
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–29

� The Author(s) 2023

DOI: 10.1177/00375497231176085

journals.sagepub.com/home/sim

Combining DEVS simulation and
ontological modeling for hierarchical
analysis of the SARS-CoV-2 replication

Ali Ayadi1 , Claudia Frydman2, Wissame Laddada3,
Isabelle Imbert4 , Cecilia Zanni-Merk3 and Lina F Soualmia3

Abstract
This article presents an hybrid and hierarchical model in which two modeling and simulation approaches, discrete event
system specification simulation (DEVS) and semantic technologies, were used together in order to help in the analysis of
a major healthcare problem, the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Indeed, the complex-
ity of the SARS-CoV-2 replication process, and the range of hierarchical scales over which it interacts with cellular com-
ponents (extending from genomic and transcriptomic to proteomic and metabolomic scales), and the intricate way in
which they are interwoven, make its understanding very challenging. It is therefore crucial to model the different scales
of the replication process, by taking into account all interactions with the infected cell. By combining the advantages of
both DEVS simulation and ontological modeling, we propose a hierarchical ontology-based DEVS simulation model of
the SARS-CoV-2 viral replication at both the micro-molecular (proteomic and metabolomic) and macro-molecular
(genomic and transcriptomic) scales. First, we demonstrate the usefulness of combining DEVS simulation and semantic
technologies in a common modeling framework to face the complexity of the SARS-CoV-2 viral replication at different
scales. Second, the modeling and simulation of the SARS-CoV-2 replication process on different levels provide valuable
information on the different stages of the virus’s life cycle and lays the foundation for a system to anticipate future muta-
tions selected by the virus.

Keywords
COVID-19, SARS-CoV-2 replication machinery, virus–host interactions, hierarchical modeling and simulation, DEVS
simulation, ontological modeling

1. Introduction

At the end of December 2019, an infectious disease with

unknown causes was discovered for the first time in the

Chinese town of Wuhan.1 The World Health Organization

(WHO) has quickly declared a global health emergency

and pandemic as the infectious disease spreads exponen-

tially worldwide.2 The WHO attributed this pandemic to a

new coronavirus, called Severe Acute Respiratory

Syndrome-Coronavirus-2 (SARS-CoV-2) which causes

coronavirus disease-2019 (COVID-19).2 Coronaviruses are

an important group of single-stranded positive-sense RNA

viruses that infect animals and humans.3 Since 2000, three

new and highly pathogenic coronaviruses have emerged,

SARS-CoV (2003), MERS-CoV (2012), and SARS-CoV-

2 (2019).4 However, only the SARS-CoV-2 has become a

pandemic within a matter of months. It attacks the respira-

tory system, leading to fatigue, fever, and respiratory

problems.5 The Coronavirus genome comprises about

30,000 nucleotides and encodes an exceptionally complex

replication/transcription mechanism consisting of 16 viral

non-structural proteins (nsps).6 By January 27, 2023,

SARS-CoV-2 had infected nearly 674,408,760 people,

including an estimated 6,755,708 confirmed deaths in at

least 219 countries worldwide
1

.

1ICube CNRS UMR7357, University of Strasbourg, Strasbourg, France
2LIS CNRS UMR 7020, Aix Marseille Univ, Université de Toulon,

Marseille, France
3Normandie Université, INSA Rouen, LITIS, Rouen, France
4LISM CNRS UMR 7255, University of Aix-Marseille, Marseille, France

Corresponding author:

Ali Ayadi, ICube CNRS UMR7357, University of Strasbourg, 300 bd

Sébastien Brant, Illkirch, CS 10413, F-67412 Strasbourg, France.

Email: ali.ayadi@unistra.fr

https://doi.org/10.1177/00375497231176085
https://journals.sagepub.com/home/sim

In this scourge, governments around the world are

imposing protection measures, i.e., washing hands, staying

at home, covering mouths and noses, limiting social gath-

erings, and so on, to stop the spread of SARS-CoV-2.

Meanwhile, health organizations and researchers have

focused on this emergency as never before.7 In collabora-

tion with biologists and clinicians, mathematical and com-

puting communities have developed new algorithms and

mathematical methods to tackle the COVID-19. The

majority of the studies have been conducted to understand

and characterize the relative risk of SARS-CoV-2 and its

spread at a population level. But, there is still much work

to learn about its replication (and consequently on the

selection of mutations at the genome level) and interaction

with host cell.8 From a mathematical and computational

point of view, only a few studies have investigated the

replication mechanism of the SARS-CoV-2, in particular

the RNA-dependent RNA polymerase (RdRp), a key pro-

tein responsible for viral replication. Besides, the com-

plexity of the SARS-CoV-2 replication machinery makes

its design and simulation difficult.9

Moreover, the complexity of the SARS-CoV-2 replica-

tion process arises due to the range of hierarchical scales

over which it interacts with cellular components, extending

from genomic and transcriptomic to proteomic and meta-

bolomic scales and the intricate way in which they are

interwoven, making its understanding very challenging.

Thus, the development of mathematical and computational

tools to model the molecular mechanisms, underlying the

replication of the SARS-CoV-2 viral genome and its inter-

action with host cells, warrant urgent investigation.

This work extends the previous study,10 where the

DEVS formalism was combined with ontological models

to provide a SARS-CoV-2 replication simulation frame-

work. We extend this work to propose a hierarchical simu-

lation model to represent the dynamics of the SARS-CoV-

2 replication cycle at different levels: from the micro-level

(the different biochemical reactions, such as the translation

and the transcription sub-processes, leading to the produc-

tion of the viral proteins and modifications that occur in

amino acids) to the macro level (the cellular pathways

hijacking by the virus to produce new virus particles).

Here, our proposed hierarchical model consists of two

interconnected modules: the ontological and DEVS simu-

lation modules. The ontological module exploits the

OntoRepliCov ontology,11 an ontology dedicated to the

description of the coronavirus replication process, to pro-

vide semantic knowledge about the CoV genome organi-

zation, SARS-CoV-2 sequences and the different viral

proteins produced. Such micro-level knowledge cannot be

provided by the DEVS module. Despite the fact that the

DEVS formalism is modular, it is not able to model the

micromolecular entities (e.g. at the metabolomic scale)

since these entities are very compact and do not have any

behavior (biological process) to be simulated and do not

have any inputs or outputs. Furthermore, these micromole-

cular entities have a simple and basic structure, as they

constitute the basic elements of macromolecular entities.

This means that they cannot be decomposed into other

components and do not have any specific behavior. A way

to address this challenge is using an ontology, which can

scale down to a finer level of micromolecular modeling

through domain and expert biologists’ knowledge. While

the DEVS module based exploits the Discrete-Event

Modeling and Simulation (DEVS) formalism12 to simulate

the dynamic steps of the SARS-CoV-2 replication cycle,

starting from its attachment to the host cell to the budding

of new virions. Such macro-level simulation cannot be

supported by the ontological module.13 By leveraging the

benefits of both domains, the proposed approach allows

understanding, modeling, and simulating, qualitatively and

quantitatively, the replication of the SARS-CoV-2. We

believe that understanding this complex system, through

this proposed hybrid approach, could help biological

researchers tackle this outbreak.

The paper is structured as follows. Section 2 introduces

the theoretical foundations of this paper: the SARS-CoV-2

replication, the DEVS formalism, and the ontology

notions. Section 3 gives a literature review on the existing

approaches for modeling and simulating the SARS-CoV-2

replication. Section 4 presents the novel hybrid approach

for modeling and simulation of the SARS-CoV-2 viral

replication process in the micro- and macro-molecular

scales (from genomic and transcriptomic to proteomic and

metabolomic ones) by detailing its different modules and

how they are connected together. We mainly focus on the

mapping between the DEVS and ontological modules.

Section 5 illustrates the experimental results by applying

the approach to the real SARS-CoV-2 RNA to prove the

efficiency of this hybrid approach. Section 6 concludes the

paper and gives future perspectives.

