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Abstract

Primary care plays a vital role for individuals and families in accessing care, keeping well, 

and improving quality of life. However, the complexities and uncertainties in the primary 

care delivery system (e.g., patient no-shows/walk-ins, staffing shortage, COVID-19 pandemic) 

have brought significant challenges in its operations management, which can potentially lead 

to poor patient outcomes and negative primary care operations (e.g., loss of productivity, 

inefficiency). This paper presents a decision analytics approach developed based on predictive 

analytics and hybrid simulation to better facilitate management of the underlying complexities 

and uncertainties in primary care operations. A case study was conducted in a local family 

medicine clinic to demonstrate the use of this approach for patient no-show management. In 

this case study, a patient no-show prediction model was used in conjunction with an integrated 

agent-based and discrete-event simulation model to design and evaluate double-booking strategies. 

Using the predicted patient no-show information, a prediction-based double-booking strategy 

was created and compared against two other strategies, namely random and designated time. 

Scenario-based experiments were then conducted to examine the impacts of different double-

booking strategies on clinic’s operational outcomes, focusing on the trade-offs between the clinic 

productivity (measured by daily patient throughput) and efficiency (measured by visit cycle and 

patient wait time for doctor). The results showed that the best productivity-efficiency balance 

was derived under the prediction-based double-booking strategy. The proposed hybrid decision 

analytics approach has the potential to better support decision-making in primary care operations 

management and improve the system’s performance. Further, it can be generalized in the context 

of various healthcare settings for broader applications.
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1. Introduction

Primary care serves as the cornerstone of the U.S. healthcare system. Starfield [1] 

conceptualized the vital role and value of primary care by 4 C’s: first contact (access 

and use of health services whenever necessary), continuity (establishment of long-term 

care), comprehensive (promotion, prevention, treatment and rehabilitation appropriate to the 

primary care context), and coordination (the integration of all the care the user receives 

and needs with the other health services) [2]. Empirical evidence has shown that greater 
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utilization of primary care is associated with better health outcomes (e.g., lower mortality 

rate, lower premature death rate, higher life expectancy, and higher satisfaction with the 

healthcare system), better healthcare operations outcomes (e.g., less unnecessary use of 

more expensive healthcare services, such as hospitalizations and emergency department or 

ED visits), and lower healthcare costs [3]-[6]. However, the complexities and uncertainties 

in the primary care delivery system have brought significant challenges into its operations 

management, which can potentially lead to poor outcomes of patient health and satisfaction, 

as well as primary care operations (e.g., accessibility, productivity, efficiency). These 

challenges include, but are not limited to, managing increased demand of primary care 

with limited supply of healthcare workforce (e.g., doctors, nurses), handling uncertainties 

(e.g., patient no-shows, late cancellations, late arrivals, walk-ins, etc.) and disruptions (e.g., 

shut down of services due to extreme events such as pandemics), and incorporating new 

technologies and tools (e.g., tele-medicine) into current operations.

Significant research efforts have been made to address these challenges. For example, Shi, 

et al. (2014) [7] conducted a simulation analysis to examine and improve the patient visit 

efficiency at a VA primary care clinic. Faridimehr, et al. (2019) [8] developed a stochastic 

optimization model to identify effective appointment scheduling templates in primary care 

clinics. Chand, et al. (2009) [9] used a structured process analysis to improve the patient 

flow at an outpatient clinic by identifying and addressing the sources of variability and 

improvement factors. Focusing on outpatient delivery systems, Huang (2016) [10] proposed 

and implemented an idea of redesigning patient scheduling groups (e.g., urgent care, 

follow-up, new patient, office visit, physician exam, and well care) for improving the 

effectiveness of appointment system using a simulation-optimization technique. In these 

studies, various analytical approaches were employed to provide valuable information for 

supporting decision-making in primary care operations. Some well-established analytical 

approaches that have been commonly used in prior literature include, but not limited to, 

mathematical optimization, computer simulation, and process improvement. In the past 

decades, machine learning and data analytics research have grown exponentially due to the 

availability of tremendous health data, with their applications in healthcare showing great 

promise. Based on a literature review, Kang et al. (2020) [11] discussed the possible uses 

of machine learning in primary care to reduce the burden of missed diagnostic opportunities 

and maximize the quality of care provided <cite>. Yang et al. (2022) [12] identified the 

key domains for machine learning integration in primary care to support care delivery 

transformation <cite>.

While these analytical approaches can provide great supports in healthcare decision-making, 

some limitations of the existing approaches and potential areas for further improving the 

decision analytics capability are realized. First, the majority of current models developed 

based on simulation or optimization methods are at the macroscopic (or aggregated) level. 

Hence, the microscopic (or individual) level behavior of the system (e.g., the heterogeneous 

behaviors of patients and providers) cannot be well represented, which may consequently 

affect the quality of decisions derived from these approaches. Second, although there is 

extensive machine learning literature in healthcare, a large portion of them focuses on 

predictions of patients’ clinical outcomes (e.g., disease risks and diagnosis). Studies on 

predicting operation related variables of the primary care system (e.g., patient no-show 
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behavior, visit cycle time) are still lacking. Third, while machine learning models help 

identify the predictors to specific outcomes, they cannot be used directly for evaluating or 

optimizing decisions. Leveraging predictive analytics in decision modeling (e.g., simulation 

or optimization models) has a great potential to incorporate information on uncertainties and 

thus better support decision-making and improve primary care operations’ performance.

