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Abstract
Microsatellite instability (MSI) is a hypermutable phenotype caused by the loss of DNA mismatch
repair activity. MSI is detected in about 15% of all colorectal cancers; 3% are of these are
associated with Lynch syndrome and the other 12% are caused by sporadic, acquired
hypermethylation of the promoter of the MLH1 gene, which occurs in tumors with the CpG island
methylator phenotype. Colorectal tumors with MSI have distinctive features, including a tendency
to arise in the proximal colon, lymphocytic infiltrate, and a poorly differentiated, mucinous or
signet ring appearance. They have a slightly better prognosis than colorectal tumors without MSI
and do not have the same response to chemotherapeutics. Discovery of MSI in colorectal tumors
has increased awareness of the diversity of colorectal cancers and implications for specialized
management of patients.
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Cancers can be characterized by patterns of changes in gene expression. Genes that mediate
tumorigenesis can be broadly characterized as oncogenes, which are activated by alterations;
and tumor suppressor genes, which are inactivated during tumorigenesis. Oncogenes can
encode growth factors or their receptors, signaling molecules, regulators of the cell cycle,
and other factors that regulate cell proliferation and survival. Their oncogenicity can be
induced by mutations that lead to overactive gene products, amplifications that alter copy
number, alterations or rearrangements that affect promoter function, or modified interactions
with regulators of transcription or epigenetic modification. Tumor suppressors restrain
growth and proliferation, passage through the cell cycle, motility, invasion, or other
functions related to stable differentiation. Genes that encode tumor suppressors are
commonly inactivated by deletion, mutations, promoter methylation, or other changes in
regulation. Colorectal cancers (CRCs) develop gradually over a long period of time through
the sequential accumulation of genetic alterations that overcome the redundant control
mechanisms built into each cell.1 Only a few mutations are common to most colorectal
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tumors, but each tumor has a unique combination of genetic alterations.2 It is possible that
no 2 CRCs are alike, a daunting consideration for the rational planning of treatment.

Models of CRC Pathogenesis
It was not immediately obvious that CRCs would be so diverse genetically. The initial
attempt to characterize multistep carcinogenesis resulted in a novel conceptual model in
which specific genetic alterations were associated with the sequential evolution of the
neoplastic phenotype in the colon. In the model proposed by Fearon and Vogelstein,
inactivation of the adenomatous polyposis coli (APC) gene led to the initial appearance of
the adenoma from normal colonic mucosa, mutations in KRAS were associated with growth
of the adenoma, genetic alterations (mainly deletions) to genes on chromosome 18q resulted
in adenoma growth and progression, and biallelic loss or inactivation of p53 mediated the
adenoma-to-carcinoma transition.3 Chromosomal instability and loss of heterozygosity
(LOH) are important steps in this process, and there is a relationship between the degree of
LOH and tumor progression.4,5 Although this model, proposed in 1990, has been useful,
only a few CRCs actually evolve along this pathway.2,6

Fearon and Vogelstein3 were careful to characterize the genetic changes as “alterations” and
did not presume to have determined the mechanisms involved. Some of the alterations were
point mutations (as occurs in KRAS), whereas many were deletions of relatively large pieces
of chromosome (such as on 18q, in which an arm or whole chromosome can be deleted).
Point mutations can occur through a number of mechanisms, such as chemical
carcinogenesis or unrepaired “natural” degradation of DNA. A diet-induced increase in
proliferation can create replicative errors in DNA that exceed the ability of the cell to repair
them. The origin of genetic deletions and LOH is complex and is addressed in the
accompanying review of chromosomal instability.

A controversy emerged between investigators who thought that some type of genomic
instability was required to produce all the mutations that are present in colorectal tumors vs
investigators who reasoned that cells continuously generate a small number genetic
alterations, and that mutations that provide proliferative or survival advantages are selected
for during clonal expansion. It is not clear which model occurs during CRC pathogenesis,
but at least 1 type of colorectal tumor is caused by the hypermutable phenotype known as
micro-satellite instability (MSI).

MSI as a Unique Mechanism in Tumor Development
Shortly after publication of the multistep genetic model of colorectal carcinogenesis, many
investigators began searching the genome for novel tumor suppressor genes using powerful
techniques. In 1992, Manuel Peru-cho used an arbitrarily primed polymerase chain reaction
(PCR), extracting DNA from colonic tissues and amplifying thousands of sequences using a
small number of randomly chosen PCR primers. This technique yielded unique but
reproducible electrophoretic signatures from each sample.7 Perucho’s group used arbitrarily
primed PCR to amplify matched samples of DNA from colorectal tumors and adjacent
normal colonic tissue, separated the PCR products electrophoretically, and compared the
results to identify differences in PCR amplicons between normal and tumor tissues—DNA
missing from the tumor would presumably represent somatic cell deletions that were
candidate regions for new tumor suppressor genes.

Deleted DNA bands were found in most colorectal tumor samples.8 However, upon careful
analysis of the comparative autoradiograms, the authors noted that 12% of ~130 tumors had
bands that were not actually deleted, but were shorter in length and migrated slightly further
down the gel. They analyzed the sequences in these bands and discovered that they
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contained simple repetitive sequences (ie, microsatellites), principally in polyadenine (An)
tracts associated with Alu sequences. The DNA obtained from this group of tumors had
undergone somatic deletion of ≥1 of the adenine residues. The method was unbiased and
quantitative, permitting the estimate that each tumor contained ~105 such mutations. The
tumors with these “ubiquitous somatic mutations at simple repeated sequences” had unique
clinical and pathological characteristics. First, the tumors with these deletion mutations were
significantly more likely to arise in the proximal colon, were less likely to be invasive, were
less likely to have mutations in KRAS or p53, were more likely to appear poorly
differentiated, and came from younger patients. Based upon these findings, the authors
concluded that these deletions represented a unique pathway to tumor development and
predicted that the “catastrophic loss of fidelity in the replication machinery of normal cells”
that caused them might be hereditary, although they had no evidence for this.8

Simultaneously, Stephen Thibodeau’s laboratory was studying dinucleotide repeat
sequences (a type of micro-satellite) that were useful as tools for genetic mapping and
analysis of LOH, and looking for novel tumor suppressor genes on chromosomes 5q, 15q,
17p, and 18q in colorectal tumors. They observed deletion mutations in the [CA]n sequences
(called “C A repeats”) in these regions and coined the term microsatellite instability (which
they termed MIN). They detected MSI in 25 of 90 CRCs (28%), and noted that these
aberrations were heterogeneous in different tumors. They referred to a large deletion or
expansion within the [CA]n tract as a “type I mutation,” and called a single 2-base–pair
repeat change a minor or “type II mutation.” The implications of type I vs II mutations have
never been elucidated, but they might reflect the cumulative nature of mutations in
dinucleotide repeat sequences as they occur over time.9 Importantly, they found that 89% of
tumors with MSI were in the proximal colon and that the patients with MSI CRCs had a
better prognosis; like Perucho, Thibodeau et al recognized that this represented a unique
pathway for tumor development that “does not involve loss of heterozygosity.”10