2. Overview
2.1. Life cycle of SARS-CoV-2

As illustrated in Figure 1, the SARS-CoV-2 genome con-

sists of a positive-sense single-stranded RNA, about

30 kilobases coated with N protein and covered by a lipid

bilayer containing spike S, membrane M, and envelope E

proteins.14,15 The SARS-CoV-2 life cycle includes four

main stages: the virus entry, translation of the viral repli-

cases, genome replication and transcription, structural and

accessory proteins’ expression, virion assembly and

release:16

� Virus entry: the virus enters the target cell either by

endocytosis or through viral/plasma membrane

fusion. In both cases, this entry is handled by the

attachment of the spike glycoprotein (spike S)

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

present on the surface of the virus envelope to the

membrane of the host cell through its angiotensin-

converting enzyme 2 (ACE2) receptors.17

� Translation of viral replication machinery & repli-

cation: once released in the host cell cytoplasm, the

viral genome is translated by host ribosomes to pro-

duce two large replicase polyproteins (pp1a and

pp1ab), which generate through the proteolytic pro-

cess, sixteen non-structural proteins (nsp1 to nsp16)

that have a critical role in viral RNA synthesis, and

structural proteins. These 16 non-structural proteins

form the viral replication and transcription complex

(RTC) and the viral RNA-dependent RNA polymer-

ase (RdRp) nsp12 in association with its two viral

co-factors nsp7 and nsp8 as the catalytic core of

RNA synthesis. The function of the RTC is to repli-

cate a negative full-length genome and transcribe a

set of negative-sense subgenomic (sg) RNAs. In

turn, these will serve as templates to produce a new

positive-sense RNA genome and nine subgenomic

messenger ribonucleic acid mRNAs (sgmRNAs)
encoding structural and accessory proteins.15

� Production of the viral structural proteins and virus

egress: at late stages of infection, the structural pro-

teins in spike (S), envelope (E), membrane (M),
and nucleocapsid are translated from the sg mRNAs

by the cellular ribosomes, in the endoplasmic reti-

culum (ER) and retained at the site of budding in

the ERGIC. The viral RNA genome coated with N

protein ultimately bud into ERGIC membranes,

which are decorated with M, E, and S proteins, pro-

ducing new virions.15

� Egress of Virions: Newly enveloped virions leave

the cell by the exocytic pathway or by cell lysis at

the ERGIC compartment, they exit the infected host

cell by exocytosis through the lysosomal trafficking

pathway, budding, or by cell lysis.15

Accordingly, the SARS-CoV-2 life cycle and its interac-

tion with the human organism can be considered as a com-

plex multicomponent hierarchical dynamical system

composed of different scales, the micromolecular scale

comprising the proteomic and metabolomic entities, while

the macromolecular scale consisting of the genomic and

transcriptomic entities. These entities can be transferred

from one scale to another one, making their modeling and

simulation very complex.

2.2. Modeling and simulation: DEVS formalism

The modeling and simulation theory (M&S) is used to

mimic the operation of an existing or proposed system to

understand and analyze its dynamic behavior in a simpli-

fied replica within a risk-free environment.18 This theory

involves two separate activities. The first modeling activity

focuses on making a representation of a system from an

observer’s point of view. It answers all the questions the

observer may have about the structure and function of the

system. While the second simulation activity focuses on

executing the model to produce its behavior by modifying

its inputs and parameters.18 Various M&S formalisms have

been developed, such as the Differential Equation System

Specifications (DESS) for traditional differential equation

systems or the Discrete Time System Specifications

(DTSS) for automata. In our study, we choose to use the

Discrete Event System Specification (DEVS) formalism

that was initially proposed by Bernard P. Zeigler19 in the

70s as a discrete-event modeling specification formalism.

This formalism supports the modeling and simulation of

complex systems by defining them as hierarchical, modu-

lar models that can be easily reused. Accordingly, a system

Figure 1. Life cycle of SARS-CoV-2. Inspired from.16

Ayadi et al. 3

is defined as a composite of sub-models, each of them

being behavioral (atomic) or structural (coupled), as seen

in Figure 2. Coupled models can be embedded in a model

hierarchy. Both models consist of a time base, inputs,

states, outputs and functions to compute the next states and

outputs.

As shown in Figure 2(a), a DEVS atomic model is

defined by this seven-tuple equation (1):

M = hX , Y , S, dint, dext, l, tai ð1Þ

where X the input events set, Y the output events set, S the

state set, dint the internal transition function (S ! S), dext

the external transition function (Q 3 X ! S), with

Q= f(s, e), s 2 S and e 2 ½0, ta(s)�g, l the output function

(S ! Y), and ta the elapsed time function (S ! R+
0 [‘).

A DEVS coupled model, as illustrated in Figure 2(b),

may include several sub-models (atomic and/or coupled

models) to define the hierarchical structure of the system.

It is defined by equation (2):

CM = hX , Y ,D, fMd jd 2 Dg,EIC,EOC, IC, selecti ð2Þ

where: X the set of input events, Y the set of output events,

D an index for the components of the coupled model, Md a

basic DEVS model d 2 D (atomic or coupled) defined by

Md = hXd , Yd , Sd , dint, dext, l, tai. EIC the external input

coupling, EOC external output coupling, EIC the internal

coupling, and select the tie-break selector.

Various extensions of DEVS-based simulators have

been proposed,20 including the fwkDEVS21 a DEVS/GLE

simulation framework designed in java and supporting

GDEVS simulations. DEVSJAVA environment22 designed

in java supports parallel execution on a uni-processor.

This simulator can also be linked with DEVS/HLA and

DEVS/CORBA frameworks. VLE (for Virtual Laboratory

Environment) is a multi-modeling and simulation plat-

form. It uses C++ to create simulation models and

Python to use simulation as a scripting language for data

analysis.23 JDEVS24 is implemented in java and enables

discrete event, object-oriented, GIS-connected, and visual

simulation model development. PythonPDEVS25 is a

Python-based simulation framework for classic and paral-

lel DEVS. ADEVS26 is also distinguished by its support

for both discrete event and continuous dynamical systems.

CD++ 27 is a general framework for modeling and simu-

lation of classic, parallel and cellular DEVS models.

Written in C++, the CD++ toolkit has been widely used

to model and simulate a variety of applications.28

Moreover, CD++was revised and extended several

times.29,30 A more complete list of DEVS-based simula-

tors is available on the Advanced Real-Time Simulation

Laboratory web page: https://arslab.sce.carleton.ca/

index.php/devs-tools/. As can be seen, there is no better

simulation tool, and they cannot be compared. Since each

tool uses its own language and can be used for specific

purposes. A possible way to compare them is by imple-

menting an appropriate test model in the different simula-

tion frameworks and then comparing the performance of

each simulator, but it remains an expensive and time-

consuming task. The proposed DEVS models in this study

will be implemented in the CD++ simulator.27

2.3. Ontologies and SWRL rules

Over the last few decades, there has been increasing use of

ontological modeling in different domains, especially in

health and biological data management. Ontologies are

historically rooted in philosophy as the study of being,

including their main categories and relations. In computer

science, an ontology is a way of showing the properties of

a subject area and how they are related, by defining a set

of concepts and categories that represent the subject.31

Concepts represent explicit classes, used to describe the

main entities of a domain of interest. They are usually

organized in taxonomies through which inheritance

mechanisms can be applied. Properties represent a type of

association between those concepts. An ontology uses

axioms, which are assertions (including rules) in a logical

form that together comprise the overall theory that the

ontology describes in its domain of application. It also

contains instances that are used to represent elements or

individuals, the basic objects of the ontology.

Formally, an ontology is defined by this quadruplet32

equation (3):

O= hC,P, Sub,Assi ð3Þ

where, C is the set of classes describing the concepts of the

domain of interest, P is the set of properties describing the

(a) (b)

Figure 2. Graphical representation of (a) DEVS atomic model and (b) DEVS coupled model.

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

individuals of the classes C, Sub is the subsumption rela-

tion function (C ! 2C) with 2C the power set of C, and

Ass the classes-properties (object and data properties) asso-

ciation function (C ! 2P).
All of these components are well-defined by the

domain expert. The formalization of knowledge represen-

tation ontologies can be done using different formalisms

or languages, such as first-order logic (FOL), eXtensible

Markup Language (XML), Resource Description

Framework (RDFS) or the World Wide Web Consortium

(W3C) standard Web Ontology Language (OWL).33 Thus,

a formal ontology is computer-readable, allowing the com-

puter to ‘‘understand’’ the relationships, the ‘‘formal

semantics,’’ of the ontology. By incorporating expert

rules, written as antecedent-consequent pairs, ontologies

can generate logical inferences of relevant knowledge.33

These knowledge rules can be constructed using the

Semantic Web Rule Language (SWRL).34 In this study,

we use the OntoRepliCov ontology,11 an ontology dedi-

cated to the description of the coronavirus replication pro-

cess, to provide semantic knowledge about the CoV

genome organization, SARS-CoV-2 sequences and the dif-

ferent viral proteins produced.

3. Related work

Mathematical modeling and computational simulations

play a key role in virology by studying viruses and their

interactions with host cells.35 To date, a great number of

research efforts have been proposed to understand the

SARS-CoV-2 and its COVID-19 disease. In this section,

we categorize existing SARS-CoV-2 modeling and simula-

tion approaches into two groups: mathematical approaches

and data-driven approaches.