The major contribution of this study is the development of a predictive decision analytics 

approach to improve the areas mentioned above. This approach consists of three major 

modules, predictive analytics, simulation modeling, and decision evaluation. Here, the 

simulation modeling module integrates two simulation methods, i.e., agent-based simulation 

(ABS) and discrete-event simulation (DES). These three modules are interconnected. 

By conducting predictive analytics, more accurate information about the primary care 

operations can be generated and used as input data to inform the hybrid ABS-DES model 

such that the primary care system can be more realistically represented. Based on this hybrid 

simulation model, the system behavior can be better understood at both aggregated and 

individual levels and various decisions (“what-if” scenarios) can be more rigorously tested 

and evaluated. Via the connections between these modules, this approach holds a great 

promise to further advance the decision-making capacity and enable more cost-effective 

solutions in healthcare operations. A conceptual framework that generalizes the high-level 

designs of these modules was devised, which could be applied for operational decision 

support in various healthcare settings. Further, we conducted a case study in a large non-

profit family medicine clinic to demonstrate how this framework was applied to help make 

double-booking decisions in reducing the impacts of patient no-shows. Patient no-shows 

present a major and persistent concern in primary care. A study [13] that analyzed the 

patient no-show data over a 12-year period in 10 different types of clinics (including primary 

care and specialty care such as cardiology, dermatology, mental health, etc.) found that 

primary care had the highest total number of no-shows (an average of 33,098 no-shows 

among 185, 945 visits per year, or 17.8% no-show rate). The two main objectives of the case 

study included: (1) to predict patient no-shows and develop a double-booking strategy based 

on the predicted information, i.e., prediction-based double-booking strategy, (2) to evaluate 

the performance of this double-booking strategy based on simulated primary care operations.

The remaining article is organized as follows. Section 2 provides a brief literature review 

on the applications of existing methods used in healthcare operations management. Then, 

a conceptual framework of the proposed hybrid decision analytics approach is presented in 

Section 3, followed by a case study in Section 4. Finally, Section 5 concludes the study.

2. Literature Review

In this section, we first present a brief literature review on the analytical approaches used 

for decision support in a broad context of healthcare settings, and then summarize their 

applications in primary care for appointment overbooking.

2.1 Analytical Approaches

Quantitative research plays an important role in assessing and improving the performance 

of healthcare system and quality of care. In this type of research, analytical approaches are 
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often adopted to model the system’s behavior and solve decision-making problems. The 

commonly used approaches in existing literature include simulation modeling, mathematical 

optimization, process analysis, machine learning, and hybrid approaches (e.g., simulation-

based optimization). Of particular interest, the discussion below focuses on the applications 

of machine learning and simulation modeling approaches.

In the context of predicting healthcare operation related variables, there are various 

machine learning techniques that have been used (e.g., regression, decision tree, random 

forest, support vector machine, and ensemble methods). For instance, regression models 

were used for early detection of no-shows of primary care patients [14–15], emergency 

department (ED) patients with prolonged length of stay [16] and hospital patients with 

early readmissions [17]. Decision trees for classification problems were used to predict 

hospital no-show appointments [18] and 30-day hospital readmission rates [19]. Random 

forests were used to predict patient length of stay in a hospital setting [20], discharge 

destination from inpatients for hip-fracture patients [21], and healthcare expenditure using 

neighborhood variables [22]. A mixed-ensemble method that involved logistic regression, 

support vector machine, decision tree, etc. was used to predict hospital readmission [23]. 

Focusing on patient no-show prediction, a systematic review found that logistic regression 

was the most used technique [24]. The same review also revealed that only a single study 

among the 50 selected articles attained an area under the curve greater than 0.9. While the 

large size of healthcare data (e.g., electronic health records or EHRs) offers great potentials 

for making the predictions, further research is needed to improve the model accuracy.

Simulation modeling has been used to model healthcare systems for more than 40 years 

[25]. System dynamics (SD), discrete-event simulation (DES), and agent-based simulation 

(ABS) are the three common simulation approaches. SD provides a holistic view of the 

system by modeling the behavior of systems over time at an aggregated level [26–27]. It 

has been used to evaluate healthcare policies by examining their impacts on both tangible 

elements (e.g., waiting time and costs) and intangible elements (e.g., work pressure, patient 

anxiety) [26]. Some additional SD applications include public health policy evaluation 

[28], epidemic prevention/suppression strategies [29], healthcare infrastructure modeling 

[30], and health economic models [31]. DES is a process-oriented simulation approach 

which has been widely used to model the queueing systems. Many studies used DES to 

evaluate the impacts of staffing, appointment scheduling, bed capacity planning, and use 

of technology on process-related performance measures (e.g., patient wait times and staff 

utilization) toward improving the healthcare delivery processes [32–40]. Different from the 

two top-down approaches (i.e., SD and DES), ABS is a bottom-up approach in which the 

aggregated-level system dynamics is completely driven by the behavior of agents and their 

interactions at the individual level. The agents are goal-oriented computer entities and can 

make decisions autonomously [41]. ABS is particularly suited to model complex systems 

that involve many non-linear interactions. Taboada et al. (2013) [42] used ABS to predict 

the effects of patient deviation policies in emergency departments (EDs). Wang (2009) 