Studies from an international consortium led by Bert Vogelstein in the United States and
Albert de la Chapelle in Finland helped elucidate the clinical implications of MSI, using
microsatellites (mainly, but not exclusively dinucleotide repeats) as tools for genome-wide
linkage analysis of hereditary CRC. Aaltonen et al found significant linkage at chromosome
2p using the marker D2S123 in 2 large kindreds with Lynch syndrome (then called
hereditary nonpolyposis colorectal cancer [HNPCC]).11 The authors used D2S123 to look
for LOH at that locus in the CRC DNA, testing the hypothesis that this was the site of the
tumor suppressor gene that caused hereditary CRC and that the second hit to the gene would
be LOH. Instead, they observed MSI with the marker and then noted that deletion mutations
in microsatellite sequences were widespread in hereditary CRCs. They referred to this as the
replicative error phenotype. More importantly, they found MSI in 13% of sporadic CRC
cases and correctly reasoned that the hereditary tumors and a subset of sporadic tumors
shared a unique but common pathway of tumor development.12

It became apparent that a subset of colorectal tumors (at least 12% and perhaps as much as
28%) were characterized by a large number of mutations at microsatellite sequences, formed
in the proximal colon, had unique clinical features (such as a better prognosis than other
types of CRC), and were hereditary. MSI was the first DNA marker available to identify
hereditary CRC, although none of the investigators who discovered MSI in CRC understood
mechanisms by which it developed.

A series of investigations led to the realization that MSI arises from defects in the DNA
mismatch repair (MMR) system and the identification of the 4 genes that cause Lynch
syndrome. Interestingly, microbial geneticists predicted that defects in the MMR system
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were probably responsible for MSI. The timeframe of these discoveries are illustrated in
Figure 1.

DNA MMR System
The “mutator phenotype” was discovered in bacteria in the 1970s and 1980s and was well-
characterized by the beginning of the 1990s.13 It is caused by mutational inactivation of
genes involved in DNA repair. The first human disease that was clearly associated with
defects in DNA repair was xeroderma pigmentosa, a rare autosomal recessive disease caused
by biallelic inactivating mutations in genes involved in nucleotide excision repair. Several
other DNA repair systems had been characterized that included MMR, base excision repair,
and a variety of nucleases and other DNA excision repair enzymes, yet no human diseases
were associated with these.

In prokaryotes, the MMR system consists of a family of enzymes that detect S-phase DNA
replication errors (ie, those that result in mismatches between the 2 strands of DNA) in
which the newly synthesized strand has incorporated the wrong nucleotide. DNA
polymerase sometimes makes errors incorporating the correct number of bases during
replication of long repetitive DNA sequences, such as microsatellites. Slippage during
replication of a repetitive sequence creates a temporary insertion-deletion loop (IDL) that
can be recognized and repaired by the MMR system, along with single base-pair
mismatches. If these are not repaired, during the second round of replication the original
parental strand is copied correctly, but the erroneously synthesized daughter strand (with the
mismatch or IDL) contains a mutation. Single base-pair mismatches result in point
mutations, whereas IDLs result in frame-shift mutations that usually lead to a downstream
nonsense mutation; this results in production of a truncated, nonfunctional protein. This is
the basis of MSI.

MMR is more complex in yeast and mammalian systems. The yeast homologues of the
bacterial mutS and mutL genes were cloned and given the names Mut S homologue (MSH)
and Mut L homologue (MLH). Then, additional homologous copies of these genes were
cloned from yeast, giving rise to the terms MSH1 though MSH6, and MLH1 through MLH3.
Another MutL homologue, called post-meiotic segregation-1 (PMS1), was also identified in
yeast. Each of these genes had diverged from the initial mutS and mutL sequences and has
been associated with specific repair functions in nuclear DNA, during meiosis, or in
mitochondrial DNA. Phylogenetic analysis indicates that MSH1 was the founding member
of the Mut S family and that the homologues diverged from this progenitor gene, but no
highly homologous MSH1 gene is present in higher organisms.14

More importantly, in the yeast and other eukaryotes, MutS and MutL proteins no longer
function as homodimers. Instead, MSH2 forms a heterodimer with MSH6 or MSH3, giving
rise to MutSα or MutSβ, respectively.15 These heterodimers have different relative abilities
to bind to DNA mismatches and, as a result, yeast and other eukaryotes have a broader
ability to recognize and repair different types of DNA misincorporation. For example,
MutSα has a higher affinity for recognizing single base-pair mismatches. In fact, MSH6 was
initially called the “GT-binding protein.”16,17 It was later discovered that the MSH3 gene
encoded another MutS homologue that dimerized with MSH2 to create a complex with
increased ability to bind to larger IDLs.18 The evolution of diverse homologues of mutS
increased the cell’s ability to recognize and repair synthetic errors in DNA and increased
replication fidelity in higher organisms. The phylogeny and biochemistry of factors involved
in MMR have been reviewed.19 –22

Mammals have 4 homologues of the prokaryotic Mut L gene: MLH1, MLH3, PMS1, and
PMS2. PMS1 was the first mutL homologue cloned in yeast; it was given a unique name
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because of its functional role in meiosis. Tracing the genes phylogenetically is complicated
because the yeast PMS1, MLH1, MLH2, and MLH3 genes correspond to human PMS2,
MLH1, PMS1, and MLH3 genes, respectively. The function of the products of the MutL
homologues are not as clear as those of the MutS homologues, but the encoded proteins
function as heterodimers. MLH1 and PMS2 form MutLα, which is mediates the interaction
between the MutS proteins and enzymes involved in long-patch excision in postreplication
mismatch repair. However, MLH1 (the major MutL homologue in humans) encodes a
product that can dimerize with PMS1 to form MutLβ, which suppresses mutagenesis in
yeast but has an uncertain function in humans. Moreover, the dimer of MLH1 and MLH3
(MutLγ) helps suppress IDL mutations and functions during meiosis in yeast, but its
function in humans is unknown. Loss of MLH1 results in total loss of MMR activity, but
loss of PMS2 can be partially compensated by MLH3. It is not known how PMS1 fits into
this model, but the MLH1–PMS1 heterodimer is not part of the canonical human MMR
system. This system is illustrated in the model in Figure 2.

MSI is Caused by Deficiencies in MMR
By 1993, it was recognized that about 15% of colorectal tumors have a unique mechanism
of pathogenesis; they might have been first solid tumors with subclasses that had features so
distinct they could be considered as separate diseases. To identify the different pathogenic
mechanisms, researchers analyzed the PCR products of colorectal tumors with MSI.