Several mathematical and statistical models have been

developed to understand the transmission mechanisms,

structures, and features of the SARS-CoV-2.36–39 These

models were mainly designed for protein structure predic-

tion, virus genomic sequence classification, drug discovery

or SARS-CoV-2 transmission. Of these models, the fol-

lowing40–43 focused on the molecular dynamics simulation

(MDS) for modeling the evolution of the viral protein

RNA-dependent RNA polymerase (RdRp) and test its

binding affinity to some drugs. Amin et al.44 proposed a

mathematical modeling based on Monte Carlo optimiza-

tion for predicting possible SARS-CoV-2 papain-like pro-

tease (PLpro) inhibitors. Other mathematical models have

been proposed for modeling the dynamics of transmission

and spread of SARS-CoV-2. Most of them are based on

compartmental models (such as Susceptible Infectious

Recovered (SIR) models) using classical ordinary differen-

tial equations to aid epidemiologic monitoring.45–48 These

SIR models are the simplest mathematical framework for

describing the spread of diseases where immunity, if

acquired, cannot be lost. These models consider different

parameters such as patient improvements, personal protec-

tion strategies, regulation implementation, and so on.49,50

They have proven their effectiveness in understanding

human-to-human transmission and control techniques to

stop transmission.

These mathematical models are divided according to

the nature and predictability of the events that are mod-

eled, into stochastic models or deterministic models.51

Deterministic models are based on the use of ordinary dif-

ferential equations (ODE) and partial differential equations

(PDE). While indirect stochastic differential equations

(SDEs) deal with random events. Mathematical models

are also differentiated into continuous and discrete models.

Continuous models are suitable for studying the dynamics

of biological phenomena such as the viral infection over

time. Their differential equations are equations wherein

solutions are not numerical values, they are functions.

These equations express relations between these unknown

functions and their subsequent derivatives. This makes it

difficult to solve differential equation models. For exam-

ple, in the SIR epidemic prediction model, the parameters

of interest correspond to the parameters of susceptible,

exposed, infected and recovered individuals. However, all

of these settings are considered as a single function of

time. Obviously, simulating the behavior of SARS-CoV-2

requires simulating several variables at the same time.52,53

Using mathematical models then refers to situations in

which the independent variable used in the ODE model

represents the most significant factor of our interest.

However, we often ignore the possibility of other factors

influencing our research.52 A high number of parameters

is necessary for such mathematical models. Therefore,

obtaining a value for each parameter via laboratory experi-

ments or theoretical calculations is difficult, sometimes

even impossible.54

Other approaches based on machine learning (ML) and

deep learning (DL) models have been also proposed to

address SARS-CoV-2, its genomic sequence classification

making an accurate diagnosis, or discover potential

drugs.55 Among these studies,56–59 proposed approaches

using gradient boosting, neural networks, random forest,

and support vector machine (SVM) to identify potential

RdRp inhibitors. Authors trained their approaches on an

RdRp inhibitor data set to perform inference analyses on

antiviral drugs. These studies proved that ML models were

able to identify new potential molecules (such as remdesi-

vir and baloxavir marboxil) against the SARS-CoV-2

RdRp. Touati et al.60 proposed an ML-based classification

approach based on six supervised-learning classification

models, i.e., linear and subspace discriminant, linear and

quadratic SVM, fine and subspace KNN to analyze the

virus genomic sequence for timely treatment plans.

Authors in Touati et al.60 combined different RNA repre-

sentation and signal processing tools to identify the

Ayadi et al. 5

SARS-CoV-2 genetic origin. These studies mainly use the

Smoothed Discrete Fourier Transform (SDFT) algorithm

for analyzing the SARS-CoV-2 genomic signature.

Pavlova et al.61 proposed a machine-learning approach for

understanding the dynamic interactions between the

receptor-binding domain and human ACE2 receptor.

Ghosh et al.62 applied a variety of ML algorithms to build

several dozen of Quantitative Structure–Activity

Relationship models (QSAR models), based on regression

and classification algorithms, to find SARS-CoV-2 RdRp

inhibitors. QSAR is usually one of the first steps in the

drug discovery process, in which large databases of chemi-

cal structures are screened through a variety of predictive

mathematical models in order to narrow down the number

of potential drug candidates for the treatment of SARS-

CoV-2. Tang et al.63 proposed an advanced deep Q-learn-

ing network with the fragment-based drug design (ADQN-

FBDD) for generating potential lead compounds targeting

a key enzyme in the life-cycle of coronavirus, the 3C-like

main protease (3CLpro). Alakus and Turkoglu64 proposed

various DL application models, including artificial neural

networks (ANN), convolutional neural networks (CNN),

long-short term memory (LSTM), recurrent neural net-

works (RNN), for the detection of SARS-CoV-2 infection.

These ML and DL approaches have shown acceptable

results in terms of scalability and performance. However,

they require a large amount of annotated data.65 As well,

data annotation is time-consuming, and requires the exper-

tise of biologists. This leads scientists to train their models

on unlabeled data sets, instead of annotated and important

data.66–68 Furthermore, ML approaches require much data,

however, there are not enough.69

Besides, the majority of these studies focus on the rela-

tive risk of SARS-CoV-2 and its transmission such as

investigating molecular dynamics simulations, reproducing

the viral infection, measuring the effects of drug treatment,

identifying potential drug candidates, spreading of the

virus through people, and so forth. They ignore details of

the virus life cycle. However, there is still much work to

learn about the RNA genome replication and the resulting

mutations, and the interaction of the SARS-CoV-2 with its

host cell components at different temporal and spatial

scales. Only a few studies investigate this issue, such as

the work of Grebennikov et al.15 who propose a determi-

nistic mathematical model for analyzing the SARS-CoV-2

life cycle. But, the paucity of available kinetic data on the

intracellular life cycle of SARS-CoV-2 and the difficulty

of solving the differential equations of the models lead to a

misunderstanding of the viral life cycle. The complexity of

the SARS-CoV-2 replication mechanism makes its model-

ing and simulation difficult.

As reviewed above, while there have been a number of

mathematical and computational models and simulations

proposed in the literature covering various dimensions to

tackle the SARS-CoV-2, there are still constraints and

challenges such as understanding and simulating the repli-

cation mechanism of SARS-CoV-2 with the objective of

identifying promising SARS-CoV-2 potent viral inhibitors.

4. The proposed hybrid approach

This section gives the core architecture of our proposed

hybrid hierarchical approach for the modeling and simula-

tion of the SARS-CoV-2. As a hybrid hierarchical model-

ing and simulation approach that combines DEVS

formalism and semantic technologies, the proposed

approach consists of two main modules: (1) the DEVS

module and (2) the ontological module. Figure 3 gives an

overview of our approach. In the following section, we

describe these two modules and how they are combined.

4.1. The DEVS module

The first module of our proposed approach is based on the

DEVS framework to mathematically model and simulate

the SARS-CoV-2 replication process. This DEVS module

determines the structures, behaviors, and dynamic evolu-

tion of the molecular entities involved in the SARS-CoV-2

replication process, and uses atomic and coupled models

to model them. This module consists of two submodules

(Figure 3), the DEVS model and DEVS simulation engine.

As stated in Section 2.2, the proposed DEVS module is

based on the CD++modeling and simulation toolkit.27

Based on the abstract simulator concepts proposed by,

Zeigler et al.19 CD++ provides an environment to (1)

design discrete events conceptual models and (2) simulate

them. It consists of main classes Models and Processors.

The first class defines the conceptual DEVS models.

Using instance variables, the Model can: identify its asso-

ciated processor, identify the link to the coupled model

containing this model (parent), and specify the interaction

of the model with other models (inport and outport).70 The

atomic model is implemented with its own methods

namely the internal transition, external transition, output,

and time advancement methods. In our case, as the aim of

our work is to combine DEVS formalism with ontological

modeling, these methods are related to the SWRL rules

engine. The aim is that these functions should interact with

the inference module of the ontological module and

request to execute the rule(s) that define the desired beha-

vior (or process). A coupled model is defined by determin-

ing its components, and their coupling relationships. The

second Processor class implements the simulation mechan-

ism. We found different types of simulation processors,

namely Simulators, Coordinators, and the Root-coordina-

tor. The processors ensure the execution of the abstract

simulation procedures through the implementation of the

theoretical DEVS concepts. These processors are related

to the models: a simulator is associated with an atomic

model, and a coordinator with a coupled model. In this

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

way, both simulators and coordinators ensure the function-

ing of the atomic and coupled models, respectively. The

root processor manages the simulation. Indeed, it ensures

the beginning and end of the simulation, the connection of

the simulator with the environment in terms of passing

external events/outputs from/to the environment, and the

advancement of the simulation clock.70 More details about

these classes and DEVS algorithm simulation can be

found in Wainer and colleagus.27,70

The SARS-CoV-2 replication can be seen as a complex

system involving a number of cellular and viral compo-

nents at different scales. We, therefore, propose a hierarch-

ical DEVS model of the SARS-CoV-2 replication process,

consisting of a coupled model representing the host cell.