[43] and Laskowski & Mukhi (2008) [44] used ABS to model ED workflow, staffing, and 

patient admission scheduling. Kaushal et al. (2015) [45] used ABS to evaluate ED fast 

track strategies to reduce patient wait times. Furthermore, hybrid simulation is a modeling 

approach that has received growing attentions in recent years. It provides modelers with the 
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flexibility of combining two or three simulation approaches mentioned above and thus offers 

more advanced capabilities in modeling complex systems. Hybrid simulation can be used to 

model different aspects of the same complex system which cannot be captured by a single 

simulation approach [46]. The application of DES-SD hybrid simulation was seen in Viana 

et al. (2014) [47], where DES captured the operation of a hospital outpatient clinic and SD 

modeled the infection process in the community. Tejada et al. (2014) [48] used SD to model 

the overall structure and operation to detect breast cancer in the U.S., while DES was used to 

simulate the screening policies and treatment procedures. Anagnostou et al. (2013) [49] used 

the DES-ABS hybrid approach within the context of emergency medical services, where 

ABM modeled the behavior of ambulance services and DES represented the process flow of 

emergency department operations.

2.2 Overbooking Strategies

Overbooking is one of the appointment scheduling practices that has been adopted widely 

in healthcare settings to alleviate the negative impacts of patient no-shows and late 

cancellations [50–52]. To generate more effective appointment schedules and overbooking 

strategies, a great deal of research has been conducted in various healthcare settings. 

Xie et al. (2022) [53] introduced a queueing model to investigate the backlog dynamics 

of appointments in outpatient clinics where the patient no-show behavior and different 

overbooking strategies were taken into consideration and examined to reduce the backlogs. 

Zeng et al. (2010) [54] formulated and solved the clinical scheduling with overbooking as an 

optimization problem and identified properties of an optimal schedule with heterogeneous 

patients having different no-show probabilities. The optimization problem of appointment 

scheduling and overbooking was also studied in a medical imaging facility setting. Chen et 

al. (2018) [55] proposed a two-stage deterministic equivalent of the stochastic optimization 

problem to simultaneously optimize overbooking and scheduling decisions and Kuo et al. 

(2020) [56] utilizes a stochastic mixed-integer linear program to generate optimal schedules 

with overbooking that could help balance the tradeoffs between schedule efficiency and 

accessibility to service.

This literature review shows a lack of approaches to support predictive decision-making 

in the context of healthcare operations. Although such predictive approaches have been 

developed for decades in disease screening, diagnosis, and treatment, it is still in their 

infant stage for operations management of healthcare delivery systems. Further, there is little 

attention paid to predict variables pertinent to healthcare operations and further design and 

evaluate decisions using the prediction results. This study is motivated to alleviate this gap 

by linking predictions to decision-making towards better primary care operations.

3. Materials and Methods

This study proposes a hybrid decision analytics approach to facilitate predicted decision-

making in primary care operations. Distinguished from the existing approaches, the 

proposed approach employs predictive analytics in conjunction with simulation modeling 

to design and evaluate operational decisions, where the predicted information is generated 

and used to derive possible interventions that tend to be more targeted, and potentially more 
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precise, toward improving the performance of the underlying operations. Figure 1 presents 

a conceptual framework of the approach which consists of three major modules: predictive 

analytics, simulation modeling, and decision analytics. Although it is devised in the primary 

care context, this approach can be applied to support operational decision-making in a 

broader healthcare context (e.g., acute care, home care).

3.1 Predictive Analytics

The predictive analytics module initializes the decision-making process by making 

predictions on variables (i.e., outcome variable) that are pertinent to primary care operations, 

such as patient no-shows, late arrivals, visit time, etc. As these outcome variables are 

often already labelled, supervised learning techniques (e.g., linear and logistic regression, 

random forests, decision trees, and support vector machines) often employed to make 

the predictions. Supervised learning problems can be further divided into regression and 

classification problems. A regression problem is when the outcome variable is a real 

or continuous value, whereas a classification problem is when the output variable is a 

category. The predicted information has two major uses in the approach. First, it can 

be used to assign values of the corresponding simulation input parameters (non-decision-

variables) at an individual level, which could be more accurate than those derived at an 

aggregated level from the traditional input data analysis (e.g., data fitting techniques). 

Second, it can be used to generate targeted and more precise decisions (decision variables) 

at the group or individual level. For instance, the patient no-show prediction can help 

design double-booking strategies by identifying specific patient appointments that should be 

double booked (i.e., appointments for patients with a high risk of no-show) such that the 

undesirable impacts due to inappropriate double-booking schedules can be reduced (e.g., 

increased patient wait time if the patients for both originally scheduled and double-booked 

appointments show up).

Because of the availability of tremendous healthcare data, there are many predictor 

candidates for the predictive analytics. One of the most widely used data sources is 

the EHR systems, which contain a great deal of patient medical information in various 

formats, structured (e.g., numeric, categorical) and unstructured (e.g., text). Some examples 

are patient demographics (e.g., age, gender, race), social determinants (e.g., insurance 

payor, if the patient has a primary care physician or not), clinical data (e.g., diagnosis, 

medication, visit history, problem list, vital signs, lab results), appointment schedule data 

(e.g., reason for visit, appointment type, scheduled time), and encounter data (e.g., patient 

arrival/check-in time, appointment status, modality). Here, it is also worthwhile mentioning 

some common issues in predictive analytics which could significantly affect the quality of 

prediction models, such as missing data, collinearity between predictors, imbalanced classes 

of outcome variables, overfitting/underfitting, etc. It is very important to apply appropriate 

methods to handle these issues carefully.