Microsatellite sequences are abundant throughout the genome; they are polymorphic among
individuals but are unique and uniform in length in every tissue in each person. The
heterogeneity of dinucleotide repeats made them valuable for forensic, gene mapping, and
allele discrimination analyses. Figure 3 illustrates amplification of dinucleotide and
mononucleotide repeats in colonic tissues using autoradiography and gel electrophoresis.

The initial published examples of MSI were autoradiograms of radiolabeled PCR products;
findings in yeast indicated that defects in genes that encode MMR factors might be
responsible for the MSI observed, although no human MMR genes had been cloned.

MMR Genes, HNPCC, and Lynch Syndrome
MSH2 and HNPCC

Because much of the attention was focused on MSI in hereditary CRC, several groups set
out to determine whether germline mutations in MMR genes were responsible for Lynch
syndrome. Fishel et al cloned the human MSH2 gene based on its homology to the yeast
sequence, mapped it to human chromosome 2p22–21 (close to the locus implicated earlier in
the year12), and found a sequence variation in patients with familial CRC23 at the −6
position of intron 13 of MSH2. It was proposed that this variant altered splicing, inactivated
the gene product, and was a germline mutation that mediated CRC pathogenesis. In fact, this
is a common intronic polymorphism, but it was linked (in cis) to a true inactivating mutation
that was found shortly thereafter. The association between MSH2 and hereditary CRC
explained the MSI phenotype observed in colorectal tumor samples; MSH2 is located near
the locus described in the first reported linkage study.

Leach et al confirmed the role of MSH2 mutations in hereditary CRC, identifying germline
mutations in 3 kindreds with familial CRC: 1 leucine to proline missense mutation, 1 large
in-frame deletion, and 1 nonsense mutation.24 These mutations were found in multiple
affected members of the kindreds but not in individuals without cancer. Parsons et al showed
that the CRC cell line, HCT116, which had MSI at [CA]n sequences, was deficient in MMR
activity.25 Within 7 months of the discovery of MSI in CRC, it was linked to a class of
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genes that had not previously been of interest to cancer biologists. It was recognized that
colorectal tumors might develop through loss of a DNA repair mechanism and that germline
mutations in at least 1 of these genes mediated HNPCC.26

MLH1, PMS2, PMS1, and MSH6
Shortly after the 2p locus was linked with familial CRC, CRC in 3 Swedish families was
linked to chromosome 3p21–23.27 The association between MSH2 and Lynch syndrome
indicated that other genes that encode MMR factors might be located on 3p, which would
represent a second familial CRC locus. Two groups found MLH1 on 3p21—Bronner et al
identified the human homologue of yeast MLH1 and found germline mutations in multiple
members of a CRC family with significant linkage to the 3p locus.28

At virtually the same time, the groups of Vogelstein and de la Chapelle scanned a DNA
database for sequences homologous to the yeast MLH1, mapped one to chromosome 3p, and
cloned the gene. Papadopoulos et al identified germline mutations in 7 members of 1 large
Finnish CRC kindred that had been linked to 3p, found mutations in 3 more CRC kindreds,
and reported a mutation in this gene in a CRC cell line.29 Using the same strategy of
searching databases for homologous sequences, the human PMS1 and PMS2 genes were
implicated in familial CRC shortly thereafter.30 The association between PMS2 and CRC
has been established, but the role of PMS1 in sporadic or familial CRC is not clear. In the
period from December 1993 to September 1994, 3 more genes were linked to familial CRC;
it took another several years to identify the relationship between the MSH6 gene17 and
Lynch syndrome.31 MSH6 is associated with somewhat atypical CRC kindreds with delayed
onset of the cancer, which obscured the initial efforts at discovery. Once it was realized that
MSH5 families did not fit the classical expectations of the Lynch Syndrome phenotype, the
case for its involvement was secured.32

Lynch Syndrome
The focus of MSI in CRC was immediately aimed at Lynch syndrome because of its
inherited and unique features.33 These patients develop tumors at early ages, often between
20 and 30 years old. They frequently have multiple tumors, including those of the colon,
rectum, endometrium, stomach, ovary, urinary tract, small intestine, and other sites, but no
increase in the frequency of cancers of the breast, lung, or prostate.34 Before 1993, there was
no agreement on whether this syndrome actually represented a distinct disease.26

Families with clusters of CRC were therefore evaluated in linkage studies to identify loci of
putative hereditary CRC genes. The Amsterdam Criteria were developed in 1991 so that
research groups would have a uniform collection of families to study.35 These criteria called
for 3 CRC cases in a family in which 1 individual was a first-degree relative of the other 2,
CRC occurred in at least 2 generations (in which familial polyposis was excluded), and 1
affected family member was younger than 50 years of age. The Amsterdam II Criteria were
developed in 1999 to acknowledge the involvement of noncolonic tumors in the phenotype.
36

Studies of these kindreds facilitated the identification of genes responsible for this disease.
Lynch syndrome is the hereditary disease caused by inactivating germline mutations in
genes that encode MMR factors.37 There are 4 definite Lynch syndrome genes: MSH2,
MLH1, MSH6, and PMS2.38 There are 2 genes that are candidates for Lynch syndrome
(MLH339 and Exo140), but have been only rarely associated with familial CRC or the
reported associations are believed to be coincidental. There has been no independent
confirmation of a role for MLH3 in CRC and there has been a contradictory report on the
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role of Exo1 in this disease.41 However, both genes are an integral part of the MMR system,
so there is rationale for considering these genes.

The Amsterdam Criteria are rigorous; it was expected that these would exclude many actual
Lynch syndrome families because of the small sizes of families, missing information, and
other practical issues. Although this was the case, it was surprising that 40%–60% of
families that met the Amsterdam Criteria did not have a germline mutation in an MMR gene
and the tumors did not have MSI.42,43 Families with non–Lynch syndrome CRC have been
termed familial colorectal cancer, type X by 1 large collaboration.42 These families are
characterized by microsatellite-stable tumors, a lower relative risk for CRC, the absence of
excess tumors outside of the colon, and later onset of CRC. The genetic basis of this group is
not known.

