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Abstract
Proteinases are known to be involved in many cancer-
related processes, particularly in the breakdown of ex-
tracellular matrix barriers in the course of tumor inva-
sion and metastasis. In this review we summarize the 
current knowledge about the role of the most impor-
tant matrix-degrading proteinases (cathepsins, matrix 
metalloproteinases, plasmin/plasminogen activators) 
and their respective inhibitors in liver cancer progres-
sion and metastasis.
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INTRODUCTION
Liver cancer represents the seventh most frequent malig-
nancy, as manifested by more than 50.000 new cases per 
year. This corresponds to 6% of  all cancers diagnosed 
in the year 2000[1]. The most common primary liver tu-
mors are hepatocellular carcinomas (HCCs). Although 
many improvements have been made in terms of  diag-
nosis and treatment, HCCs are usually associated with 
poor clinical prognosis, with a mean life expectancy of  
less than 6 mo. Surgical resection is only possible in 
10%-20% of  incidences and cures less than 5% of  the 
patients. Tumor recurrence as well as intrahepatic and 
vascular metastasis severely affect the clinical outcome 
of  this disease[2]. Interestingly, HCCs develop mainly in 
chronically injured tissue and are frequently associated 
with liver fibrosis. As a consequence of  the development 
of  fibrosis, HCC cells are often embedded in a stroma 
rich in extracellular matrix (ECM) proteins, which may 
culminate in the formation of  a capsule surrounding the 
cancerous tissue[3]. However, aggressive HCCs have the 
capacity to penetrate such ECM barriers and spread into 
the surrounding parenchyma, leading to intrahepatic me-
tastasis and portal venous invasion[4]. 

Various proteinases appear to be involved in the 
breakdown of  ECM components during tumor inva-
sion and metastasis, including plasmin and plasmino-
gen activators, matrix metalloproteinases (MMPs), and 
cathepsins[5-7]. It has been shown that the synthesis of  
matrix-degrading proteinases is frequently upregulated 
in tumors. Cancer cells can also increase the proteolytic 
load in their environment by mobilization of  protein-
ases from intracellular stores, and by acquisition and 
activation of  proteinases released by stromal cells[8]. The 
degree of  local ECM proteolysis is regulated by the con-
comitant secretion of  endogenous proteinase inhibitors. 
The intricate balance between individual proteinases and 
their respective inhibitors implies that invasive tumor 
cells precisely coordinate ECM proteolysis with other 
cellular events required for effective invasion, such as 
cell-matrix attachment, detachment and migration[9].

Hepatocytes produce only a limited array of  protein-
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ases with matrix-degrading potential under normal, qui-
escent conditions. Besides plasminogen, the constitutive-
ly expressed enzymes most relevant to ECM degradation 
are the lysosomal proteinases cathepsin B, cathepsin D 
and cathepsin L[10-12] (Table 1). Other important matrix-
degrading proteinases such as matrix metalloproteinases 
(MMPs) as well as plasminogen activators are usually 
undetectable. However, it has been reported that fetal rat 
hepatocytes can be stimulated to synthesize a selected 
range of  MMPs and plasminogen activators[13]. Further-
more, expression of  certain MMPs and plasminogen ac-
tivators is enhanced during liver regeneration[14,15]. Nev-
ertheless, even in the regenerating liver, ECM proteolysis 
is a tightly controlled process due to the concomitantly 
increased synthesis of  proteinase inhibitors[14].

In the following sections, we review the current 
knowledge about the relevance of  the balance between 
cathepsins, matrix metalloproteinases, plasminogen acti-
vators and their respective inhibitors for HCC progres-
sion and metastasis. 

LYSOSOMAL PROTEINASES 
(CATHEPSINS) 
In recent years, significant progress has been made in the 
biochemical and structural characterization of  lysosomal 
proteinases. It has been shown that these enzymes 
participate in physiological processes other than bulk 
proteolysis in the lysosomes. Three proteinases appear 
to be present in all mammalian lysosomes: the aspartic 
proteinase cathepsin D, and the cysteine proteinases 
cathepsin B and cathepsin L[16]. Lysosomal cysteine 
cathepsins belong to the papain superfamily of  cysteine 
proteinases, whereas cathepsin D is closely related to the 
major digestive enzyme pepsin[17,18].