3.2 Simulation Modeling

The simulation modeling module consists of a computer simulation model, which is used to 

provide an explicit representation of the primary care operation. This model integrates the 

discrete-event simulation (DES) and agent-based simulation (ABS) approaches, where the 
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DES model is developed to represent the patient flow at the primary care settings and the 

ABS model is developed to govern the micro-level behaviors of patients, doctors, and staff 

(including their interactions). Figure 2 shows a high-level design of this DES-ABS model.

3.2.1 Discrete-Event Simulation (DES)—The core of this DES model is the patient 

flow – a key process in the primary care operations. Figure 1 shows a generic primary 

care patient flow for in-person visits. Entities, resources, and activities involved in the 

patient flow are the key modeling elements. The patient appointments are identified as 

the model entities which flow through the system. The primary resources include clinical 

personnel (e.g., doctors, nurses, and clerks), exam rooms, and medical equipment. The major 

patient-flow activities include check-in, pre-exam, exam, post-exam (upon doctor’s request), 

discharge, and check-out (may be combined with “discharge”). Although this design focuses 

on the patient flow of in-person visits, the DES model can be used to capture the patient 

flow of tele-health visits as well as other processes in the primary care operations. It is 

worthwhile mentioning that, although the ABS model has the capability to model any 

process, the use of the DES model can offer several unique benefits. First, it provides 

a natural view of (linear) processes. The DES model visualization (animation) can help 

identify the bottlenecks in the process. Second, it generates process related statistics (e.g., 

entities’ average wait time for specific activities and total time in system, length of queues) 

easily as many DES packages provide the reporting functions. Third, it generally requires 

less time in model design and implementation (i.e., more efficient) compared to ABS for 

modeling the same process.

3.2.2 Agent-Based Simulation (ABS)—The core of this ABS model are the agents 

involved in the primary care settings, including patients, clinic personnel (e.g., doctors, 

nurses, clerks), patient appointments, exam rooms, orders, etc. The attributes and behaviors 

of agents are key modeling elements. Some examples of agents’ attributes and behaviors 

associated with patients, clinic personnel, and appointments are presented in Figure 1. In 

general, the ABS model design involves three major tasks: (1) design agents (by types or 

classes), agents’ attributes and behavior rules, (2) design interactions between agents, and 

(3) design the environment (e.g., a spatial context) and interactions between agents and the 

environment. The primary use of the ABS model is to capture the micro-level behaviors of 

agents as well as their (non-linear) interactions in primary care operations. Figure 3 depicts a 

generic flow chart that dictates the logic of clinic personnel’s working behavior.

The interactions between clinical personnel (e.g., doctor-doctor, nurse-nurse, doctor-nurse) 

can be governed by agents’ communications within ABS, whereas the interactions 

between patients and clinic personnel are governed by the patient flow in DES, therefore 

an integration between DES and ABS is developed to model patient-clinic personnel 

interactions. The dynamics of entities’ queues in DES (i.e., queues waiting for resources) is 

triggered by the status of resource agents in ABS (“busy” or “idle”) and vice versa. Note 

that both entities and resources in DES are represented as agents in ABS. For example, 

when a doctor agent finishes the current “EHR documentation” activity in ABS, it becomes 

available to handle the first patient appointment waiting in the queue for the “Exam” activity 

in DES. Then, after this activity is finished, the doctor agent would proceed to the next 
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activity in ABS (e.g., go to handle the next patient appointment in the queue or other activity 

if no appointment is currently in the queue).

3.3 Decision Evaluation

In this study, “decisions” refer to any policies, interventions, strategies, and tactics involved 

in primary care operations. Based on simulation modeling, there are two types of decision 

analytics: (simulation-based) optimization and evaluation. While the prior one seeks the 

optimal decision over the solution space globally or locally, the latter one seeks the 

best decision over a relatively small solution space which is not necessarily the optimal 

solution. Both types of decision analytics involve an implementation of a set of hypothesized 

scenarios (computer experiments) in the simulation model and an evaluation of these 

scenarios based on the pre-established outcome measure(s). Design of experiments methods, 

such as full/partial factorial design and response surface methodology, provide a scientific 

way to generate scenarios such that valid statistical inferences can be drawn on the initial 

and long-term average behavior of the system. A set of experimental factors (or decision 

variables) are needed to design the experiments, where each factor may have multiple 

levels (one factor level can denote a certain value of the experimental factor within its 

possible range). In prior research, a number of outcome measures have been established 

for evaluating the performance of healthcare operations, including but not limited to, 

process efficiency measures (e.g., patient wait time), clinic productivity measures (e.g., 

clinic throughput), and resource utilization measures (e.g., utilization of doctors and nurses). 

The evaluation of these outcome measures requires an output analysis, which is the analysis 

of data generated by simulation runs – multiple runs are always necessary in stochastic 

simulations – to assess/predict system performance or compare performance of two or more 

decisions.