MMR Gene Mutations in Lynch Syndrome
To diagnose Lynch syndrome, MMR genes are analyzed, preferably using exon-by-exon
sequencing with PCR primers that include relevant portions of the in-tron– exon boundaries;
these detect point mutations and small insertion-deletion mutations that involve DNA
sequences between the primers but not larger deletions or rearrangements, such as DNA
sequence that are rejoined after a break, because the breakpoints are usually located deep
within introns or completely outside of the coding regions. When DNA sequencing is
performed, the tracing is examined for a double signal, ie, the simultaneous presence of a
wild-type and mutant nucleotide in the same sequence position. When there is a deletion of
an entire exon in which the breakpoints are outside of the primers for that exon, the analysis
gives normal results because only 1 strand is sequenced, and conventional techniques cannot
determine whether 1 or 2 alleles are detected. Large deletions can be detected by multiplex
ligation-dependent probe amplification, which quantifies the number of alleles at each exon.
44 Large deletions account for >33% of all MSH2 mutations associated with HNPCC45;
MSH2 is located within a dense cluster of Alu sequences, which are prone to internal
recombination followed by excision of the DNA loop. Large rearrangements also occur with
MLH1 and MSH6.46

Analysis for mutations in DNA MMR genes does not end when a sequence variation is
found; interpretation is another issue. Most deletions and nonsense mutations have
pathologic consequences, but missense mutations are not always interpretable. It is
important to determine how well the sequence has been preserved (indicating its functional
significance) and if it is located in a region where the MMR proteins interact. Disruption of
regions of protein–protein interaction by a nonconservative amino acid change could disrupt
complex formation and function (see Figure 4). The mutant allele might need to be cloned
and its product tested in a functional assay.22,47 A proportion of mutations identified in
genetic testing are reported as “variants of uncertain significance,” and will remain so until
we are better able to predict protein function based on its structure. It is interesting that there
is a missense mutation in MLH1 (c415G→C; D132H) that affects adenosine triphosphate
binding of the mutant gene product, increases risk for CRC, but does not always cause MSI
in CRC cells.48

MSI in Sporadic CRC
Two of the 3 initial descriptions of MSI were made in samples from sporadic colorectal
tumors, rather than tumors from patients with familial CRC.8,10 Much of the subsequent
attention to MSI was directed to familial CRC, but only about 3% of all CRCs come from
Lynch syndrome families.49,50 Approximately 12%–17% of all colorectal tumors have MSI,
depending upon the methods used to detect it;51,52 (references 51–144 can be found in the
Supplementary Material) most CRCs with MSI are sporadic.
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The majority of colorectal tumors with MSI have lost expression of MLH1 and PMS2
protein. In 1997, Kane et al showed that MLH1 was silenced by methylation in most of these
tumors.53 The characteristic features of sporadic CRC with MSI include the absence of
significant familial clustering, biallelic methylation of the MLH1 promoter54; absence of
MLH1 and PMS2 proteins; and frequent mutation (usually V600E ) in BRAF.55 The tumors
are frequently diploid (74%) and patients with sporadic colorectal tumors with MSI have a
better prognosis than those with non-MSI tumors.56 Whereas patients with Lynch syndrome
patients are younger than those with sporadic CRC, those with sporadic CRCs with MSI are
older. Loss of MLH1 expression increases with age; the gene is lost in ~50% of CRC
patients older than 90 years of age.57

Sporadic MSI and CpG Island Methylator Phenotype
MSI-associated sporadic CRCs arise through a process that involves the CpG island
methylator phenotype (CIMP).58 About half of the genes in the human genome have
promoters that are embedded in clusters of cytosine-guanosine residues called CpG islands.
59 Cytosines in these regions can be methylated by DNA methyltransferases. Methylation is
a means by which a cell permanently silences genes; it remains in the progeny of each cell.
In vitro, it is possible to demethylate at least some promoters using the DNA
methyltransferase inhibitor 5-azacytidine; however, upon removal of this agent,
remethylation occurs. Histone modifications indicate which CpG sites are marked for
permanent methylation.60

Methylation increases with advancing age, is accelerated in the colon in response to chronic
inflammation, and might be an adaptive response to injury.61,62 A subset of CRCs has been
identified that is characterized by CIMP.63,64 These tumors progress by methylating tumor
suppressor genes and have distinctive clinical features compared to non-CIMP colorectal
tumors.64 Some of the commonly methylated promoters have no apparent role in tumor
development and have been labeled “methylated in tumor” or MINT genes, but methylation
also occurs in promoters of known tumor suppressor genes, such as p16 and insulin-like
growth factor 2, and DNA repair genes such as methylguanine methyltransferase and
MLH1.

The region of the MLH1 promoter in which methylation mediates gene silencing is the 3′
end, close to the start codon. The 5′ end of the promoter is also prone to methylation, but this
is not of functional importance unless the methylation extends to the critical 3′ region.65

Therefore, specific CpG residues are more important than others in mediating gene
silencing. Importantly, most of the CRCs with sporadic MSI come from a CIMP
background, which creates an important distinction from Lynch syndrome tumors.66,67

Consequently, it is essential to know more about a colorectal tumor than whether there is
MSI or not. Lynch syndrome tumors are associated with germline mutations in DNA MMR
genes,37 occur in younger individuals, can have KRAS mutations (but never BRAF
mutations), and are associated with a better prognosis than non-MSI tumors.68 Most
sporadic colorectal tumors with MSI occur in older individuals, have BRAF mutations in
about half of the cases (V600E), are associated with a background of CIMP, and are
associated with a reduced mortality. Curiously, BRAF mutations, which are detected in
sporadic but not familial CRCs with MSI are associated with reduced mortality.64

Germline Epimutations
To aide in the diagnosis of Lynch syndrome, researchers have searched for germline
mutations in a coding regions, splice sites, or promoter regions of MMR genes. However,
instead of a genetic mutation, some cases of Lynch syndrome are caused by epigenetic
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inactivation of genes by promoter methylation. These events, originally described as
germline epimutations, are better referred to as constitutional epimutations, to reflect the
aberrant silencing of a gene that is normally active in somatic tissues in the absence of a
sequence mutation. Constitutional epimutations of MLH169 –71 and MSH272,73 have been
identified in families with Lynch syndrome who have no apparent MMR gene sequence
mutations. MSH2 methylation can arise from a deletion in the 3′ end of the gene just
upstream of MSH2 (TACSTD1)—the loss of the stop codon somehow results in methylation
of the CpG island downstream, which leads to constitutional silencing of MSH2. Similar to
germline mutations, constitutional epimutations in MSH2 demonstrate classic autosomal
dominant inheritance and are associated with a 50% risk of transmission to the offspring.
73,74

Pathophysiology of Colorectal Carcinogenesis with MSI
CRCs with MSI were discovered, in part, because they were different from most other
CRCs; the tumor cells had a tendency to be diploid and had less LOH. The mutational
patterns were of interest because of the unique clinical features of these tumors. In 1995,
Markowitz et al provided an important insight into the carcinogenetic pathway.75

Transforming growth factor–β (TGF-β) signaling inhibits proliferation in the colonic
epithelium; Markowitz et al showed that the TGF-β type II receptor (TGFβR2) was not
expressed in cell lines with MSI or in xenografts of these cells grown in nude mice, but was
expressed by cell lines without MSI. TGFβR2 includes 2 microsatellite sequences. From
nucleotides 1931 to 1936, there is a 6-base pair [GT]3 sequence (the inverse of a C–A
repeat) and from nucleotides 709 to 718 there are 10 consecutive adenines (A10). Deletion
mutations in these microsatellite sequences create frame shifts that inactivate the gene
product. These were found predominantly in the MSI cell lines; cells with mutant forms of
TGFβR2 did not slow proliferation in response to TGF-β. The most frequent mutation was a
single base-pair deletion in the A10 sequence; Markowitz et al demonstrated that this
mutation made the protein nonfunctional.76 Furthermore, the authors identified mutations in
the A10 tract of 90% of 111 colorectal tumor samples found to have MSI, proving that this
was a relevant site of this form of genomic instability.77 In a new paradigm, repetitive DNA
sequences were proposed to be particularly sensitive to the loss of DNA MMR activity,
resulting in frame-shift mutations that led to premature stop codons and gene inactivation.