This coupled model is itself formed by three coupled mod-

els, each one representing a level of the cell, respectively,

the cell membrane, the cytoplasm, and the secretory path-

ways. An overview of the DEVS hierarchical representa-

tion of the SARS-CoV-2 replication machinery is

displayed in Figure 4. Each of these coupled models is

composed of a set of atomic models. The ten atomic mod-

els forming the entire SARS-CoV-2 replication system

will be detailed in the next section (Section 5).

4.2. The ontological module

This module includes a rule-based system. It consists of an

ontology, the OntoRepliCov ontology,11 and a set of

expert reasoning rules. The OntoRepliCov ontology has

been specially designed and developed to describe the

micro-level of the replication machinery. More

specifically, it handles the translation and the transcription

sub-processes of the machinery where chains of proteins

and codons (amino acids: a combination of three nucleo-

tides) are produced. Modeling these sub-processes requires

a description of the virus organization at the micro-level.

Therefore, OntoRepliCoV provides a hierarchical formali-

zation of elements representing this micro-level organiza-

tion, such as codons and nucleotides. This formal model is

also enriched with rules to infer knowledge (nucleotides,

codons, polyproteins) resulting from the different stages of

the sub-processes that consider elements from the virus

organization. The Inferences are based on symbolic artifi-

cial intelligence and developed for semantic web technolo-

gies. We exploit these inferences to enrich the DEVS

simulation engine with a micro-level description.

As described in Table 1, the OntoRepliCov ontology

consists of eighty-four classes. Biologically, these classes

can be categorized into two distinct groups: those describ-

ing the hierarchical organization of the genome repre-

sented by the concept Genome, and those describing the

replication elements of the virus represented by the con-

cept Replication element.

The first group, describing the viral genome, consists

of seven subclasses: Global codon, Accessory protein,

Open reading frame, Polyprotein, Stem loop, Non

structural protein, and Structural protein, Nucleobase.

The second group of classes, represented by the

Replication element concept, describes all elements

needed for the replication process. This concept is further

decomposed in Subgenomic RNA, Replication

Transcription Complex, m RNA, t RNA, Subgenomic

Figure 3. An overview of the proposed approach.

Ayadi et al. 7

Positive RNA, Subgenomic Negative RNA, Amino

acid, and so on. All of these classes and subclasses are

shown in Table 1.

Moreover, the OntoRepliCov ontology defines the

semantic relations among the previously defined classes

through object and data properties. Each property links

two concepts, and each data property links a concept with

a specific datatype. Both are defined by a binary property.

Among these 15 properties, the following can be

mentioned:

� has � first � base (Codon, Nucleobase): a property

defining the first nucleobase of the codon sequence.
� has � second � base (Codon, Nucleobase): a prop-

erty defining the second nucleobase of the codon

sequence.
� has � third � base (Codon, Nucleobase): a prop-

erty defining the third nucleobase of the codon

sequence.
� has � next (Nucleobase, Nucleobase): a property

associating each nucleobase to its next nucleobase.
� has � next (Codon, Codon): a property associating

each codon to its next codon.
� has � beginning � base (Stem-loop, Nucleobase): a

property specifying the beginning nucleobase of the

stem-loop.

� has � ending � base (Stem-loop, Nucleobase): a

property specifying the ending nucleobase of the

stem-loop.
� sequence � polyprotein � pp1ab(Codon,

CodonFS): a property specifying the polyprotein

pp1a.
� sequence � polyprotein � pp1ab(Codon,

CodonFS): a property specifying the polyprotein

pp1ab.
� has � rank (Nucleobase, xsd: integer): a data prop-

erty assigning the rank of each nucleobase.
� has � rank (Codon, xsd: integer): a data property

assigning the rank of each codon.
� frameshifting (Nucleobase, xsd: boolean): a data

property indicating the nucleobase where the ribo-

some slips back in the translation process.
� is � start(Codon, xsd: boolean): a data property

specifying the starting codon of the translation

process.

In addition to this knowledge base, the ontological module

is semantically enhanced with an SWRL rule engine

(Table 2) to describe the translation and the transcription

sub-processes of the replication machinery. The inferences

of these rules represent elements (amino-acid sequences,

polyproteins, etc.) resulting from the sub-processes. Each

Figure 4. Overall DEVS simulation architecture of the SARS-CoV-2 replication process.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

sub-process includes different stages. For instance, in the

translation sub-process, chains of codons (a combination

of three nucleotides) are formed to produce amino acids.

The translation terminates when a combination of three

codons describes the stop codon. Then, a polyprotein pp1a

is synthesized from the beginning of the translation to the

Stop codon. But sometimes, the translation slips back one

nucleotide and a longer polyprotein pp1ab is produced. In

collaboration with biologists, a set of expert rules has been

defined to compute the resulting elements from the sub-

processes described with several stages (several rules): the

structure of the viral proteins, ribosome activities, discon-

tinuous transcription of subgenomic mRNAs, and continu-

ous genomic RNA replication. Thus, this module

contributes to defining and modeling the biological micro-

level of the SARS-CoV-2 RNA genome replication

Table 1. A summary of classes in the OntoRepliCov ontology. The left column presents the major classes and their immediate
subclasses. The right column presents their description.

OntoRepliCov classes Description

Genome It defines the hierarchical virus organization.
Structural protein It defines the structural proteins of the virus (M, N, S, E).
S It defines the transmembrane spike (S) glycoprotein.
M It defines the membrane (M) protein.
E It defines the envelope (E) protein.
N It defines the nucleocapsid (N) protein.

Non structural protein It defines the non-structural proteins of the virus.
nsp1 It describes the first non-structural protein.
nsp::: It describes the . . . (between 1 and 16) non-structural protein.
nsp16 It describes the last (16) non-structural protein.

Accessory protein It defines the s.
Open reading frame (ORF) It defines the major six open reading frames that exist in SARS-CoV-2.
ORF1ab It defines the role of the open reading frame ORF1ab.
ORF3 It defines the role of the open reading frame ORF3.
ORF6 It defines the role of the open reading frame ORF6.
ORF7a It defines the role of the open reading frame ORF7a.
ORF8 It defines the role of the open reading frame ORF8.
ORF10 It defines the role of the open reading frame ORF10.

Polyprotein It defines the sequence of amino acids delimited by start and stop codons.
pp1a It defines the shorter polyprotein pp1a.
pp1ab It defines the longer polyprotein pp1ab.

Nucleobase It defines the units forming the genetic code of an Ribonucleic acid (RNA).
Adenine It defines the adenine nucleic acid defined by the letter A.
Cytosine It defines the cytosinenucleic acid defined by the letter C.
Guanine It defines the guaninenucleic acid defined by the letter G.
Uracil It defines the uracilnucleic acid defined by the letter U.

Global codon It defines the sequence of three nucleobases.
Codon It defines the codons formed before the frameshifting.
CodonFS It defines the codons produced after the frameshifting.

Replication element It defines all the elements for the replication process.
Replication Transcription Complex It defines the molecule that drives viral genome replication and subgenomic

mRNA synthesis.
Protease It defines an enzyme that cleaves the polyprotein to release individual and active

non-structural proteins.
Ribosome It defines the cellular element able to translate from a message RNA into a protein

which is composed of amino acids.
Amino acid It defines the 22 amino acids which are part of the composition of proteins in mammals.
Alanine It defines the 1st amino acid (Ala).
. . . It defines the xth amino acid.
Tyrosine It defines the 22th amino acid (Tyr).

Stem loop It defines the unit of the structure of single-stranded RNA (stem, double helix, and loop).
m RNA It defines the messenger ribonucleic acid.
t RNA It defines the transfer ribonucleic acid.
Positive RNA Messenger It defines the Single Strand Positive RNA produced during the viral replication process.
Negative RNA Messenger It defines the Single Strand Negative RNA produced during the viral replication process.
Subgenomic RNA It defines the subgenomic RNA produced during the viral replication process.

Ayadi et al. 9

process. For sake of space, the set of SWRL rules will be

explained in Section 5.

4.3. The mapping between DEVS and ontological
modules

In this section, we explain how the DEVS module is con-

nected with the ontological model. The CD++ simulation

process is performed through data transfer. Typically, these

data include information about the sending component, the

time of the related event, and information about the input/

output port and a value. In CD++, there are four kinds of

data (or data messages) to communicate (Figure 3): (1) the

change of state caused by an internal event denoted by the

symbol �, (2) the arrival of an external event by specifying

its value and its port denoted by the symbol X , (3) the out-

put of a model denoted by the symbol Y , and (4) the end of

a model’s task denoted by the symbol Done.70

As the aim of our work is to combine DEVS formalism

with ontological modeling, we exploit the internal and

external transition functions and relate them to the SWRL

rules engine. More specifically, the DEVS module requires

some inputs describing elements produced through the

sub-processes of the replication machinery at micro-level.