4. Case Study

A case study was conducted in a local family medicine clinic to demonstrate the use of 

the proposed approach in design and evaluation of double-booking strategies for patient 

no-show management. In the study clinic, the situation of patient no-shows was a major 

concern: among an average of 28,000 clinic visits per year before the COVID-19 pandemic, 

approximately 6,000 original patient appointments were missed due to patient no-shows 

(i.e., 21.4% no-show rate). These no-show cases have resulted in negative impacts on both 

the clinic’s operations (e.g., decreased productivity, financial loss) and the patients (e.g., 

missed care, reduced access to care). Double-booking has been used in many clinics as 

one of the common practices to alleviate the impacts of patient no-shows. While it offers 

an opportunity for other patients to access the care, it also helps the clinics to maintain 

an expected level of operations. However, without appropriate strategies, double-booking 

could also result in undesirable consequences, including longer patient wait time as well 

as doctor/staff overtime. In this case study, we first conducted predictive analytics for 

patient no-shows and used the prediction results to design the double-booking strategies 

(i.e., prediction-based double-booking strategies). Then, we created an integrated DES-ABS 

model for representing the clinic’s operations and used it to evaluate the impacts of the 

prediction-based double-booking strategies against two other strategies (i.e., random and 
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designated time). This study was approved by the Institutional Review Board of The 

University of Texas at Arlington.

4.1 Predictive Analytics for Patient No-Shows

A data set of 3-month (October to December 2019, Pre-COVID) patient encounter records 

was used for the prediction of patient no-shows. This data set was extracted from the 

clinic’s EHR system, and all the identifiable information of patients and clinic personnel 

was encrypted by the clinic’s data analyst. The data set contained 9,822 patient encounter 

records, which was split by 70% and 30% for training and testing, respectively. The single 

response variable was the appointment status, coded by a dichotomous variable (1 = no-

show and 0 = completed). The predictor variables included patient demographics (age group, 

gender, race, ethnicity, primary language, payor type) and appointment schedule information 

(type, date & time, duration). Two commonly used prediction models, logistic regression 

[57] and random forest [58], were applied in this prediction for the demonstration purpose 

of the proposed approach. Table 1 compares the prediction performances of these two 

models. The no-show prediction results derived from the random forest model were used for 

designing the prediction-based double-booking strategies, although the overall performance 

of the logistic regression appeared to be better. This was mainly because of the higher 

sensitivity (or hit rate) of the random forest model compared to the logistic regression model 

(0.28 vs. 0.16), which allowed relatively better detection of the no-show cases when they 

actually presented.

4.2 Simulation Modeling for Clinic Operations

The input data for simulation modeling, including patient encounter records and the clinic’s 

operational data, were collected via mixed methods. Table 2 provides a list of the specific 

simulation inputs and the corresponding data collection methods.

The simulation model was implemented in AnyLogic ® (University Edition 8.7.9), a 

Java-based multi-method simulation toolkit. The model resembled one-week pre-COVID 

operation of the clinic, where both double-booked and no-show appointments were 

presented. During the study week, there was a total of 1,074 appointments, among which 32 

were double booked. The average no-show rate was 23.2%. Table 3 shows the initial values 

of the input parameters. The model was executed for 10 replications. The execution time was 

approximately 2 hours.

Model verification was conducted by testing the statistical significance of the differences 

between the simulation outputs and the observed data. Two variables were used in the 

hypothesis testing: visit cycle time (i.e., time elapsed from patient arrival to departure) 

and patient wait time for doctor (i.e., time elapsed from the time when the CMA finishes 

pre-exam to the time when the doctor first enters the room). The t-test results showed that 

there were no significant differences between the simulated and observed patient cycle time 

(p-value = 0.65) as well as patient wait time for doctor (p-value = 0.96).
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4.3 Experimentation

Simulation experiments were conducted to examine the impacts of different double-booking 

strategies on clinic’s efficiency and productivity. In this study, the efficiency was measured 

by the patient cycle time and wait time for doctor, and the productivity was measured by the 

daily clinic throughput (i.e., number of visits or patient volume).

Baseline Scenario: A hypothetical scenario was generated as the baseline to represent 

the “expected” operation of the clinic. In this scenario, all the patients were assumed to 

show up for their scheduled appointments, and thus double-booking was not used (i.e., 

no intervention). To create the baseline scenario, the following rule was used: when a 

doctor’s time slot was filled by more than one appointment in the original one-week patient 

encounter data, only one appointment was kept. All other appointments scheduled for the 

same time slot were then removed. The simulated operational outcomes derived from this 

baseline scenario were used as the benchmark values to evaluate the impacts of various 

double-booking strategies.

Double-Booking Strategies and Experimental Scenarios: This study evaluated 

three double-booking (DB) strategies: (1) prediction-based, (2) random, and (3) designated 

time. A general description of each strategy was provided below, which included the 

strategy-specific experimental factor(s) used for generating possible DB scenarios.

1. Predication-Based DB Strategy. This strategy determines the specific patient 

appointments (doctor’s time slots) for double-booking based on the prediction 

results of patient no-shows. The intention is to double book the time slots 

scheduled for those patients who are most likely to not show up for their 

appointments. This strategy has a single experimental factor, which is the cut-off 

value (i.e., a probability) used for identifying the no-show cases, denoted by 

pPred.

2. Random DB Strategy. This strategy randomizes the selection of doctors as 

well as their scheduled appointments for double-booking. The random selection 

procedure can be described as follows. For a particular day j, a certain number 

of doctors are first chosen randomly from a list of doctors who were working 

on that day, denoted by Xj
Rand. Then, for the doctor i selected on day j, a certain 

number of appointments that have already been scheduled for this doctor will 

be selected for double-booking, denoted by Y ij
Rand. There are two experimental 

factors associated with this strategy, i.e., Xj
Rand and Y ij

Rand.