Several other genes affected by MSI were then identified that encoded regulators of cell
proliferation (GRB1, TCF-4, WISP3, activin receptor-2, insulin-like growth factor-2
receptor, axin-2, and CDX), the cell cycle or apoptosis (BAX, caspase-5, RIZ, BCL-10,
PTEN, hG4-1, and FAS), and DNA repair (MBD-4, BLM, CHK1, MLH3, RAD50, MSH3,
and MSH6)78 (see Table 1). Remarkably, every human MMR gene except MLH1 includes a
mononucleotide repeat of at least A7

,79 so the process of MMR could become increasingly
defective with cumulative losses of components on the system.80 However, it is not clear
how many of the mutations at these loci are of functional significance (which has been
determined for TGFβR2), or whether some are simply markers of MSI, because biallelic
inactivation of these genes has not been documented in all the tumors.

The identification of the proximate targets of carcinogenesis in the setting of defective
MMR activity indicates that MSI-associated colorectal tumorigensis occurs through a
different biological pathway compared to sporadic tumors. CRC cells with MSI can activate
or inactivate the same signaling pathways as those without MSI, but different proteins
within these pathways are involved. Genes are altered by different mechanisms in CRC cells
with MSI compared to those without MSI. For example, sporadic colorectal tumors arise
from a combination of mutations and LOH, resulting in biallelic inactivation of APC.
Colorectal tumors with MSI have an increase in the number of point mutations compared to
cancer cells without MSI, are more likely to be diploid, and do not have experienced
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widespread allelic imbalance or LOH. A substantial portion of colorectal tumors with MSI
have normal expression of APC, but have mutations in βcatenin that make it unable to
interact with APC protein and undergo degradation,81,82 the biological equivalent of having
no APC protein. Moreover, some colorectal tumors with MSI that have neither inactivated
APC nor mutated β-catenin could have frame-shift mutations in factors further downstream
in the WNT pathway, such as in the A9 sequence of TCF-4.

Of equal importance are the differences in the pathogenesis of colorectal tumors with MSI
that come from patients with Lynch syndrome compared with sporadic CRC cells with
CIMP, as illustrated in Figure 5. For reasons that are not clear, BRAF mutations are found in
the majority of sporadic tumors with MSI but not in tumors that arise in patients with Lynch
syndrome, which often have KRAS mutations.64,66 Activating mutations in BRAF and
KRAS are functionally equivalent because their products function in series, in the mitogen-
activated kinase signaling pathway, which regulates epithelial cell proliferation.83

MSI and Inflammatory Bowel Disease
The risk of CRC is increased in patients with inflammatory bowel disease, but it is not
completely clear how chronic inflammation mediates carcinogenesis. Inflammation
potentially increases mutagenesis via the generation of oxidative stress and formation of free
radicals; mucosal repair involves the stimulation of proliferation, which could expand
populations of colon cells with mutations that provide proliferative or survival advantages.
However, studies in 2 different in vitro models have shown that oxidative stress can “relax”
DNA MMR activity,84,85 and another study has demonstrated an increase in mutation rates
in cells exposed to oxidative stress.86 So, at the time of greatest mutational load, the DNA
MMR system is underactive—a biological paradox. The same has been reported for base
excision repair, which might also lead to MSI.87

There is evidence for MSI in colon cells of patients with chronic ulcerative colitis. Using a
panel of 5 dinucleotide repeat markers, Suzuki et al found that 21% of 63 colitis-associated
tumors had at least 1 mutated microsatellite marker; a similar finding was reported for
dysplastic lesions.88 Perhaps more surprisingly, Brentnall et al reported instability in at least
1 of 7 dinucleotide repeat markers in 50% of non-neoplastic mucosa samples from
individuals with chronic ulcerative colitis, but not in samples from patients with acute
infectious colitis89; this finding was independently confirmed.90 These studies were done
before the MSI marker panels were standardized, but an unpublished review of the primary
data indicated that only 1 dinucleotide repeat was mutated in each instance, indicating low
level MSI (MSI-low) rather than high MSI level (MSI-high).

Models of MSI
Studies of MMR expanded from Escherichia coli and Saccharomyces cerevisiae to human
cells and diseases in the mid-1990s. Parsons et al discovered that HCT116 cells had defects
in MMR activity and MSI25 that were associated with biallelic mutations in MLH1. Stable
transfer of human chromosome 3 into HCT116 (HCT116 + ch3 cells) restored MLH1 and
created a model to study the role of MMR in the response to DNA damage and regulation of
the cell cycle.91 MMR activity was restored in HCT116 + ch3 cells, which had reduced
tolerance to DNA alkylation by N-methyl-N′-nitro-N-nitrosoguani-dine.91 The model also
demonstrated that MMR regulates passage through the G2/M cell cycle checkpoint and the
response to 6-thioguanine, which is incorporated into DNA as guanine but acts like a
mismatch in newly synthesized DNA.92 MMR activity is required to restrain clonal
expansion of cells exposed to N-methyl-N′-nitro-N-nitrosoguanidine and prevent
proliferation of cells with damaged DNA.93 Cultured CRC cells with intact MMR activity
were significantly more sensitive to therapeutic concentrations of 5-fluorouracil (5-FU; 5–10

Boland and Goel Page 10

Gastroenterology. Author manuscript; available in PMC 2011 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



μM) than DNA MMR– deficient cells,94 as well as other chemotherapeutics.95,96 This
provided the theoretical basis for later observations that patients with MSI CRCs might not
respond to traditional 5-FU– based chemotherapy.