Cathepsins are usually delivered in their zymogen 
forms to lysosomes. The acidic internal milieu of  these 
compartments then triggers the largely autocatalytic 
proteolytic maturation of  the latent proenzymes[19]. 
The rate-limiting factor in lysosomal targeting is the 
capacity of  the endogenous sorting receptors, which 
results in the secretion of  varying amounts of  newly-
synthesized proteinase precursors[20]. Under normal 
circumstances, these secreted forms exhibit only 
insignificant proteolytic activity. However, it was shown 

that at least secreted procathepsin B can be seen as a 
latent enzyme pool, which, upon (auto)activation in the 
acidic microenvironment around tumor cells, may cause 
local proteolysis[21].

Cathepsins can promote tumor invasion in different 
ways: (1) by direct cleavage of  ECM/basement membrane 
components; (2) by activation of  other proteinases[22-24] 
which in turn degrade ECM components; or (3) by 
cleavage of  cell adhesion proteins on the cell surface, thus 
initiating the disruption of  intercellular junctions[25].

CYSTEINE CATHEPSINS AND LIVER 
CANCER
The human genome encodes 11 cysteine cathepsins (B, 
C, F, H, L, K, O, S, V, X and W), all structurally closely 
related to the prototypic plant cysteine proteinase 
papain[26]. Cysteine cathepsins are often upregulated in 
various human cancers, and have been implicated in 
distinct tumorigenic processes such as angiogenesis, 
proliferation, apoptosis and invasion[7,25]. Using cathepsin 
knock-out mice, various groups have recently provided 
strong evidence for distinct functions of  individual 
cathepsins in tumor progression and metastasis[27-29]. To 
date, the lysosomal cysteine proteinase most thoroughly 
studied in the context of  cancer is cathepsin B, which 
has been reported to promote tumorigenesis in multiple 
ways[27,29,30].

So far, very little is known about cysteine cathepsins 
in liver cancer. However, there is some evidence that 
cathepsin B (CB) contributes to the invasive potential 
of  hepatoma cells. Early studies reported differences 
between the subcellular distributions of  CB in highly 
invasive murine Hepa cl9 hepatoma cells and normal 
hepatocytes, with significantly more CB associated 
with non-lysosomal membranes/vesicles in the tumor 
cells. This was attributed to transformation-induced 
changes to intracellular CB trafficking[31], a hypothesis 
further substantiated by subsequent morphological 
studies. While the enzyme was found to be restricted 
to perinuclear (presumably lysosomal) vesicles in an 
embryonic liver cell line, it was detected in vesicles 
adjacent to the cell membrane and in localized regions 
(possibly caveolae) of  the surface of  Hepa cl9 cells[32]. 
Evidence for the association of  CB with caveolae in 

Table 1  Liver proteinases implicated in tumor progression and metastasis

Name Type Inhibitors Localization Physiological function

Cathepsin B Cysteine Cystatins (A-E) Lysosomal General protein turnover
Cathepsin D Aspartic - Lysosomal General protein turnover
Cathepsin L Cysteine Cystatins (A-F) Lysosomal General protein turnover
MMP-2 Metallo TIMPs (1-4) Extracellular Matrix remodelling
MMP-3 Metallo TIMPs (1-4) Extracellular Matrix remodelling
MMP-7 Metallo TIMPs (1-4) Extracellular Matrix remodelling
MMP-9 Metallo TIMPs (1-4) Extracellular Matrix remodelling
uPA Serine PAI-1, PAI-2 Extracellular Fibrinolysis
tPA Serine PAI-1 Extracellular Fibrinolysis
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tumor cells has been provided[33]. Moreover, it was found 
that CB synthesis and activity is significantly higher 
in Hepa cl9 cells than in normal liver cells[34]. Hence, 
these findings support the notion that alterations in the 
expression and subcellular distribution of  CB contribute 
to the invasiveness and the metastatic potential of  
HCCs.