3. Designated Time DB Strategy. In this strategy, only those time slots within 

certain specified time period(s) of the day are possible for double-booking. This 

study specified two time periods separately: early morning (before 9AM) and 

early afternoon (between 12PM-2PM). The experimental factors of this strategy 

are the number of double-booked time slots in the early morning and early 

afternoon on a particular day j, denoted by Zj
AM and Zj

PM, respectively.

Table 4 lists all the double-booking scenarios evaluated in this study. To simulate the 

appointments added for double-booking, hypothetical patient encounter records were 
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generated by replicating the original records, except for the no-show status. The no-show 

statuses of all the hypothetical appointments were assigned randomly based on the average 

no-show rate of the study week (i.e., 23.2%).

4.4 Results and Findings

Table 5 summarizes the experimental results of the two efficiency metrics, i.e., visit cycle 

time (VCT) and patient wait time for doctor (PWTD). In the baseline scenario (no DB), 

these two metrics were found to be 71.1 and 14.4 minutes, respectively. When a DB 

strategy was used, the clinic efficiency decreased along with the increased number of 

double-booked appointments, as expected. Among all the scenarios, the shortest VCT (71.6 

minutes; 0.7% increase from the baseline) and PWTD (14.8 minutes; 2.8% increase from 

the baseline) were found under the designated early PM strategy (10%), which only had 12 

DB appointments during the entire study week (an average of 2.4 per day or 1.3% of the 

total daily appointments). On the other hand, the longest VCT (96.4 minutes; 26.6% increase 

from the baseline) and PWTD (34.5 minutes; 136.3% increase from the baseline) were 

observed when the designated early AM strategy (100%) was used, which had a total of 187 

double-booked appointments during the study week (an average of 37.4 per day or 19.5% 

of the total daily appointments). Further, it was noted that PWTD contributed a significant 

portion of VCT, ranging from 20.6% (baseline) to 35.6% (designated time early AM 100%).

Overall, the prediction-based DB strategy produced better clinic efficiency compared to 

other strategies. Three pairs of the experimental scenarios were selected as examples for 

evaluations of these strategies. In each pair, a prediction-based scenario was compared 

against another one that was either the random or the designated time scenario. To enable 

a comparable basis, individual pairs were selected only from those scenarios that had at a 

similar DB level in terms of the number of double-booked appointments. Figure 4(a) and 

4(b) show the comparisons of PWTD and VCT, respectively, based on the three selected 

pairs of DB scenarios.

The clinic productivity was expected to be maintained or increased via double-booking. 

When evaluating DB strategies using the clinic productivity, their impacts were generally 

consistent and intuitive: the daily clinic throughput (DCT) increased as the number of 

double-booked appointments increased. However, such increase could potentially result in 

prolonged VCT and PWTD (as well as overtime of doctors and staff). Hence, it would be 

more meaningful to analyze the productivity-efficiency trade-offs to enable a more thorough 

understanding of the DB strategies’ effectiveness. The trade-off analysis was conducted 

using the percentage increase in DCT versus the percentage increase in VCT (see Figure 

5). These two metrics were derived by normalizing DCT and VCT derived from each DB 

scenario against the corresponding metrics derived from the baseline scenario, respectively. 

For the same percentage increase in DCT, the prediction-based strategy resulted in the 

least increase in VCT (i.e., lowest negative impact on efficiency), followed by the random 

and designated PM strategies. In contrast, the VCT had the greatest increase under the 

designated AM strategy (i.e., highest negative impact on efficiency).

A linear regression analysis was conducted to further examine the statistical significance of 

these strategies. The outcome variable was the VCT, and the predictor variables were the 
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percentage of increase in DCT and a dummy variable created to denote the DB strategies 

(reference was the baseline scenario). Table 6 shows the regression results. The DCT 

increase was found to be a significant factor contributing to the longer VCT. For instance. 

For instance, an 10% DCT increase (equivalent to 20 additional patient visits per day) 

would increase VCT by 5.1% (74.7 minutes), 8.0% (76.8), 9.3% (77.7), and 18.9% (84.6) 

in prediction-based, random, designated PM, and designated AM strategies, respectively, 

compared to the baseline scenario. The VCTs derived from the prediction-based and 

designated AM strategies were both significantly different from that derived from the 

baseline (p-values < 0.001), the prior one was negatively associated (coefficient = −3.809) 

and the latter one was positively associated (coefficient = 6.001). No evidence showed that 

the impacts of random and designated PM strategies were significantly different from the 

baseline scenarios.

4.5 Management Implications

The case study demonstrated that the prediction-based double-booking strategy 

outperformed the other strategies in balancing the impacts of patient no-shows, i.e., clinic 

productivity and efficiency. The trade-offs analysis showed that, to achieve the same level 

of daily clinic throughput, using the prediction-based strategy could save 2.1 (2.3), 3.0 

(2.4), and 9.8 (6.5) minutes in visit cycle time (patient wait time for doctor) on average 

comparing to the random, designated PM, and designated AM strategy, respectively. Further, 

the productivity-efficiency trade-offs at various experimental scenarios under the prediction-

based strategy could help clinic administrators determine the best double-booking tactics 

towards achieving the clinic’s efficiency and productivity goals. Often, some benchmark 

values (e.g., averaged performances of other similar clinics) can be used to evaluate these 

trade-offs in determining the most appropriate tactics for a specific clinic. This case study 

examined six prediction-based scenarios, based on which the increase in clinic throughput 

ranged from 8 to 56 per day, and the corresponding visit cycle time and patient wait time for 

doctor increased from 72.3 to 85.7 minutes and from 15.2 to 28.3 minutes, respectively. The 

benchmark values used in this study were the clinic’s performance outcomes derived under 

the “expected” operation (i.e., baseline scenario), where each doctor’s appointment was 

scheduled for exactly one patient, and both double-booking and patient no-show were not 

present. In the baseline scenario, the average visit cycle time and patient wait time for doctor 

were found to be 83.3 and 24.6 minutes, respectively. It was found that the prediction-based 

strategy using the cut-off value of 0.4 generated similar efficiency performance (80.4 and 

23.4 minutes), however, the daily clinic throughput could be increased by 20% (i.e., about 

39 double-booked time slots per day).