Cell models were subsequently developed to study other genes in the DNA MMR family.
Although stable transfer of human chromosome 3 corrected some DNA MMR activity,
HCT116 + ch3 cells were still devoid of MSH3 activity. Therefore, the HCT116 + 3 + 5 cell
line was created by stable transfer of human chromosome 5 into HCT116 + ch3 cells,
permitting an exploration of the effects of MSH3 on MMR.97 The CRC cell line HCT15
does not express MSH6 and the endometrial cancer cell line HEC59 does not express MSH2
or MSH6. Stable transfer of human chromosome 2 (which contains MSH2 and MSH6) into
these cells created cell lines that permitted analysis of the role of the MutS system in human
cells.98 In the modified HCT15 and HEC59 cell lines, MSH2 and MSH6 were re-expressed,
MSI and the hyper-mutable phenotype were corrected (reducing mutations at the HPRT
locus by 96% in HCT15), and the cells became more sensitive to cell death after exposure to
mutagens. Similarly, in LoVo cells, which have defects at the MSH2 locus, MMR activity
and sensitivity to mutagenic agents were restored following transfer of a fragment of
chromosome 2.99

Lynch syndrome is an autosomal dominant disease, associated with the inheritance of a
single mutated gene. However, in cultured cells, defects in MMR are recessive; a single
copy of the gene restores DNA MMR activity. MMR activity is lost in cells that lack MSH2
or MLH1, but only partially disrupted in cells without MSH6 or MSH3. These findings are
important for understanding the pathogenesis of Lynch syndrome; patients with inactivating
mutations in MSH6 develop an attenuated form of the disease and Lynch syndrome has not
been associated with mutations in MSH3.100

Stoichiometry of MMR Proteins
HCT116 (deficient in MLH1), LoVo (deficient in MSH2), HCT15 and DLD1 (deficient in
MSH6), and SW48 (hypermethylated at MLH1) were used together with the single
chromosome transfer-mediated restoration models and control lines (SW480, HEL, WI38)
to study the stoichiometry of the members of the human DNA MMR system.101 MSH2 was
the most abundantly expressed MMR protein; cells expressed 3–5-fold more molecules than
of its partner MLH1, depending upon the cell line studied. MSH6 protein was 4 –12-fold
more abundant than MSH3 protein and the combined amount of MSH6 and MSH3
expressed equaled that of MSH2 in cells. MSH6 might therefore have a more important role
in DNA homeostasis than MSH3, and there are probably no other binding partners in the
cell for MSH2. The relationship between expression levels of MSH2 and MLH1 have
implications for MMR; a substantially larger number of MutS complexes are involved in
identifying DNA mismatches than MutL complexes are required for interaction with the
exonuclease complex. PMS2 was expressed in the lowest concentrations; the molar ratios of
MLH1:PMS2 ranged from 1.4 to 2.75. Unfortunately, antibodies were not available to
measure levels of PMS1 or MLH3 when these studies were performed. However, these
studies helped provide a biochemical framework for the relative roles of MSH2 and MLH1
in MMR and their importance in human disease. Perhaps more importantly, these findings
provided insight into the clinical differences between Lynch syndrome caused by mutations
in MSH2 and MLH1, which have the most highly penetrant phenotypes, and the more
attenuated phenotypes associated with germline mutations in MSH6 and PMS2.100

Methylation of MLH1
CIMP and the acquired form of MSI induced by hypermethylation of the MLH1 locus were
studied in the CRC cell lines SW48 and RKO. SW48 cells do not express MLH1 or PMS2
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protein,101 they lack MLH1 messenger RNA but do express stable PMS2 messenger RNA.
Exposure of SW48 cells to the demethylating agent 5-aza-cytidine led to expression of the
MLH1 messenger RNA and stable expression of the MLH1 and PMS2 proteins, which had
been rapidly degraded in the absence of the stabilizing MLH1 protein. Demethylation-
induced re-expression of MLH1 and PMS2 restored sensitivity to 5-FU,102 suggesting that
demethylation might be used in conjunction with other therapeutic agents to overcome the
drug resistance associated with acquired MSI in patients with CRC.

Measuring MMR Deficiency
Another model has been developed to measure mutation rates in cells with varying degrees
of MMR deficiency. A green fluorescent protein reporter gene can used to identify sites of
microsatellite mutation as a surrogate for a direct measurement of MMR activity (which is
labor intensive)91 to quantify the effects of physiological manipulations. This technology
has shown that oxidative stress induces relaxation of MMR activity and increases frame-
shift mutations. Furthermore, it has shown that mesalamine improves replication fidelity in
cultured cells whereas aspirin does not.86,103

There is no naturally occurring animal model of MMR deficiency, but knockout strains of
mice have been created for each of the Lynch syndrome genes: MSH2,104,105 MLH1,106,107

PMS2,107 and MSH6.108 In spite of contrary claims, none of the heterozygous knockout
models produces a phenotype that is similar to the human disease. The principal tumors that
develop in these mice are lymphomas. Homozygous disruption of MMR genes produces
animals with a constitutional deficiency of MMR activity, a variety of interesting genetic
lesions, and some intestinal tumors, but are not useful in screens for agents that have
therapeutic or preventive effects in humans. Animals with compound knockouts of Apc and
a DNA MMR gene have accelerated polyp progression, but these tumors predominantly
form in the small intestine.109

The study of MMR in mouse models is limited because human genes associated with
colorectal carcinogenesis include coding microsatellites, in places where the mouse genes do
not. Furthermore, genes that are associated with colorectal tumorigenesis encode factors that
are required for cell proliferation and survival, such as TGFβR2, BAX, and caspase-5, so it
is a challenge to create mice with defects in these genes for cancer studies.

MSI-High and MSI-Low
At an international consensus meeting in 1997, the definition of MSI was standardized.110

The term MSI, when not otherwise modified, refers to MSH-high, in which >30% of the
microsatellite marker panel is mutated, as defined in the Bethesda guidelines.110 The
definition of MSI-high permits the characterization of a group of CRCs with similar clinical
and pathological characteristics. However, if enough different microsatellite markers are
used, a larger proportion of CRCs will be found to have at least 1 mutated microsatellite.
Those CRCs in which at least 1 but <30% of the markers are mutated are called MSI-low
and have clinical features of microsatellite-stable tumors. MSI-low has been observed in
many tumor types.111–113

Another type of MSI has been recognized that does not fit into the definition of MSI-high.
This signature has been called “elevated microsatellite alterations at selected tetranucleotide
repeats” (EMAST). EMAST is most frequently found in noncolonic tumors and is
associated with p53 mutations. There is no evidence that it is caused by mutational
inactivation of the MMR system.114

Haugen et al have resolved the mechanistic basis of MSI-L and EMAST.97 They found
evidence for EMAST in ~60% of sporadic CRCs and in all of the tumors that were MSI-
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high or MSI-low. EMAST was also found in 35 of 82 (42.6%) of microsatellite-stable
CRCs. Based on immunohistochemical analyses, 2%–50% of tumor cells were deficient in
MSH3; its expression was heterogeneous throughout the tumor samples. Those parts of the
tumor that did not express MSH3 were microdissected and found to be significantly more
likely to have EMAST. Using in vitro models in which deficiencies in MMR can be studied
in isolation, MSH3-deficient cells (including HCT116 + ch3, which has constitutional
MSH3 deficiency, or cells in which MSH3 was conditionally knocked down), were found to
have instability at di- and tetra-nucleotide repeats (ie, they had the EMAST and MSI-low
phenotypes). This was important because MSI-low was detected through instability at
dinucleotide repeat microsatellites.115 MSI-L and EMAST can therefore be induced by
downregulation of MSH3, which occur heterogeneously (ie, non-clonally) throughout a
tumor. It is possible that a similar mechanism is responsible for the appearance of MSI-low
in the colonic mucosa of patients with chronic ulcerative colitis.89

