observed surrogates Z1 and Z2. The appropriate
expanded data set would consist of four (y, x1, x2, c) records in place of each observed (y, z1,
z2, c) record, with each observation weight of the form Pr(X1 = x1, X2 = x2|Z1 = z1, Z2 = z2, Y
= y, C=c). Though more challenging than in the case of a single misclassified predictor, the
calculation of these weights in analogous fashion could be facilitated to the extent that the
investigator is willing to make simplifying assumptions about the misclassification
processes (e.g. independent and/or non-differential misclassification of X1 and X2).
Similarly, suppose we were concerned with misclassification of the outcome (Y) in addition
to one binary predictor (X). In that case, each observed (y*, z, c) record could be replaced by
four (y, x, c) records, with weights of the form P(Y = y, X = x|Y* = y*, Z = z, C=c). Again,
estimation of these weights might be facilitated by certain plausible simplifying
assumptions. The form of the weights suggests that this latter scenario may only be
defensible under cross-sectional study designs.

3. Examples
3.1. The no-covariate case

For the data in Table I, we have  and . Suppose the
investigator assumes non-differential misclassification, with SE=0.6 and SP=0.9. It follows
from (1) that  and  so that  and

, with the latter standard error obtained by the delta method. In
contrast, suppose we had specified the following differential conditions: SE1=0.6, SP1=0.8,
SE0=0.7, SP0=0.9. Using (1), we obtain  and  so that

, with . Note the dramatic shift in implications assuming
differential misclassification.

Applying direct ML (see equation (4)) to the data in Table I yields 

and  under the non-differential and differential assumptions
outlined above, respectively. Thus, results via the matrix-method identity in (1) with a delta
method-based standard error are effectively identical to ML utilizing (4).

Application of the SAS LOGISTIC procedure with a ‘WEIGHT’ statement [20] to the
expanded data set in Table II produces solutions identical to those of the matrix-method and

likelihood-based approach:  and  for the non-
differential and differential cases, respectively. To estimate standard errors accounting for

uncertainty in  and , we obtained 1144  estimates using the proposed weighting
method, each one calculated by leaving out a unique (zi, yi) pair. The jackknife standard
error estimate [22] is 0.318 in the non-differential case and 1.170 in the differential case,
closely matching the estimates obtained via the matrix-method and ML approaches.
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Figure 1 displays ln(OR) estimates determined by predictive value weighting, with bars
indicating ±1 jackknife standard error, for several (SE, SP) combinations characterizing non-
differential exposure misclassification in the SIDS study data in Table I. Note that this more
extensive sensitivity analysis is particularly informative in that it indicates very little change
in the ln(OR) estimate as SE varies for a fixed SP (left panel of Figure 1), but dramatic
changes as SP varies for a fixed SE (right panel). In exploring a greater variety of (SE, SP)
scenarios in practice, one may wish to consider displaying the results via contour plots (e.g.
[12]).

To illustrate sensitivity analysis for outcome misclassification, let us now pretend that
sampling for the SIDS study had been done in a prospective or cross-sectional manner and
that the outcome (Y) rather than the exposure (X) was error-prone. We then view the data in
Table I as depicting Y* vs. X. Numerically maximizing the likelihood based on equation (8)

assuming non-differential error with SE=0.6 and SP=0.9 yields , so
that . Assuming instead a differential scenario with SE1=0.6, SP1=0.8, SE0=0.7,

and SP0=0.9 gives , so that . In both of these cases, the
natïve OR estimate 1.31 would be markedly attenuated.

3.2. Adjusting for a binary covariate
For the purpose of illustration, Table III shows the original SIDS data of Table I, stratified
based on an artificial binary covariate C. Equation (9) gives the desired model, with X as the
predictor of primary interest and C as the sole covariate. Estimates of ’s were obtained via
model (13), after first verifying non-significance of a Y*C interaction term. These estimates
are as follows: , , , .