Although the case study focused on the impacts of double-booking on clinic productivity 

and efficiency, the proposed predictive decision analytics approach based on the hybrid 

prediction and simulation modeling can be generalized to understand and tackle a range 

of decision problems involved in primary care operations. Clinic administrators could 

also use this approach to project the impacts of operational policies and strategies on 

patient appointment scheduling, patient cancellations and late arrivals, staffing and capacity 

planning of other resources (e.g., use of exam rooms). Further, this approach could be used 

to support decision-making under the extreme cases, such as pandemics, when the primary 
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care operations were disrupted by the pandemic policies/interventions, staff shortage, etc. 

Furthermore, it is worthwhile mentioning that the implementation of the recommended 

double-booking strategy in real-world settings must be planned and executed with cautions 

due to the issues/challenges in practice (e.g., what are technologies/tools needed for 

implementing the strategy on a regular basis, how to implement those technologies/tools 

with minimal interruptions to the current clinic’s operations), future studies are needed to 

address those implementation issues.

4.6 Limitations

There are three major limitations in the current study. First, due to the large variations 

across different primary care clinics (e.g., large public clinic vs. small private clinic), the 

model design of the proposed approach presented for predictive analytics and simulation 

modeling cannot capture all the unique characteristics of individual clinics and their specific 

needs in decision-making. Indeed, the intent of developing this design was to provide a 

high-level modeling structure that could help guide the detailed model design. Second, as 

the main purpose of our case study was to demonstrate an application of the proposed 

approach, the clinic operation was simplified in the current simulation model. For instance, 

some details in the clinic operation such as nurses’ team behavior and doctors’ EHR 

documentation activity were not simulated explicitly. Third, while several double-booking 

strategies were examined in the case study, there are other policies and interventions that 

hold great promises for patient no-show management, such as open access scheduling policy 

(i.e., schedule appointments based on patients’ preferences). Future research is needed to 

address these limitations and provide more comprehensive and valuable information for 

better patient no-show management and clinic’s operational decision-making in a broader 

context.

5. Conclusions

The current study develops a predictive decision analytics approach based on hybrid 

modeling of predictive analytics and simulation modeling to enable predictive decision-

making in primary care operations. Comparing to the existing literature typically using a 

single analytical approach, this approach allows us to develop more effective interventions 

for primary care operations improvement via linking predictive analytics to simulation 

modeling and decision evaluation. The use of combined agent-based and discrete-event 

simulation model to mimic primary care operations also improves the representativeness 

and granularity of the simulation model, therefore providing a more realistic platform for 

evaluating various decisions. An application of the proposed approach was presented by 

a case study conducted in a real family medicine clinic to demonstrate the design and 

evaluation of double-booking strategies. Based on the model results, a trade-off analysis was 

conducted between the clinic productivity and efficiency measures, which provided more 

comprehensive insights of the effectiveness of the studied double-booking strategies. As 

expected, the prediction-based strategy exceled the random and designated time strategies by 

achieving the best productivity-efficiency balance. This finding implies a great potential of 

using the proposed approach to improve primary care operations based on decision-making 
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informed through collective use of predictive analytics, simulation modeling, and decision 

evaluation.
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Highlights

• Prediction is linked to simulation for predicted decision-making in primary 

care

• The predictive decision analytics approach enables more effective decision-

making

• Trade-offs of primary care measures provide more insights for decision 

evaluations

• Prediction-based double-booking strategy helps achieve better no-show 

management
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Figure 1. 
A conceptual framework of the hybrid decision analytics approach
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Figure 2. 
A high-level DES-ABS simulation design
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Figure 3. 
A general flow chart of clinic personnel working behavior logic
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Figure 4(a). 
Patient wait time for doctor of selected experimental scenarios under different double-

booking strategies (prediction-based vs. random/designated time)
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Figure 4(b). 
Visit cycle time of selected experimental scenarios under different double-booking strategies 

(prediction-based vs. random/designated time)
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Figure 5. 
Trade-offs between visit cycle time and clinic throughput under different double-booking 

strategies
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Table 1

Comparison of prediction model performances

Logistic Regression Random Forest

Accuracy 0.75 0.72

Sensitivity 0.16 0.28

Specificity 0.96 0.88

AUC* 0.67 0.63

*
Area Under the receiver operating characteristic Curve
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Table 2

Simulation input data

Data Category Data Item Data Collection Method

Patient encounter 
records

Patient data: id (de-identified), age group, gender, race/ethnicity, language, 
payor type

Data extraction from the EHR 
systemAppointment data: scheduled time/duration, check-in/out time, primary 

care provider (de-identified), appointment type*, modality**, status***

Clinic’s operational 
data

Patient flow data: tasks/activities of doctors, nurses, and clerks, task/
activity sequences Focus groups

Patient flow data (with timestamp): duration of tasks/activities (e.g., check-
in duration, exam duration, etc.) Direct observations

Staff schedule: daily capacity of nurses and clerks at an aggregated level Other methods (e.g., consultation 
with the clinic staff)Doctor schedule: daily schedule of doctors at an individual level

*
Appointment type includes new patient, follow-up, well child, preventive care visits, etc.