Diagnosis of MSI
Patients with colorectal tumors with MSI have longer survival times than patients with
tumors without MSI.10 A study of 175 patients with Lynch syndrome (120 of whom had
Lynch syndrome-MLH1 type), compared to more than 14,000 population-based patients
with CRC, showed that the 5-year cumulative relative survival for patients with Lynch
syndrome was 65%, compared to 44% of patients with sporadic CRC who were older than
65 years of age.116 A pooled analysis of MSI that included 32 studies and 7642 CRC cases
found an overall hazard ratio of 0.65 for patients with tumors that have MSI.51 Patients with
Lynch syndrome have lower-stage disease when they are identified compared to patients
with other types of CRC, and it is less common for patients with Lynch syndrome to present
with metastatic disease.117–119 Gryfe et al reported that 17% of 607 CRC patients who were
younger than 50 years old had MSI; the hazard ratio for patients with MSI-associated tumors
was 0.42, compared with patients in the same cohort with non-MSI tumors. Patients with
tumors with MSI had lower mortality rates when patients were stratified by tumor stage,
including patients with stage IV cancer.120

Tumors with MSI have greater numbers of tumor-infiltrating lymphocytes that are activated
and cytotoxic;121 the lymphocytic reaction is independently associated with longer survival.
122 Studies report that colorectal tumors with lymphocytic infiltrates are associated with
longer survival times; in fact, lymphocyte infiltration may be a better prognostic factor than
routine pathology staging.123 Abnormal results from immunohistochemical analyses of
MSH2 and MLH1 independently predict better outcomes in patients with stage II–T3
colorectal tumors.124 Therefore, detection of MSI in a patient with CRC is a positive
prognostic factor, particularly among young patients.

However, not all studies have confirmed the value of MSI detection in prognosis.125,126

This might be because there are technical challenges in identifying tumors with MSI. Some
studies could have included CRC cases that were falsely reported to have MSI-positive
tumors, which might have altered the modest differences in predicted patient outcomes.
126,127 Second, MSI analyses include 2 groups of patients: those with Lynch syndrome (who
tend to be younger) and those with acquired methylation of the MLH1 gene (who are older).
If Lynch syndrome patients are excluded from a cohort, the average age of patients with
MSI is older— older patients have shorter overall survival times regardless of whether or
not they have CRC. Most evidence, however, indicates that MSI predicts positive outcomes
in patients with CRC.

The principal use of MSI testing in the clinic is to identify patients with Lynch syndrome.
Approximately 15% of all colorectal tumors have MSI, and 75%– 80% of this group have
acquired methylation of MLH1; only ~2%–3% of all CRCs have germline mutations in one
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of the MMR genes.49 Although MSI analysis is the first approach to identifying patients
with Lynch syndrome, immunohistochemical analysis is equivalent in levels of sensitivity
and specificity and is accessible to most pathology laboratories. Identification of abnormally
expressed proteins can be used to identify genes that should be sequenced. MSI identifies
MMR-deficient colorectal tumors with approximately 93% sensitivity; most insensitivity is
caused by mutations in MSH6.128,129 Initial reports estimated that immunohistochemical
analysis of MLH1 and MSH2 identified tumor samples with MMR defects with 92.3%
sensitivity and 100% specificity.122 A comprehensive review of 16 studies that compared
MSI with immunohistochemical analysis of MLH1 and MSH2 proteins suggested that
immunohistochemistry was somewhat less sensitive overall, mainly because of its poor
performance with MLH1. However, when expression of MSH6 and PMS2 were included in
the analyses, the performance of immunohistochemistry improved, resolving the problems
encountered with samples from patients with Lynch syndrome caused by MSH6 and
PMS2.129 The limitation of immunohistochemistry is that staining can be heterogeneous
throughout the tumor, which affects the sensitivity of the test.129

Several panels of microsatellites have been used to diagnose MSI. The first consensus
meeting recommended a panel of 3 dinucleotide repeats and 2 mono-nucleotide repeats that
had been validated by a German consortium.110,111,130,131 This panel required that normal
tissue be compared with tumor tissue, so many groups use a panel of 5 mononucleotide
repeats that can be amplified and analyzed in a single assay. The location and nature of each
of the microsatellite targets used for diagnostic purposes are listed in Table 2. The Pentaplex
panel is as sensitive and specific as the initial panel proposed by the National Cancer
Institute, but has some advantages that improve specificity. The T25 repeat in the 3′
untranslated region of caspase-2 is useful in detecting loss of MSH6.

MSI as a Predictor of Response to Chemotherapy
Tests for MSI can be used to predict patient response to adjuvant chemotherapy, although
this practice is controversial. MMR genes were identified in bacteria; inactivating mutations
created a mutator phenotype and allowed tolerance to DNA-damaging agents.132 A similar
phenotype was found in mammalian cell lines.16,133 The stable correction of MMR activity
in cell lines restored the cytotoxic response to alkylating agents,91,93 6-thio-guanine,92 5-
FU,94 platinum compounds, and other agents.96,134 This indicated that tumors with MSI
might be resistant to some chemotherapeutic regimens.

However, the first study of the responsiveness of colorectal tumors with MSI reported just
the opposite—tumors with MSI were more responsive to adjuvant chemotherapy than
tumors without MSI.135 In this study, the assignment of patients to the treatment groups was
flawed; instead of random assignment, oncologists selected patients for chemotherapy based
on those with the fewest comorbidities and best performance status. Only 23 patients with
MSI received chemotherapy, and the median age of these patients was 13 years younger
than those who were not treated. Overall survival was significantly better in the MSI group,
regardless of treatment. This created the impression that such patients were ideal candidates
for adjuvant chemotherapy.

However, 11 subsequent studies have shown no benefit for chemotherapy among patients
with colorectal tumors with MSI (see Table 351,126,136 –143). In the largest of these, a
prospective, multicenter study in which patients were prospectively randomly assigned to
treatment groups, the investigators found a nonsignificant, 2-fold excess in mortality among
stage III CRC patients with MSI and a 3-fold increase in mortality among the stage II CRC
patients with MSI.141 The MSI-associated increases in mortality might be related to the
immunosuppressive effects of the treatment regimens, which would counter the increased
anti-tumor immunity observed in patients with MSI.