A detailed analysis of  the biosynthesis and intracellular 
transport of  another cysteine cathepsin, cathepsin C, 
in rat Morris hepatoma 7777 cells also revealed unusual 
features[35]. This can be at least partially explained by the 
deficiency of  these cells in the main lysosomal sorting 
receptor, the mannose 6-phosphate/insulin-like growth 
factor Ⅱ receptor (M6P/IGF2R), a protein frequently 
absent and/or mutated in HCCs[36-38]. Intracellular sorting 
of  cathepsin C in Morris hepatoma 7777 cells appears to 
involve MPR46, the second mammalian M6P receptor[39]. 
However, there is also evidence for M6P-independent 
membrane association and lysosomal delivery of  
cathepsin C in these cells[40]. 

In healthy tissue, the endogenous activities of  cysteine 
cathepsins are tightly regulated by specific protein 
inhibitors, the cystatins. Type Ⅰ cystatins (stefins) are 
located in the cytosol, whereas type Ⅱ cystatins are 
secretory proteins[41]. Alterations to the balance between 
cysteine cathepsins and cystatins have been postulated to 
contribute to tumor growth and malignant progression in 
various cancers[42]. Indeed, ectopic expression of  cystatin 
C has been shown to reduce the tumorigenic and invasive 
potential of  cancer cells[43,44]. Conversely, genetic ablation 
of  this cystatin accelerated angiogenesis and tumor 
proliferation in a pancreatic cancer model[28]. Only very 
few reports have dealt so far with the role of  cystatins in 
liver cancer. In one study, no obvious differences were 
found between the subcellular localizations of  stefin A, 
stefin B and cystatin C in murine Hep cl9 hepatoma and 
embryonic liver cells[32]. However, a unique membrane-
associated form of  stefin A has been isolated from Hep 
cl9 tumors[45]. An intriguing novel cystatin, cystatin F, 
was identified in a screen for genes associated with liver 
metastasis[46]. The subcellular localization of  cystatin F is 
highly unusual since this proteinase inhibitor is delivered 
to endosomal and lysosomal compartments[47,48]. It 
remains to be established whether the presence of  cystatin 
F in lysosomes relates rather to the pro- than anti-invasive 
activity of  this cystatin in malignant tumor cells.

CATHEPSIN D AND LIVER CANCER
The aspartic proteinase most extensively investigated 
in the context of  cancer is cathepsin D (CD), with 
a particular emphasis on its role in breast cancer[49]. 
Comparatively little information is available on the 
relevance of  this proteinase for liver cancer. CD was 
found to display a higher activity in hepatoma tissue than 
in normal human liver tissue. Interestingly, this coincided 
with an elevated M6P content of  hepatoma cathepsin 
D[50]. Furthermore, the secretion of  CD was markedly 

elevated in M6P/IGF2R-deficient rat Morris hepatoma 
7777 cells when compared with normal hepatocytes. 
These cell types also differed in their ability to process 
CD into its mature forms. Remarkably, intracellular 
retention of  CD in Morris hepatoma 7777 cells was 
largely insensitive to treatment with lysosomotropic 
bases, which are known to perturb M6P-dependent 
transport to lysosomes[51]. A similar observation was 
made for M6/IGF2R-positive human HepG2 hepatoma 
cells[52], thus ruling out that this phenomenon is linked 
to the M6P/IGF2R status of  the cells. For HepG2 
cells, evidence has been provided that biosynthetic 
transport of  CD to lysosomes can occur in a M6P-
independent manner[53]. This could be at least partially 
due to the transient association of  procathepsin D 
with prosaposin[54]. It has been shown that prosaposin 
can undergo lysosomal delivery in the absence of  a 
functional M6P receptor system, possibly via interaction 
with sortilin[55,56].