Table IV provides definitions and estimates for the predictive value weights in this example,
based on two distinct sets of assumed SEyc and SPyc values. The first case assumes non-
differentiality with respect to both Y and C, such that SEyc =0.7, SPyc =0.9 (y =0, 1;c =0,1).
The second illustrates a differential case in which SE and SP are allowed to vary with Y and
C, as follows: SE11 =0.75, SE10 =0.75, SE01 =0.8, SE00 =0.8, SP11 =0.85, SP10 =0.85, SP01
=0.9, SP00 =0.9. The natïve estimates and standard errors for the coefficients corresponding
to X and C (β and γ) are 0.206 (0.152) and 0.497 (0.126), respectively. This yields natïve
adjusted OR estimates of 1.22 (X) and 1.64 (C). In contrast, in the non-differential case the
predictive value weighting approach yields  and ,
corresponding to adjusted OR estimates of 1.50 and 1.58 (standard errors obtained via the
jackknife). In the differential case, we obtain  and ,
corresponding to adjusted OR estimates of 0.86 and 1.71. Note here that non-differential
misclassification implies attenuation of the naïve β estimate, whereas the assumed
differential misclassification pattern yields a naïve estimate on the opposite side of the null
relative to the adjusted estimate. The estimates of γ are also impacted by misclassification of
X, though more modestly than those of β.

3.3. Adjusting for multiple and continuous covariates
In this section, we use an example data set from the logistic regression text by Hosmer and
Lemeshow [28]. The original data on 380 subjects with prostate cancer were obtained at The
Ohio State University Comprehensive Cancer Center, and were modified to protect
confidentiality. We utilize data from 378 patients (two men with Gleason score values of 0
were removed). The outcome (Y) is a binary indicator for whether or not cancer had
penetrated the prostatic capsule, and the predictor variables that we consider are the patient’s
Gleason score and prostate specific antigen (PSA) value (C1 and C2; both continuous), and a
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binary indicator (X, but observed as Z) for whether nodules were detected via a digital rectal
exam. For illustrative purposes, we assume that nodule detection was subject to
misclassification.

As described in Section 2.4, estimated  values were obtained via model (13), with Z as the
outcome and Y, C1, and C2 as covariates. The ’s ranged from 0.52 to 0.93, with 22 values
exceeding 0.9. Table V provides the ‘naïve’ logistic regression results, together with the
results of applying the ML and predictive value weighting methods under the assumption
that nodule detection was non-differentially misclassified with SE=0.9 and SP=0.8. We
performed both analyses with and without adjusting the assumed value of SEyc upward to
equal  for the 22 subjects with  [see equations (15)]. The results in Table V are
based on making this adjustment in conjunction with both the ML and predictive value
weighting methods, but in both cases they differed only slightly from the unadjusted results.
Note that accounting for the misclassification in Z as a surrogate for X markedly moves the
naïve OR estimate for nodules away from the null (e.g. e2.348 =10.46 via weighting, vs the
naïve estimate e1.172 =3.23). Also note that the ML estimates are accompanied by smaller
standard errors than those based on predictive value weighting in this example. However,
simulation studies (see next section) indicate that this result may not reflect general trends.

Table VI gives predictive value weighting-based estimated log ORs corresponding to true
nodule status (X), along with jackknife standard errors, for several assumed (SE, SP)
combinations in the prostate cancer example. These results suggest that in this case ln(OR)
is much more sensitive to changes in SE given a fixed SP than to changes in SP for a fixed
SE, an opposite conclusion to that found in our no-covariate example (Section 3.1; Figure
1). Though not shown in the table, estimated ln(OR)’s corresponding to C1 and C2 varied
only slightly with the assumed (SE, SP) values, and were similar to the ‘naïve’ estimates for
those variables.

3.4. Placing an assumed distribution on (SE, SP)
In previous examples, we calculated standard errors assuming fixed and known investigator-
supplied (SE, SP) values. Some authors [10--14] suggest building in additional variability
due to uncertainty about these misclassification parameters by specifying underlying joint
densities for them and applying imputation-like or Bayesian methods. Such accommodation
is readily made using the approach advocated here, although the necessity may be debatable
(see Discussion).

To illustrate, we revisit the SIDS example (Table I; Section 3.1). Suppose that we presume
non-differential misclassification of exposure, and wish to summarize uncertainty about SE
and SP by assuming that they each derive independently from a trapezoidal distribution (see,
e.g. [11]) with a minimum of 0.85, maximum of 1, and lower and upper modes of 0.9 and
0.95.