These elements are described through OntoRepliCov and

represent the inferences resulting from SWRL rules com-

bined with some axioms (concepts definitions); hence,

each atomic model’s simulator may send queries to the

SWRL rule engine to get the elements required to fulfill a

specific task in a macro-level of the replication machinery.

As shown in Figure 3, SARS-CoV-2 viral RNA is

addressed simultaneously to both the atomic module

ACE2, which is the biomolecular component by which the

virus will penetrate the host cell as seen in section 2.1, and

to the ontological model in which it will be modeled and

semantically enriched with expert knowledge. Since the

ACE2 atomic model can not identify to which the different

groups of amino acids correspond, it appeals to the ontolo-

gical model which, thanks to the SWRL rules provided by

the biology experts, can identify the amino acids—decrypt

them—and determine the different role of each amino acid

in the viral RNA sequences. Simultaneously, the ontologi-

cal modeling of the viral RNA will allow enriching it

semantically and by means of some expert rules (presented

Table 2. The 12 SWRL rules involved in the SARS-CoV-2 replication process.

Rule number SWRL rule

Rule 1 Nucleobase(?x) ^ Nucleobase(?y) ^ Nucleobase(?z) ^ hasNext(?x, ?y) ^ hasNext(?y, ?z) ^ hasRank(?z, ?t) ^
swrlb: mod(0, ?t, 3) → swrlb: divide(?d, ?t, 3) → Codon(?c) ^ hasRank(?c, ?d) → hasFirstBase(?c, ?x) ^
hasSecondBase(?c, ?y) ^ hasThirdBase(?c, ?z)

Rule 2 Codon(?c1) ^ hasThirdBase(?c1, ?x) ^ Codon(?c2) ^ hasFirstBase(?c2, ?y) ^ hasNext(?x, ?y)
→ hasNext(?c1, ?c2)

Rule 3 StemLoop(?s) ^ hasBeginingBase(?s, ?b) ^ hasRank(?b, ?r1) ^ Codon(?x) ^ Codon(?y) ^ Codon(?z) ^
hasNext(?x, ?y) ^ hasNext(?y, ?z) ^ hasThirdBase(?x, ?u1) ^ Uracil(?u1) ^ hasFirstBase(?y, ?u2) ^
Uracil(?u2) ^ hasSecondBase(?y, ?u3) ^ Uracil(?u3) ^ hasThirdBase(?y, ?a1) ^ Adenine(?a1) ^
hasFirstBase(?z, ?a2) ^ Adenine(?a2) ^ hasSecondBase(?z, ?a3) ^ Adenine(?a3) ^ hasThirdBase(?z, ?c) ^
Cytosine(?c) ^ hasRank(?u1, ?r2) ^ swrlb:subtract(?fs, ?r1, ?r2) ^ swrlb:lessThanOrEqual(?fs, 15)
→ frameshifting(?u1, true)

Rule 4 Nucleobase(?u) ^ frameshifting(?u, true) ^ hasRank(?u, ?r0) ^ Nucleobase(?x) ^ Nucleobase(?y) ^
Nucleobase(?z) ^ hasNext(?x, ?y) ^ hasNext(?y, ?z) ^ hasRank(?x, ?r1) ^ hasRank(?z, ?r3) ^
swrlb:mod(0, ?r1, 3) ^ swrlb:greaterThanOrEqual(?r1, ?r0) ^ CodonFS(?c) ^ hasRank(?c, ?r4) ^
swrlb:add(?s, ?r3, 1) ^ swrlb:divide(?d, ?s, 3) ^ swrlb:equal(?d, ?r4)
→ hasFirstBase(?c, ?x) ^ hasSecondBase(?c, ?y) ^ hasThirdBase(?c, ?z)

Rule 5 CodonFS(?c1) ^ hasThirdBase(?c1, ?x) ^ CodonFS(?c2) ^ hasFirstBase(?c2, ?y) ^ hasNext(?x, ?y)
→ hasNext(?c1, ?c2)

Rule 6 Codon(?c1) ^ hasThirdBase(?c1, ?u) ^ CodonFS(?c2) ^ hasFirstBase(?c2, ?u) ^ frameshifting(?u, true) ^
hasRank(?c1, ?r1) ^ hasRank(?c2, ?r2) ^ swrlb:add(?a2, ?r2, 2) ^ Codon(?x) ^ CodonFS(?y) ^
hasRank(?x, ?a1) ^ hasRank(?y, ?a2) → hasNext(?x, ?y)

Rule 7 Codon(?x) ^ isStart(?x, true) ^ Codon(?y) ^ Stop(?y) → sequencePolyproteinPp1a(?x, ?y)
Rule 8 Codon(?x) ^ isStart(?x, true) ^ CodonFS(?y) ^ Stop(?y) → sequencePolyproteinPp1ab(?x, ?y)
Rule 9 Nucleobase(?n1) ^ Adenine(?n1) ^ hasRank(?n1, ?k) ^ SubgenomicPositive(?sp) ^ elementFrom(?n1,?sp) ^

Nucleobase(?n2) ^ hasRank(?n2, ?k) ^ SubgenomicNegative(?sn) ^ elementFrom(?n2,?sn) → Uracil(?n2)
Rule 10 Nucleobase(?n1) ^ Uracil(?n1) ^ hasRank(?n1, ?k) ^ SubgenomicPositive(?sp) ^ elementFrom(?n1,?sp) ^

Nucleobase(?n2) ^ hasRank(?n2, ?k) ^ SubgenomicNegative(?sn) ^ elementFrom(?n2,?sn) → Adenine(?n2)
Rule 11 Nucleobase(?n1) ^ Guanine(?n1) ^ hasRank(?n1, ?k) ^ SubgenomicPositive(?sp) ^ elementFrom(?n1,?sp) ^

Nucleobase(?n2) ^ hasRank(?n2, ?k) ^ SubgenomicNegative(?sn) ^ elementFrom(?n2,?sn) → Cytosine(?n2)
Rule 12 Nucleobase(?n1) ^ Cytosine(?n1) ^ hasRank(?n1, ?k) ^ SubgenomicPositive(?sp) ^ elementFrom(?n1,?sp) ^

Nucleobase(?n2) ^ hasRank(?n2, ?k) ^ SubgenomicNegative(?sn) ^ elementFrom(?n2,?sn) → Guanine(?n2)

SWRL: Semantic Web Rule Language; SARS-CoV-2: severe acute respiratory syndrome-coronavirus 2.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

in Table 2), the ontology will decompose the viral RNA

sequences and determine the function of each amino acid,

a very detailed analysis (at a micromolecular level) that

the DEVS simulation module cannot perform. Next, the

ontological module provides the ACE2 atomic component

with the identified groups of amino acids and their corre-

sponding biological elements. At this stage, the ACE2

component will have enough knowledge to initiate the

simulation at a macromolecular scale, a simulation at a

scale that the ontology cannot ensure, and will provide a

messenger RNA ready to be replicated in the cytoplasm of

the host cell as an output. This is the first step in the life

cycle of the virus replication process, corresponding to

viral entry as described in section 2.1.

Since the simulation process works through the

exchange of messages and data among the different pro-

cessors (Figure 3). The root processor computes the time

of the next external and internal state transition to check

which one should occur first. Once the upcoming model is

identified and the next event is triggered internally, the

root processor sends a �-message, through the middle-

level coordinators, to the selected simulator. Then, the

atomic model simulator is launched by initializing its cur-

rent time simulation t and the state s of the atomic model.

The simulator requests the inference engine of the ontol-

ogy module as detailed in Algorithm 4. This one executes

the rule(s) that corresponds to the request. Then, SPARQL

queries (semantic query language) are exploited to fetch

the inferences resulting from the reasoning process. When

the response is given on schedule, the simulator performs

the internal state transition and repeats. Whether the next

event is triggered by an external input, the root processor

sends an external X -message to the simulator. This one

requests the inference engine, through Algorithm 4, to

execute the rule corresponding to the requested task. After

completing the appropriate rule(s), the reasoner returns the

result to the simulator. Then, the simulator handles the

external state transition and repeats. Finally, the simulators

return done-messages and Y -messages to the (root) coordi-

nator to notify it that the model has completed its task and

send it the model’s output. Both of these done-messages

and Y -messages are in turn converted to new �-messages

and X -message, respectively. These steps are repeated

until the end of the simulation.

Algorithm 1 describes the operation and function of the

Root Coordinator (Root) that is used to drive a Simulator.