**
Appointment modality includes in-person, tele-health, and phone.

***
Appointment status includes complete, no-show, cancelled, and left without being seen.
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Table 3

Initial values of simulation input parameters

Input Parameter Data Level Value

Patient arrival Individual The check-in time of each appointment in the original patient encounter data

Check-in duration Individual N (15, 5, 10, 20) for new patients*
N (3, 1, 2, 5) for established patients

Pre-exam duration Individual N (9, 4, 2, 24)

Exam duration Individual N (44, 16, 8, 79) for new patients 
N (24, 16, 5, 42) for established patients

Post-exam duration and probability Individual N (24, 10, 15, 45); 0.1

Discharge duration Individual N (8, 2, 5, 20)

Number of CMAs** Aggregated {10, 10, 11, 10, 9}

Number of LVNs Aggregated {8, 7, 8, 8, 7}

Number of clerks Aggregated {5, 5, 5, 5, 5}

*
All the activity durations were generated for new and established patients, respectively. Truncatednormal distributions were used to represent 

activity durations, expressed by N(μ, σ, min, max).

**
The numbers of clinic staff from Monday to Friday during the study week.
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Table 4

Experimental scenarios under the three double-booking strategies

DB Strategy Experimental Factors Values

Prediction-Based pPred: Probability used to identify no-shows 0.7, 0.6, 0.5, 0.4, 0.3

Random

Xj
Rand

: Number of doctors selected for double-booking on day j 10, 16, 11, 15, 12*

Y ij
Rand

: Number of scheduled appointments with doctor i selected for double-
booking on day j 10%, 20%, 30%, 40%, 50%**

Designated Time
Zj

AM
: Percentage (%) of the total available time slots in early AM 10%, 30%, 50%, 70%, 90%, 100%

Zj
PM

: Percentage (%) of the total available time slots in early PM 10%, 30%, 50%, 70%, 90%, 100%

*
Number of doctors selected on Monday through Friday during the study week, respectively.

**Y ij
Rand

 = total number of scheduled appointments with doctor i on day j × a percentage. This percentage was used as a substitute for the 

experimental factor Y ij
Rand

. Once the factor level was set (e.g., 10%), it was applied to all the selected doctors from Monday to Friday of the study 

week.
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Table 5

Simulation results of visit cycle time and patient wait time for doctor under different experimental scenarios

DB Strategy DB Scenario

Double-Booked Time 
Slots Visit Cycle Time (minutes) Patient Wait Time for 

Doctor (minutes)

N* %** Mean SD Mean SD

No DB Baseline 0 0.0 71.1 28.7 14.4 21.3

Prediction-Based

0.8 35 3.6 72.3 29.9 15.2 22.0

0.7 62 6.8 73.8 30.1 16.7 23.4

0.6 90 9.9 75.1 30.7 18.1 24.6

0.5 125 13.6 77.9 32.4 20.4 26.8

0.4 185 19.8 80.4 34.5 23.4 29.5

0.3 273 28.9 85.7 37.4 28.3 33.3

Random

5% 30 3.1 72.9 29.4 16.4 23.2

10% 83 8.6 75.6 30.6 18.8 24.3

15% 107 11.1 77.5 32.6 21.2 27.2

20% 158 16.4 80.7 33.1 23.6 27.9

25% 188 19.5 84.6 36.4 27.3 31.1

30% 223 23.1 85.6 35.1 28.1 31.0

Designated Time (Early AM)

10% 19 2.0 74.8 31.5 17.1 24.6

30% 56 6.1 78.7 35.5 19.1 25.2

50% 94 10.2 83.0 34.0 23.3 28.4

70% 131 14.3 88.5 38.7 27.5 33.2

90% 168 18.4 94.5 43.6 32.7 38.9

100% 187 20.4 96.4 45.0 34.5 40.4

Designated Time (Early PM)

10% 12 1.2 71.6 29.2 14.8 21.9

30% 36 3.6 73.9 32.8 16.2 23.3

50% 60 6.0 74.2 31.3 17.6 24.9

70% 83 8.4 76.1 31.1 18.3 24.7

90% 107 10.7 78.3 33.0 21.0 27.4

100% 119 11.9 79.0 33.7 21.2 27.9

*
N = Total number of double-booked time slots during the study week.

**
% = N/Total number of available time slots during the study week.
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Table 6

Regression analysis results

Coefficient Standar d Error t-statistic p-value
95% CI

Lower Upper

Constant 71.1045 0.799 88.971 0.000 69.530 71.041

Clinic throughput (% increase) 0.7443 0.025 30.142 0.000 0.696 0.793

Strategy (dummy)

Prediction-based − 3.8092 0.928 − 4.106 0.000 − 5.637 1.982

Random − 1.7542 0.927 − 1.893 0.060 − 1.933 0.071

Designated AM 6.0009 0.912 6.581 0.000 4.205 7.797

Designated PM − 0.8002 0.880 − 0.909 0.364 − 2.534 0.934
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