Boland and Goel Page 14

Gastroenterology. Author manuscript; available in PMC 2011 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A study by Fallik et al associated inclusion of the topoisomerase-I inhibitor, irinotecan, in
the chemotherapeutic regimen with increased survival times of in patients with MSI-
associated CRC,144 a finding that has been supported by Bertagnolli et al.140 It is possible
that a combination of drugs without excessive immunotoxicity is best for patients with MSI-
associated CRC. There is no evidence for the efficacy of traditional 5-FU– based adjuvant
chemotherapy in patients with MSI-associated CRC, but there might be regimens that would
benefit these patients. Patients with MSI-associated CRC should be included in clinical trials
until the appropriate treatment regimen is identified. Also, these studies did not distinguish
whether the colorectal tumors with MSI were sporadic or inherited. Because most tumors
with MSI are sporadic, it is likely that these observations are more relevant to those tumors;
additional studies focused on patients with Lynch syndrome will be needed to confirm this
concept.
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Abbreviations used in this paper

APC adenomatous polyposis coli gene

CIMP CpG island methylator phenotype

CRC colorectal cancer

EMAST elevated microsatellite alterations at selected tetranucleotide repeats

5-FU 5-fluorouracil

HNPCC hereditary nonpolyposis colorectal cancer

IDL insertion-deletion loop

LOH loss of heterozygosity

MLH Mut L homologue

MMR mismatch repair

MSH Mut S homologue

MSI microsatellite instability

PCR polymerase chain reaction

PMS1 post-meiotic segregation-1

TGF-β transforming growth factor-β

TGFβR2 TGF-β type II receptor
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Figure 1.
MSI research associated with colorectal cancer from 1990 to 2010. EpCAM, epithelial cell
adhesion molecule.
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Figure 2.
The DNA MMR system functions through a series of steps. (A) MSH2–MSH6 (MutSα)
recognizes single base-pair mismatches, in which the DNA polymerase has matched the
wrong base (G) with the T on the template (shown on left), and creates a sliding clamp
around the DNA. This step that requires the exchange of adenosine triphoshpate (ATP) for
adenosine diphosphate (ADP) (by MSH2, but not MSH6 or MSH3). The complex diffuses
away from the mismatch site, which is then bound by the MLH1-PMS2 (MutLα) complex
(right). This “matchmaker” complex moves along the new DNA chain until it encounters the
DNA polymerase complex. (B) The DNA MMR protein sliding clamp interacts with
exonuclease-1, proliferating cell nuclear antigen (PCNA), and DNA polymerase. This
complex excises the daughter strand back to the site of the mismatch (shown on left).
Eventually, the complex falls off the DNA and resynthesis occurs, correcting the error. (C)
Variations on the DNA MMR theme. Whereas MSH2–MSH6 recognizes single pair
mismatches and small IDLs, MSH2–MSH3 (MutSβ) complements this by also recognizing
larger IDLs (shown on left). The right side shows the possible interactions with different
MutL dimers, as MLH1 can dimerize with PMS2, PMS1, or MLH3. The preferred
interaction with MSH2–MSH3 is MLH1–MLH3 (MutLγ), but the precise roles of the other
MutL heterodimers in this reaction are not entirely understood.
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Figure 3.
MSI was initially discovered by autoradiography analyses of the PCR products after
separation by gel electrophoresis (upper panel). N refers to DNA from the normal colon,
and T from the tumor. The DNA polymerase used in PCR also has difficulty with the
accurate amplification of templates, which is thought to be the explanation for the “ladder”
of DNA bands that can be seen in the lanes for normal and tumor DNA. The upper panel
illustrates the use of the 5 markers recommended by the National Cancer Institute consensus
group; these consist of 3 dinucleotide repeats and 2 mononucleotide repeats (BAT25 and
BAT26). In each instance, the DNA in the tumor has undergone somatic mutations
(frequently, but not always, deletions), and the PCR product migrates to a different position
on the gel, as indicated by the arrowheads. The lower panel shows the PCR products as they
are analyzed by most laboratories using automated DNA sequencing with fluorescent
primers. In this instance, 5 mononucleotide repeats have been analyzed, and in each
instance, the mutations consist of deletions with different electrophoretic mobility (mutant
alleles indicated by the arrows).
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Figure 4.
The regions of protein–protein interactions among the members of the MMR system.
Mutations in the regions of protein interactions are particularly likely to disrupt MMR
function. Key interactions are illustrated among the MutS proteins, among the MutL
proteins, and between these proteins and Exo1. ATP, adenosine triphosphate; PMS, post-
meiotic segregation.
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Figure 5.
There are 2 molecular pathways to the development of CRC with MSI. Approximately
20%–25% of colorectal tumors with MSI arise in individuals with Lynch syndrome. These
tumors contain a germline mutation in one of the MMR genes, followed by a second hit to
the wild-type copy (inherited from the unaffected parent); this could occur via LOH,
methylation, or point mutation. Defects in MMR result in MSI and rapid accumulation of
somatic mutations. It has been proposed that tumors arise via mutations in a few critical
genes, but that large numbers of microsatellite mutations also occur—most of which are
simply passengers that provide the mutational signature used to identify tumors with MSI.
Colorectal tumors that arise in patients with Lynch syndrome often have mutations in KRAS.
Most cases of CRC associated with MSI are not inherited (familial), but arise through
sporadic methylation-induced silencing of MLH1. These sporadic tumors have the CIMP
signature, resulting in methylation of many gene promoters. When the MLH1 promoter is
methylated, MMR activity fails and MSI ensues. Thus, the mutational signature of sporadic
tumors includes CIMP and MSI. BRAF mutations are also observed in most sporadic
colorectal tumors, but do not occur in tumors of patients with Lynch syndrome.
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Table 1

The Genetic Targets of Microsatellite Instability in Colorectal Cancer

Microsatellite length Gene

A10 AIM2

CASPASE-5

MBD-4

OGT

SEC63 (also, A9)

TGFβ1R2

A9 BLM

CHK1

GRB-14

MLH3

RAD50

RHAMM

RIZ (also, A8)

TCF-4

WISP3

A8 ACVRII

APAF

BCL-10

hG4-1

MSH3

A6 PTEN (2 A6’s)

T10 OGT

T9 KIAA0971

NADH-UOB

G8 BAX

IGF2R

C9 SLC23A1

C8 MSH6

G7 AXIN-2 (A6, A6, C6)

CDX2

T7 FAS

Data from Duval and Hamelin.78
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Table 2

Microsatellite Markers Used in Diagnosis of Microsatellite Instability in Colorectal Cancer

Marker Gene MS repeat Chromosomal location Location of MS repeat

D2S123 Linked to MSH2 CA (n) 2p16

D5S346 Linked to APC CA (n) 5q22-23

D17S250 Linked to p53 CA (n) 17q12

BAT-25 c-kit A (25) 4q12 Intron 16

BAT-26 MSH2 A (26) 2p21 Intron 5

Pentaplex panel of mononucleotide repeat markers

 BAT-25 c-kit A (25) 4q12 Intron 16

 BAT-26 MSH2 A (26) 2p21 Intron 5

 NR-21 SLC7A8 T (21) 14q11 5′ UTR

 NR-24 Zinc finger 2 (ZNF-2) T (24) 2q11 3′ UTR

 NR-27 Inhibitor of apoptosis protein-1 A (27) 11q22 5′ UTR

Other relevant microsatellite markers

 CAT25 Caspase-2 (CASP2) T (25) 7q34 3′ UTR

MS, microsatellite; NCI, National Cancer Institute.
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