MMPS, TIMPS AND LIVER CANCER 
More than 25 human proteins and plenty of  homologues 
from other species are known to make up the MMP (ma-
trix metalloproteinase) family. MMPs are classified into 
five subgroups regarding their preferential degradation 
of  different matrix substrates: interstitial collagenases, 
type Ⅳ collagenases/gelatinases, matrilysins, strome-
lysins and membrane-type MMPs (MT-MMPs). Most 
MMPs contain several conserved functional domains, in-
cluding a catalytic domain containing a highly conserved 
zinc-binding site and a hemopexin-like domain involved 
in substrate recognition[57-59]. All MMPs are initially syn-
thesized as latent precursors. Conversion into the respec-
tive active species requires proteolytic removal of  the 
inhibitory prodomain by other MMPs, serine proteinases 
or cathepsins[24,60-62].

MMPs are suggested as key regulators of  tumor 
growth and metastasis. Based on their enzymatic prop-
erties, the MMPs most relevant to tumor invasion and 
metastasis are the type Ⅳ collagenases/gelatinases. The 
most prominent gelatinases, MMP-2 (gelatinase A) and 
MMP-9 (gelatinase B), are able to degrade type Ⅳ col-
lagen and other components of  the basement mem-
brane, which is the first barrier tumor cells have to break 
through during metastatic dissemination[63]. Studies in 
transgenic mice have highlighted the importance of  
MMP-2 and MMP-9 for cancer progression and tumor 
invasion[64-66]. However, it should be pointed out that cer-
tain MMPs such as MMP-8 can also exhibit anti-invasive 
properties[67].

The biological activities of  MMPs are controlled by 
TIMPs (tissue inhibitors of  metalloproteinases), which 
act through the formation of  a tight, noncovalent com-
plex with their cognate enzymes. TIMP-1, TIMP-2 and 
TIMP-4 are soluble proteins, whereas TIMP-3 is mem-
brane-bound[60,63].

Several MMPs have been implicated in liver cancer. 
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The induction/upregulation of  various MMPs (e.g. 
MMP-2, MMP-3, MMP-7 and/or MMP-9) has been de-
tected in tumorous liver tissue obtained from HCC pa-
tients[4,68,69]. Furthermore, synthesis of  MMP-2 was ob-
served in several malignant HCC cell lines, whereas their 
benign counterparts appear to lack this proteinase[70]. 
Moreover, the production of  MMP-9 in transformed 
murine hepatocytes can be triggered by induction of  
epithelial-to-mesenchymal transition, concomitant with 
the acquisition of  invasive properties[71]. Interestingly, he-
patocyte growth factor (HGF) has been found to induce 
the synthesis of  several MMPs in hepatoma cells. In par-
ticular, stromelysin-1 (MMP-3) became clearly detectable 
upon HGF stimulation of  human HepG2 hepatoma 
cells. Intriguingly, invasion of  HGF-treated HepG2 cells 
could be blocked by a synthetic MMP inhibitor as well 
as by antibodies to MMP-3. These results suggest that 
transformation-associated changes in MMP expression 
contribute to the invasive activity of  malignant HCC 
cells[69]. 

Metastatic dissemination of  tumor cells is also 
facilitated by reduced endogenous TIMP levels. It 
has been observed that the serum and tissue levels of  
hepatic TIMP-2 are significantly higher in HCC patients 
without metastasis than in those with metastatic disease. 
In the latter cases, both primary HCC tissues and intra-
hepatic metastases displayed low TIMP-2 levels. This 
qualifies TIMP-2 as an important prognostic factor in 
HCC patients[2]. 

It has been reported that antisense-mediated reduction 
of  TIMP-1 accelerates tumor formation and disease 
progression in a mouse model of  HCC. Conversely, 
ectopic overexpression of  hepatic TIMP-1 interferes 
with oncogene-induced tumorigenesis. High TIMP-1 
levels were found to inhibit tumor initiation as well as the 
progression to later stages in HCC development[72]. Using 
the same transgenic mouse strains, further studies revealed 
that TIMP-1 overexpression inhibits oncogene-induced 
hepatocarcinogenesis largely by reducing hepatocellular 
proliferation and tumor vascularization[73]. This was found 
to be due to the reduced levels of  bioactive insulin-like 
growth factor Ⅱ (IGF-Ⅱ) in TIMP-1 overexpressing 
animals. It was postulated that the presence of  ectopic 
TIMP-1 leads to reduced proteolysis of  IGF-binding 
protein-3 (IGFBP-3) and thus elevated IGFBP-3 levels, 
which in turn lower the bioavailability of  IGF-Ⅱ[74].