In this case, the goal of sensitivity analysis is to produce one point estimate of the odds ratio,
together with an interval estimate that simultaneously takes account of the variability in the
observed data (Table I) and the postulated systematic variability of SE and SP. We
accomplished this as follows. First, we independently selected 2000 (SE, SP) pairs, with
each taken randomly from the assumed trapezoidal distribution. For each pair, we computed
the estimated ln(OR) via the predictive value weighting method, together with its jackknife
standard error. We then generated 500 random draws from a normal distribution with mean
and standard deviation matching that estimated ln(OR) and its associated standard error.
Repeating this process for each of the 2000 (SE, SP) pairs and pooling the results produced a
histogram of 2000×500 ln(OR) values, which is depicted in Figure 2. The 2.5th, 50th, and
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97.5th percentiles of this distribution are −0.053, 0.418, and 1.155, respectively.
Exponentiating these produces a median OR estimate of 1.52, with approximate 95 per cent
confidence limits of (0.95, 3.17). These may be contrasted with the ‘naïve’ estimates of 1.31
(0.98, 1.71). This approach to interval estimation accounting for both random and systematic
variation is akin to that suggested by Fox et al. [11], except that we produced each of our
2000 ln(OR) estimates via a single logistic regression with predictive value weighting, rather
than by simulation.

4. Simulation studies
We conducted numerous simulation studies to validate point estimates produced by the
predictive value weighting method, and to assess the appropriateness of the corresponding
jackknife standard errors. Here we first report the results of one such study, assuming one
binary covariate as in the example described in Section 3.2. A total of 1000 sets of data were
generated under model (9), with two binary predictors (X and C) and a total sample size of
1144 (to mimic the SIDS example). The misclassified variable Z was generated assuming
the following differential conditions: SE11=SP11=0.7, SE10=SP10=0.75, SE01=SP01=0.8,
SE00=SP00=0.85. The true coefficients under model (9) were selected as follows: α=−0.8,
β=1.7, and γ=1. The prevalences of X and C and their association were determined by the
following simulation conditions: Pr(X =1)=0.5, Pr(C =1|X =1)=0.66, and Pr(C =1|X
=0)=0.41.

Table VII summarizes the results of this first simulation study. Under these conditions,
fitting the ‘naïve’ logistic regression that inserts Z in place of the unknown true binary
exposure X leads to marked attenuation in the estimates of both β and γ, with severely
subnominal confidence interval (CI) coverage (0 per cent in the case of β). In contrast, the
estimates of β and γ based on the ML approach [equation (10)] and the predictive value
weighting [equation (12)] approach are nearly identical and display minimal small-sample
bias. Both methods produce average standard errors close to the empirical standard
deviations of the point estimates, and yield excellent CI coverage. In particular, we find the
jackknife standard error estimate to be quite reliable and accurate in conjunction with
predictive value weighting.

Our second simulation study is designed to incorporate continuous covariates by mimicking
the conditions of the prostate cancer example. Specifically, 500 independent data sets of size
n = 378 were generated via models (9) and (13), with true parameters matching those
estimated for the prostate cancer data via the ML method with the adjustment in (15) (see
Table V). For each data set, we applied the ML and predictive value weighting methods,
with and without adjustment. The results based on simulations incorporating adjustment are
summarized in Table VIII, because (particularly in the case of ML) we observed more
numerical problems without it. With regard to numerical stability, only 2 of 500 simulations
led to ‘blow ups’ of the estimate of β and/or its standard error in using predictive value
weighting, whereas 24 of 500 simulations reflected such problems based on ML. The results
in Table VIII are based on the remaining simulated data sets in each case (see table
footnote).

Other key features to note in Table VIII are the marked attenuation of the naïve estimate for
β, along with upward bias in the naïve estimate for γ2. The ML and weighting methods
perform similarly, although there are more pronounced differences than were seen in the
binary covariate case (Table VII). In particular, we observe slight positive bias in the ML
estimator for β, and negative bias of a similar magnitude based on predictive value
weighting. Confidence interval coverage appears slightly better for ML, possibly in part due
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to larger mean estimated standard errors. The methods perform almost identically when
estimating γ1 and γ2.

5. Discussion
We have attempted to provide a relatively complete treatment of sensitivity analysis for
binary covariate and outcome misclassification in the logistic regression setting. This topic
has been emphasized in recent epidemiological literature, and our approach to covariate
misclassification appears to have close connections with the macro implementations of Fox
et al. [11]. However, the predictive value weighting approach provides added flexibility and
crystallizes a technique that was previously only possible via simulation. We have compared
that approach with direct ML in order to make informed recommendations for practical use.
We hope the details and examples provided here, together with evaluating the statistical
performance of the methods, will promote further interest in these concepts among
statisticians and epidemiologists.