The simulation process starts by initializing the root coor-

dinator’s simulator using the Initialization() function. As

presented in Algorithm 2, this function initializes the ini-

tial states and simulation times of atomic models. Then, it

executes its ComputeStateTransition() function until the

final simulation time is reached. The ComputeState

Transition() function computes the next states of the

atomic models during a simulation run, as detailed in

Algorithm 3. The function starts by selecting the time of

the first upcoming atomic model in the priority queue con-

sisting of pairs of atomic models and their time (d, t). This
queue is denoted by the scheduler. Once selected, the

atomic model is removed from the scheduler and added to

the imminentAMset a set of models in which their next

state will be immediately computed.

As described in Algorithm 3, the simulator exploits the

ComputeStateTransition() function to compute the next

states of the atomic models. It starts by checking if the

model’s inputs xd are not empty and that the model Md is

scheduled for an internal transition, it computes the conflu-

ent transition function lconf , d(xd). If the model’s inputs xd

are empty and that model Md is scheduled for an internal

transition, the simulator computes the internal transition

function dint, d(sd) by calling the InferenceEngineProcess()

function. Otherwise, the elapsed time ed is found and the

model external transition function dext, d(sd , ed , xd) is com-

puted using also the InferenceEngineProcess() function.

The ComputeStateTransition()simulator’s function finishes

by computing the last transition time, and check if the next

transition time tn, d is less than infinity, then the model ref-

erence Md and its next event time tn, d are added to the

scheduler.

As illustrated in Algorithm 4, the InferenceEngine

Process() function cycles through three main sequential

steps. In this method, the inference engine starts by finding

all SWRL rules (Table 2) that match the given task

Algorithm 1: Root’s simulation process

Root Simulation Process
Input: the total simulation time and the Simulation
Compute the Initialization() function of the simulator
while the final simulation time is not reached do

Compute the ComputeStateTransition()
function of the simulator

End
End

Algorithm 2: Simulator’s Initialization Function

Initialization (D)
input: the list of atomic models Md ∈D
output: a priority queue of pairs (d,t) tl 0
for each atomic model d∈D do

sd s0,d

tn,d tad(sd)
tl,d tal

if (tn,d <∞) then
add (d,tn,d) to the scheduler (priority queue of
pairs (d,t))

End
End
return scheduler

End

Ayadi et al. 11

requested by the state transition function (internal or exter-

nal). It looks for antecedents, and conditions on the left-

hand side of the SWRL rule, that satisfy the given state

transition function. This first step is ensured by the Match-

rules function. Then, through the Select-rules function, the

inference engine prioritizes the different SWRL rules that

were matched to determine the order to execute them.

Finally, in the third step, the engine executes each

matched rule, using the Execute-rules function, in the

order determined in step two and then iterates back to step

one again. This cycle continues until no new rules are

matched to the input values given by the state transition

function. Finally, the SWRL rule-based inference engine

sends the newly computed state of the atomic model to the

DEVS simulator.

Therefore, through this simulation process as described by

Algorithms 1–4, the two modules can be aligned, and we can

benefit from the finer semantic rules provided by the SWRL

rules as well as from the rich knowledge of the OntoRepliCov

ontology. This mapping between both modules will be further

detailed through examples in the next section.

5. Hierarchical model of the SARS-CoV-2
replication implementation

In Section 4, we introduced both core modules of our pro-

posed hybrid hierarchical approach for the modeling and

simulation of the SARS-CoV-2, the DEVS and ontological

modules. In this section, we first describe the development

environment and programming tools for the implementa-

tion of our proposed approach. Then, we detail how this

hierarchical approach has been implemented to model and

simulate the SARS-CoV-2 replication.

5.1. Development environment

The different software and tools needed to implement the

proposed hybrid approach are:

� Eclipse
2

. It hosts the CD++ Builder GUI as a

plugin.
� Boost Software License

3

for knowledge base and

ontologies management.
� CD++Builder

4

for discrete event modeling and

simulation based on the DEVS and Cell-DEVS

formalisms.
� Cygwin

5

to emulate a Unix system under Windows.
� Protégé

6

for developing knowledge-based systems

and editing ontologies.
� owlcpp

7

for parsing, querying, and reasoning with

OWL ontologies.
� FaCT++

8

for reasoning on OWL DL-based

ontologies.
� Redland Raptor

9

to parse and execute Resource

Description Framework (RDF) queries.

5.2. Implementation of the proposed hierarchical
modeling of the SARS-CoV-2 replication

As described in the previous section (Section 4), to model

the structure and behavior of the SARS-CoV-2 replication

system, we have used primarily the classic DEVS formal-

ism. Therefore, we have split up the replication process

into four coupled models namely, the host cell which itself

is divided into three compartments represented by three

coupled models: the cell membrane, the cytoplasm and the

secretory pathways (Figure 4). The SARS-CoV-2 replica-

tion process is ensured by these three coupled models.

Algorithm 3: Simulator’s ComputeStateTransition Function

ComputeStateTransition (Md)
inputs: an atomic model Md

output: the next states of the atomic model Md

tn minftn,d / d∈ Ag
while tn,d(scheduler)= = tn do

add Md to the imminentAMset
remove (d,tn,d) from the scheduler

End
foreach atomic model Md ∈ imminentAMset
Do
if (xd 6¼1 and tn,d = tn) then

s
0
d λconf ,d(xd)

else if (xd =1 and tn,d = tn) then

s
0
d InferenceEngineProcess(δint,d(sd))

Else
ed tn � tl,d
s
0
d InferenceEngineProcess(δext,d(sd,ed,xd))

End
tl,d tn
if (tn,d <∞) then

insert (d,tn,d) from the scheduler
End

End

return s
0
d

End

Algorithm 4: Simulator’s InferenceEngineProcess function

Inference Engine Processend (δint�ext,d)
inputs: the given state transition state
output: the new state transition value
Compute the Match-rules() function that satisfy the given

state transition function
Compute the Select-rules() function to sort the

corresponding SWRL rules
Compute the Execute-rules() function to execute the

rules in order
return the new state transition value

End

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Each coupled model is composed of a set of atomic mod-

els representing its main viral and/or molecular compo-

nents. The cell membrane coupled model consists of only

one component to ensure the virus entry step, the angio-

tensin-converting enzymes 2 (ACE2) atomic component.

The cytoplasm coupled model which ensures the transla-

tion and the replication/transcription steps of the SARS-

CoV-2 RNA genome is composed by, the first host ribo-

some (HR1) atomic component, the viral protease (VP)

atomic component, the four replication transcription com-

plex (Complex_RTC, RTC1, RTC2, and RTC3) atomic

components, the second host ribosome (HR2) atomic com-

ponent. Finally, the secretory pathways coupled model

ensuring virions assembly and their releases outside the

host cell consists of the ER-Golgi intermediate compart-

ment (ERGIC) atomic component, the Golgi apparatus

(GOLGI) atomic component. Most of the atomic models

rely on the inference engine rule (as presented in the previ-

ous section) to compute their state changes and behaviors.

The inference engine exploits 12 rules, those described in

Table 2. These rules are not only used to compute the

atomic components’ state changes but also to reach a

lower, more microscopic scale, for considering the most

basic building blocks and biomolecules (having no

changes of states or behavior), that the DEVS formalism

cannot capture.

Table 3 shows the correspondence of the cellular and

viral components involved in the SARS-CoV-2 RNA gen-

ome replication process, as described in Section 2.1 and

Figure 1, with their corresponding components in the

DEVS simulation framework. It is important to mention

that in our case, we suppose that in our modeling there are

four classes of replication/transcription complex (RTC).

The first one, denoted by Complex_RTC is required to

synthesize the genomic and subgenomic RNA transcripts.

Consequently, we will give it three different names accord-

ing to their function. The second class, denoted by RTC1,

corresponds to the functional complex RTC that allows the

synthesis of negative-strand templates from the positive

mRNA genome. The third one, denoted by RTC2, corre-

sponds to the functional complex RTC responsible for

synthesizing subgenomic RNAs using Transcription

Regulatory Sequences (TRSs). Then, finally, the fourth

class, denoted by RTC3 corresponds to the functional com-

plex RTC that ensures the synthesis of positive-stranded

subgenomic RNAs from the negative-strand templates.

In the virus entry step, the SARS-CoV-2 attaches to the

host cell receptor ACE2 through its spike protein S to enter

Table 3. Correspondence of the cellular and viral components involved in the SARS-CoV-2 replication process with their matching
components in the DEVS simulation framework.