Collectively, these findings suggest that imbalances 
between MMPs and TIMPs may enhance the proteolytic 
load in HCC tissues and thus promote HCC progression 
and metastasis.

THE PLASMINOGEN ACTIVATING 
SYSTEM (UPA, UPAR, PAI-1) AND LIVER 
CANCER 
Plasminogen activation plays an important role in tumor 
invasion and metastasis. This proteinase precursor 

circulates in the pericellular environment, waiting to 
be activated by proteolytic maturation. Plasminogen 
can be activated by either of  two types of  plasminogen 
activators: tissue-type plasminogen activator (tPA), 
or urokinase-type plasminogen activator (uPA). The 
precursor forms of  tPA and uPA display significant 
enzymatic activity, but the catalytic efficiency of  uPA 
is strongly increased by plasmin-mediated proteolytic 
processing[75,76]. The biological activities of  uPA and tPA 
are controlled by two plasminogen activator inhibitors, 
PAI-1 and PAI-2. uPA is the enzyme of  higher relevance 
for tumor biology, which is at least partially due to the 
occurrence of  a cellular uPA receptor (uPAR). uPAR 
is a glycosylphosphatidylinositol (GPI)-anchored pro
tein located at the cell surface where it binds uPA, 
which in turn interacts with plasminogen and activates 
the latter. In tumors, uPA is concentrated at focal 
adhesion points through association with uPAR, which 
is enriched in these regions. Thus, the highly specific 
ternary interaction of  plasminogen, uPA and uPAR 
permits strictly regulated local proteolysis of  ECM 
components at the contact sites between tumor cells 
and the basement membrane[77]. Studies in uPA-deficient 
mice have provided evidence for a decisive role of  this 
proteinase in tumor progression and metastasis[78]. 

The expression of  tPA in normal, quiescent liver 
is low or undetectable. However, stimulation of  tPA 
synthesis is observed during hepatocyte proliferation[79]. 
Within normal quiescent liver tissue, uPA synthesis 
appears to be mainly due to the presence of  non-
parenchymal cells such as hepatic stellate cells and 
Kupffer cells. However, hepatocytes have the capacity 
to produce uPA when induced to proliferate[80]. In this 
context, it should be noted that uPA, via its capacity to 
trigger HGF activation[81], appears to play a crucial role 
in liver regeneration[82].

Interestingly, both plasminogen activators and uPAR 
are readily detectable in HCC tissues[83,84]. Among the 
components of  the plasminogen activation system, uPA 
appears to be the most useful diagnostic indicator for 
intra-hepatic metastasis and a reliable prognostic factor 
for HCC recurrence[85]. Furthermore, the cumulative 
presence of  uPA, uPAR and PAI-1 is a good predictor 
of  HCC invasion and metastasis[84]. The cellular source 
of  uPA and uPAR in HCC is still unresolved, since the 
expression of  uPA and uPAR in HCC tissues appears to 
be largely confined to stromal and inflammatory cells[86]. 
However, human hepatoma cells produce uPA upon 
stimulation with HGF[87]. Furthermore, the invasiveness 
of  HGF-treated HepG2 cells could be reduced by 
pharmacological uPA inhibition[88]. This suggests that 
uPA is a promising target for HCC therapy.

CONCLUSION
HCC is a severe and common disease all over the world. 
Novel drugs for HCC treatment are urgently needed. 
In the last decades, considerable information has been 
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gained about the role of  matrix-degrading proteinases 
and their inhibitors in this disease. A number of  
proteinases and proteinase inhibitors have been identified 
as new markers for the prediction of  HCC outcome. 
The available data suggest that synthetic proteinase 
inhibitors could be used to prevent HCC progression 
and metastasis. Given this knowledge, it appears possible 
that both HCC diagnosis and, hopefully, also its therapy, 
can be improved in the near future.
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