Our study permits numerous insights into the process of sensitivity analysis. First, we
distinguish the cases of outcome and covariate misclassification, finding the former to be
readily addressed via direct likelihood parameterizations [equations (8) and (16)]. Note in
particular that in that case, the likelihood relies only on the assumed (SE, SP) values and the
underlying logistic model [e.g. (3) or (9)] of interest. For the simple 2×2 case with
misclassified exposure, we find straightforward ‘matrix-method’-based [3] identities
[equation (1)] to be a fully adequate basis for effective sensitivity analysis. Such identities
also clarify restrictions [equations (2) and (14)] that, while not explicitly recognized in some
prior references, may need to be observed in order to prevent numerical breakdowns when
seeking adjusted parameter estimates.

For the case of exposure misclassification accounting for covariates, our primary
contribution is the development of the predictive value weighting approach [equations (6)
and (12)] and its comparison against ML [equation (4) and expression (10)]. Our simulation
results suggest that these two methods perform nearly identically in the no-covariate case,
and in the case of all categorical covariates. In the case of continuous covariates, however,
we find that predictive value weighting can be more stable than ML via numerical
optimization (see footnote to Table VIII). Another useful way to compare and contrast the
two methods is in terms of the additional modeling that each requires [see comment
following equation (13)].

Our main focus has been the process of obtaining estimated log odds ratios in logistic
regression that are adjusted for misclassification based on assumed SE and SP parameters,
together with valid standard errors that account for variation in the data actually observed.
We believe this usually constitutes the primary aim of such sensitivity analyses. In Section
3.4, however, we illustrate the use of assumed distributions (essentially priors) for SE and
SP, in order to find a single adjusted point estimate and confidence interval accounting for
both random and systematic variation. This is the approach advocated by some authors [11,
12], from whom we borrow the idea of the trapezoidal distribution for illustration. In the
case of differential misclassification, these authors discuss the use of assumed joint
distributions for SE and SP that account for their possible correlation. These may be readily
incorporated along with the predictive value weighting approach advocated here, although
we recommend use of such assumed distributions only when it best matches overall
objectives. For example, a sensitivity analysis summarizing results based on a collection of
assumed (SE, SP) values, such as that illustrated in Figure 1, will sometimes be more
informative. In that case, the valuable insight that the odds ratio is primarily sensitive to
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variations in SP rather than SE would have been masked by assuming a joint distribution for
those parameters to produce a single point estimate.

The favorable performance of predictive value weighting relative to ML is encouraging, as
the former also appears well-equipped to facilitate natural generalizations (Section 2.6).
Perhaps the main advantage of predictive value weighting, however, is the intuitive appeal
of the expanded data set with appropriate weights, which is analyzed using standard logistic
regression software. This makes sensitivity analysis more computationally accessible,
obviating the need for either simulation [10, 11] or numerical likelihood maximization to
obtain point estimates. Variations of such case weighting approaches have proven useful for
the analysis of incomplete data [29, 30], as well as in other contexts such as power and
sample size approximation [31].

The ability to allow SE and SP parameters to vary according to subject characteristics
(Section 2.4) is critical, given the realism of this scenario in practice [32, 33]. However,
postulating appropriate values for SEyc and SPyc poses obvious challenges when multiple
covariates are considered. Future work may identify a role for predictive value weighting in
regression-based predictor variable misclassification corrections when internal validation
data are available to identify these parameters.
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Figure 1.
Point ln(OR) estimates with error bars (±1 jackknife standard error) for several (SE, SP)
combinations assuming non-differential misclassification of exposure in conjunction with
the SIDS study data in Table I.
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Figure 2.
Histogram of 2000×500 ln(OR) estimates accounting for both random error in the observed
SIDS study data (Table I) and systematic error in the assumed distributions of SE and SP.
Here, SE and SP are assumed to be derived independently from the trapezoidal distribution
described in Section 3.4. The vertical axis represents the percentage, and a kernel smooth is
overlaid.
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Table I

Data from case-control study of sudden infant death syndrome (SIDS) and reported maternal antibiotic use.*

Self-reported use of antibiotics (Z)

Case-control status (Y) 1 0

1 122 442

0 101 479

*
Reference: Drews et al. [16].
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Table III

Data from case-control study of sudden infant death syndrome (SIDS) and reported maternal antibiotic use.*

C =1† C =0†

Self-reported use of
antibiotics (Z)

Self-reported use of
antibiotics (Z)

Case-control status (Y) 1 0 1 0

1 60 170 62 272

0 42 127 59 352

*
Reference: Drews et al. [16].