Conceptual model elements DEVS model elements

The infected host cell Host_Cell DEVS coupled model
The cell membrane Cell_membrane DEVS coupled model
The ACE2 receptor ACE2 DEVS atomic model
The cell cytoplasm Cytoplasm DEVS coupled model
The first host ribosome HR1 DEVS atomic model
The viral protease VP DEVS atomic model
The replication/transcription complex Complex_RTC DEVS atomic model
The first functional complex RTC RTC1 DEVS atomic model
The second functional complex RTC RTC2 DEVS atomic model
The third functional complex RTC RTC3 DEVS atomic model
The second host ribosome HR2 DEVS atomic model
The secretory pathway Secretory_Pathway DEVS coupled model
The ER-Golgi intermediate compartment ERGIC DEVS atomic model
The GOLGI apparatus Golgi DEVS atomic model
The transfer ribonucleic acid (tRNA) Input ports
The genomic ribonucleic acid (mRNA) Input/Output ports, Couplings between ports
The nonstructural proteins (nsp1, . . ., nsp16) Input/Output ports, Couplings between ports
The subgenomic ribonucleic acid (sgmRNA)
transcripts (sgmRNA1, . . ., sgmRNA9)

Input/Output ports, Couplings between ports

The positive-stranded subgenomic RNAs Input/Output ports, Couplings between ports
The negative-stranded subgenomic RNAs Input/Output ports, Couplings between ports
The structural proteins (M, S, E, and N) Input/Output ports, Couplings between ports
The functional RTC Input/Output Ports, Couplings between ports
The virus nucleocapsid Input/Output ports
The virions Output ports

SARS-CoV-2: severe acute respiratory syndrome-coronavirus 2; DEVS: discrete event system specification simulation; ACE: angiotensin-converting

enzyme; RTC: replication/transcription complex; ERGIC: ER-Golgi intermediate compartment; GOLGI: Golgi apparatus.

Ayadi et al. 13

the cell by the endocytic pathway. This first step occurs in

the cell membrane compartment through the ACE2 atomic

model, as presented by Figure 5. Once the ACE2 compo-

nent receives the spike S (via its input port), it triggers the

fusion of the viral and cellular membranes, allowing the

penetration of the virus into the host cell cytoplasm as a

genomic RNA (mRNA). Table 4 presents the formal speci-

fication of the cell membrane compartment, and its unique

ACE2 component, according to Figure 5.

After virus entry, the viral RNA genome is translocated

to the cytoplasm compartment in which two main stages

of the replication process occur, the (1) translation of viral

replication machinery and (2) translation of viral structure

proteins (as described in Section 2.1 and Figure 1). Figure

6 illustrates a DEVS representation of the HR1 atomic

component, one of the components involved in the cyto-

plasmic compartment. Since the representation is the same

for the different components of the cytoplasm

Figure 5. DEVS representation of the cell membrane compartment and its component using the CD++ tool.

Table 4. Formal specification of the cell membrane compartment, and its ACE2 component.

The cell membrane compartment
XCM = fCMspikeSIng
YCM = fCMmRNAOutg
DCM = fACE2g
EICCM = f((CM, 00CMspikeSIn00),(ACE2, 00spikeSIn00))g
EOCCM = f((ACE2, 00mRNAOut00),(CM, 00CMmRNAOut00))g
ICCM = f1g
The ACE2 atomic component
ACE2= (XACE2,YACE2,SACE2,δextACE2

,δintACE2
,λACE2,taACE2)

SACE2= f00Passive00, 00EndocytosisProcess00, 00VirusRelease00, 00Finished00g×R
+
0

δextER
(phase,σ,e,x)= (EndocytosisProcess,endocytosisTime) if phase= 00Passive00

(phase,σ � e) if phase∈ f00EndocytosisProcess00, 00VirusRelease00, 00Finished00g
δintACE2

(00EndocytosisProcess00, endocytosisTime)= (00VirusRelease00, virusReleaseTime)
δintACE2

(00VirusRelease00, virusReleaseTime)= (00Finished00, finishedTime)
δintACE2

(00Finished00, finishedTime)= (00Passive00, ∞)
λACE2(00EndocytosisProcess00, sigma)=1
λACE2(00VirusRelease00, σ)= (mRNAout,mRNA)
λACE2(00Finished00, σ)=1
λACE2(00Passive00, σ)=1
taACE2(00EndocytosisProcess00, σ)= endocytosisTime
taACE2(00VirusRelease00, σ)= virusReleaseTime
taACE2(00Finished00, σ)= finishedTime= 0
taACE2(00Passive00, σ=∞
ACE: angiotensin-converting enzyme.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

compartment and for the sake of space, only one of them

(the HR1 atomic component) is presented. See Appendix

1 for the entire DEVS representation of cytoplasm com-

partment (with its seven components), including its formal

specification in Table 5 and Appendix Tables 8 and 9.

These tables present the formal specification of the seven

cytoplasm compartments, according to the Appendix

Figure 13. During this phase, the host cell translation

machinery is hijacked and dedicated to viral component

synthesis. Thus, the genomic mRNA is translated by the

host ribosomes (denoted here by HR1) to produce two

polyproteins pp1a and pp1ab from ORF1a and ORF1a,

which are then further processed by proteolytic cleavages

(Figure 6). As this process is complex and consists of four

steps namely the initiation, elongation, termination, and

recycling, the host ribosome component uses some spe-

cific SWRL rules. Indeed, the DEVS formalism is able to

manage the different states, inputs, and outputs of the host

ribosome component, but is unable to capture how these

four steps are done. Therefore, the state transition function

of the host ribosome component uses the adequate SRWL

rules set. This process of rules selection is managed by the

Algorithm 4. At this stage of the replication (the transla-

tion process through the host ribosome component), and

as illustrated in Figure 7, the Algorithm 4 is set up by

parameters that specify the mRNA_in. Since we are in the

translation process the algorithm computes the Match-

rules() function and selects (Select-rules()) those that sat-

isfy this stage of transition. As a result of these two func-

tions, eight rules are selected 1, 2, 3, 4, 5, 6, 7, and 8

(Table 2) to compute the outputs in the right order. Once

the rules are selected, the Execute-rules() function is con-

sidered to execute the rules from 1 to 8 and get the output

of the different translation sub-stages. First, rules 1 and 2

are used to ensure the division and definition of the geno-

mic codons. Then, rules 3, 4, and 5 are used for the

Table 5. Formal specification of the cytoplasm compartment, and its seven components.

The cytoplasm compartment
XCY = fCYmRNAIn, CYtRNAIng
YCY = fCYMOut, CYEOut, CYSOut, CYNOut, CYpRNAOutg
DCY = fHR1, VP, RTC, RTC1, RTC2, HR2, RTC3g
EICCY = f(CY, 00CYmRNAIn00), (HR1, 00mRNAIn00), (CY, 00CYtRNAIn00), (HR1, 00tRNAIn00), (CY, 00CYmRNAIn00),
(RTC1, 00mRNAIn00), (CY, 00CYtRNAIn00), (RTC1, 00tRNAIn00), (CY, 00CYmRNAIn00), (RTC2, 00mRNAIn00),
(CY, 00CYtRNAIn00), (RTC2, 00tRNAIn00), (CY, 00CYmRNAIn00), (RTC3, 00mRNAIn00), (CY, 00CYtRNAIn00),
(RTC3, 00tRNAIn00)g
ICCY = f((HR1, 00pp1aOut00), (VP, 00pp1aIn00)), ((HR1, 00pp1abOut00), (VP, 00pp1abIn00)), ((VP, 00Nsp7Out00),
(RTC, 00Nsp7In00)), ((VP, 00Nsp8Out00), (RTC, 00Nsp8In00)), ((VP, 00Nsp10Out00), (RTC, 00Nsp10In00)),
((VP, 00Nsp12Out00), (RTC, 00Nsp12In00)), ((VP, 00Nsp14Out00), (RTC, 00Nsp14In00)), ((RTC, 00FrtcOut00),
(RTC1, 00FrtcIn00)), ((RTC, 00FrtcOut00), (RTC2, 00FrtcIn00)), ((RTC, 00FrtcOut00), (RTC3, 00FrtcIn00)),
((RTC1, 00nRNAOut00), (RTC2, 00nRNAIn00)), ((RTC1, 00nRNAOut00), (RTC3, 00nRNAIn00)),
((RTC2, 00sgm1Out00), (HR2, 00sgm1In00)), ((RTC2, 00sgm2Out00), (HR2, 00sgm2In00)),
((RTC2, 00sgm3Out00), (HR2, 00sgm3In00)), ((RTC2, 00sgm4Out00), (HR2, 00sgm4In00)),
((RTC2, 00sgm5Out00), (HR2, 00sgm5In00)), ((RTC2, 00sgm6Out00), (HR2, 00sgm6In00)),
((RTC2, 00sgm7Out00), (HR2, 00sgm7In00)), ((RTC2, 00sgm8Out00), (HR2, 00sgm8In00)),
((RTC2, 00sgm9Out00), (HR2, 00sgm9In00))g
EOCCY = f((HR2, 00MOut00), (CY, 00CYMOut00)), ((HR2, 00EOut00), (CY, 00CYEOut00)), ((HR2, 00SOut00),
(CY, 00CYSOut00)), ((HR2, 00NOut00), (CY, 00CYNOut00)), ((RTC3, 00pRNAOut00), (CY, 00CYpRNAOut00))g
The HR1 atomic component
HR1= (XHR1, YHR1, SHR1, δextHR1