†
Artificial binary stratification variable (C) used for illustration
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Table V

‘Naïve’ and misclassification-adjusted results for prostate cancer data example.*

‘Naïve’ model
Estimate (std. error)

Maximum likelihood †
Estimate (std. error)

Predictive value weighting ‡
Estimate (std. error)

Intercept −8.197 (1.055) −8.708 (1.295) −8.773 (1.454)

Presence of nodules (X) 1.172 (0.322) 2.160 (0.842) 2.348 (1.039)

PSA (C1) 0.029 (0.009) 0.029 (0.010) 0.030 (0.012)

Gleason score (C2) 1.000 (0.161) 0.936 (0.172) 0.918 (0.178)

*
Data example from Hosmer and Lemeshow [28]; Outcome (Y)=prostatic capsule penetration; assuming nodule detection misclassified with

SE=0.9, SP=0.8.

†
See expression (10); adjustment in (15) applied to 22 of the 378 subjects.

‡
See equation (12); std. errors via jackknife; adjustment in (15) applied to 22 of the 378 subjects.
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Table VI

‘Naïve’ and non-differential misclassification-adjusted results for prostate cancer data example, assuming a
range of (SE, SP) values.*,†

Assumed SE

Assumed SP 0.9 0.95

0.7 2.449 (1.072) 1.666 (0.488)

0.8 2.348 (1.039) 1.581 (0.467)

0.9 2.274 (1.014) 1.520 (0.451)

*
Data example from Hosmer and Lemeshow [28]; Outcome (Y)=prostatic capsule penetration.

†
Table entries correspond to estimated adjusted coefficient for presence of nodules (X), via predictive value weighting method [see equation (12)];

std. errors via jackknife; adjustment in (15) applied to 22 of the 378 subjects when SE=0.9.
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Table VII

Simulation results for logistic regression with X misclassified and one other binary covariate (C).*

Parameter ‘Naïve’ method Maximum likelihood method† Weighting method‡

β 0.93 (0.14) 1.72 (0.28) 1.72 (0.28)

[0.13] [0.28] [0.28]

{0.0 per cent} {94.3 per cent} {94.6 per cent}

γ 1.19 (0.13) 0.99 (0.17) 0.97 (0.17)

[0.13] [0.17] [0.18]

{70.5 per cent} {96.5 per cent} {97.5 per cent}

*
Numbers in each cell reflect mean (standard deviation) based on 1000 simulated data sets, with true values β=1.7 and γ=1.0. Values in brackets [ ]

are mean estimated standard errors; values in braces { } are 95 per cent confidence interval coverage rates.

†
See expression (10).

‡
See equation (12); std. errors via jackknife; assumed SE and SP values given in text of Section 4.
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Table VIII

Simulation results for logistic regression with X misclassified and two continuous covariates (C1 and C2).*

Parameter ‘Naïve’ method Maximum likelihood method† Weighting method‡

β 1.16 (0.34) 2.29 (0.88) 2.06 (0.87)

[0.33] [1.22] [0.99]

{16.0 per cent} {94.5 per cent} {93.6 per cent}

γ 1 0.03 (0.009) 0.03 (0.010) 0.03 (0.010)

[0.009] [0.010] [0.010]

{95.0 per cent} {95.8 per cent} {95.0 per cent}

γ 2 1.03 (0.12) 0.96 (0.13) 0.92 (0.13)

[0.13] [0.14] [0.14]

{92.0 per cent} {97.1 per cent} {95.4 per cent}

*
Numbers in each cell reflect mean (standard deviation) based on 500 simulated data sets, with true values β=2.16, γ1=0.03, and γ2=0.94. Values

in brackets [ ] are mean estimated standard errors; values in braces { } are 95 per cent confidence interval coverage rates.

†
See expression (10); 24 of 500 runs discarded due to numerical instability.

‡
See equation (12); std. errors via jackknife; assumed SE and SP values given in text of Section 4; 2 of 500 runs discarded due to numerical

instability.
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