, δintHR1
, λHR1, taHR1)

XHR1 = f(HR1In1, (+)RNA), (HR1In2, tRNA), g
YHR1 = f(HR1Out1, pp1a), (HR1Out2, pp1ab)g
SHR1 = f00Passive00, 00TranslationProcess00, 00ProteinRelease00, 00Finished00g×R

+
0

δextHR1
(phase, σ, e, x)= (TranslationProcess, translationTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00TranslationProcess00, 00ProteinRelease00, 00Finished00g
δintHR1

(00TranslationProcess00, translationTime)= (00ProteinRelease00, virusReleaseTime)
δintHR1

(00ProteinRelease00, proteinReleaseTime)= (00Finished00, finishedTime)
δintHR1

(00Finished00, finishedTime)= (00Passive00, ∞)
λHR1(00TranslationProcess00, σ)=1
λHR1(00ProteinRelease00, σ)= (HR1Out1, pp1a), (HR1Out2, pp1ab)
λHR1(00Finished00, σ)=1
λHR1(00Passive00, σ)=1
taHR1(00TranslationProcess00, σ)= translationTime
taHR1(00ProteinRelease00, σ)= proteinReleaseTime
taHR1(00Finished00, σ)= finishedTime= 0
taHR1(00Passive00, σ=∞

Ayadi et al. 15

ribosomal frameshifting. As the ribosome may slip back to

translate the ORF1b, it uses these three SWRL rules to

identify the pattern responsible for the ribosomal frame-

shifting and at which nucleotide rank this frameshifting

occurs. In 30% of cases, the ribosome by-pass the stop

codon of the ORF1a to translate the ORF1b. Thus, the

polyprotein 1a (pp1a) is extended to produce the pp1ab.

This process called post-frameshifting codons is ensured

by the SWRL rule number 6. Finally, the SWRL rules 7

and 8 delimit the polyproteins pp1a and pp1ab. These

rules ensure the elongation step in which the encoded

polyproteins pp1a and pp1ab are assembled until the ter-

mination occurs when the elongating ribosome meets the

stop codon (Table 2). These polyproteins are the results of

several incremental inferences and are considered outputs

for the Algorithm 4 and H1 and inputs for VP. Therefore,

a SPARQL query is required to get the sequence of these

two polyproteins and the answer to this query is returned

through the Algorithm 4. An example of a SPARQL query

is presented in Figure 8.

Figure 6. DEVS representation of the host ribosome 1 atomic component inside the cytoplasm compartment, using the CD++ tool.

Figure 7. An example of the Algorithm 4 execution for the translation process.

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Both polyproteins pp1a and pp1ab are cleaved by the

viral protein component (VP), through the proteolytic clea-

vages by two viral proteases, to provide non-structural pro-

teins. The first polyprotein is cleaved into non-structural

proteins nsp1 to nsp12, while the second one is cleaved

into additional non-structural proteins, nsp12 to nsp16.

These nsps proteins can be considered as the first viral pro-

teins to be expressed after virus entry. In this process, the

translation of the second polyprotein requires a �1 frame-

shifting event. As the DEVS formalism cannot ensure this

process, the VP atomic component also calls some specific

SWRL rules, namely rules 1, 2, 3, 4, and 5 in Table 2, and

axioms in charge of the amino acids’ inference from

codons. The SWRL rules 1 and 2 are used for the division

and definition of the codons, and rules 3 and 4 are for

ensuring the frameshifting during the cleavage process.

Among the non-structural proteins, the nsp7, nsp8,

nsp10, nsp12, and nsp14 are joined together to form the

minimal catalytic core of the proofreading RNA polymer-

ase complex. They are modeled in our study by the RTC

atomic component. This combination produces a func-

tional RTC that will be used to synthesize the viral geno-

mic and subgenomic RNA transcripts. This functional

RTC has a major role in the viral replication process, as it

ensures the replication of the RNA genome and the tran-

scription of a set of subgenomic mRNAs. As stated at the

beginning of this section, we distinguish in our DEVs

modeling three kinds of RTC aside from the functional

RTC (the creation of RTC). RTC 1, a functional RTC, that

ensures the synthesis of negative-strand templates �RNA

from the genomic RNA. RTC 2, a functional RTC, ensures

the synthesis of subgenomic RNAs using Transcription

Regulatory Sequences (TRSs). And, RTC3, a functional

RTC, ensures the synthesis of positive-stranded subge-

nomic +RNA from the negative-strand templates �RNA.

All these functional RTC components (RTC1, RTC2, and

RTC3) use also some specific SWRL rules (9, 10, 11, and

12) and the axioms of amino acids to ensure the translation

(in both directions) and synthesis of subgenomic RNAs.

The rules (9, 10, 11, and 12) are used to ensure the tran-

scription process. These rules are used to produce the com-

plementary copy of the viral mRNA (either positive-strand

RNA or negative-strand RNA).

The genomic and subgenomic RNAs are translated by

the host ribosome HR2 into structural proteins namely the

Spike (S), the Envelope (E), the Membrane (M), and the

Nucleocapsid (N). The HR2 atomic component relies on

the specific SWRL rules designed for the translation pro-

cess, 1, 2, 9, 10, 11, and 12. Rules 1 and 2 are used for the

division and definition of codons as ribosomes translate a

codon (formed by three nucleobases) into an amino acid,

constituting the proteins. While the rest of the rules (9, 10,

11, and 12) are used to ensure the transcription process

and produce the fourth structural proteins as described in

Figure 9(b).

At late stages of infection, new virus particles are

formed and released into the extracellular environment (as

described in Section 2.1 and Figure 1). This step is ensured

by the secretory pathway compartment through both

atomic components ERGIC and Golgi, as presented by

Figure 10. The ERGIC atomic model ensures the virus

assembly process by joining the four structural proteins

(M, E, S, and N). This process is totally ensured by the

DEVS formalism without the need for SWRL rules. While

the Golgi atomic component ensures the release process of

the assembled virions outside the cell via a process called

exocytosis. When the nucleocapsid is created, the Golgi

takes as input the viral nucleocapsid and some regions of

the genomic +RNA, and then releases a mature virion

outside the cell. This process is completely ensured by the

DEVS formalism without the need for SWRL rules. Once

outside the cell, these released virions become extracellu-

lar virions and are able to infect other healthy cells. The

formal specification of the secretory pathway compartment

Figure 8. A SPARQL Query to extract the sequence of the polyprotein pp1ab from OntoRepliCoV through the Algorithm 4.

Ayadi et al. 17

and both of the ERGIC and Golgi components are pre-

sented in Table 6, according to Figure 10.

Obtained simulation results of our proposed hierarchi-

cal approach are presented in Figures 9 and 11. Figure

9(a) presents the dynamic state changes and the output of

the HR1 atomic component responsible for the translation

process. We can see how the HR1 component changes its

states and the two polyproteins pp1a and pp1ab are pro-

duced at a rate of 70% and 30%, respectively. These poly-

protein expression proportions are in accordance with the

study of Snijder et al.,71 as a large part of the ribosomal

production (about 70%) is dedicated to the production of

the pp1a and the rest for the production of pp1ab. Indeed,

the polyprotein pp1ab is translated through a ribosomal

frameshifting at the end of ORF1 and which harbors an

efficiency of around 30% to extend pp1a in pp1ab. Thus,

starting with the SARS-CoV-2 genomic (mRNA), the

simulator uses the ontological model to compute and gen-

erate two polyproteins pp1a and pp1ab. The figure details

the functioning of HR1 during the replication process: at

t = 0, the host ribosome atomic model is created and initi-

alized in the passive state. Once it receives the viral

Figure 9. A CD++ screenshot showing the qualitative simulation results of the proposed approach showing, showing: (a) the
transcription and (b) the translation processes ensured by HR1 and RTC1, respectively.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

genome, at t = 30, its external transition function

changes its state in the Translation process. After some

time (at t = 40), the internal state function changes the

state of the host ribosome from the translation process to

proteins release as the HR1 completed the translation

process. During this state, the output function transfers

the products (here 70% of pp1a and 30% of pp1ab poly-

proteins) to the next atomic model. After the release

state, the internal transition function changes the state of

the ribosome to finished (at t = 45), then to the passive

state (at t = 46).

Figure 9(b) presents the dynamic state changes and the

output of the RTC1 atomic component responsible for the

transcription process. It shows the synthesis of negative-

strand templates from a positive mRNA genome, a process

called transcription. At t = 0, the complex RTC1 atomic

model is created and initialized in the passive state. Once it

receives the positive viral genome (at t = 1:20), its external

transition function changes its state in the replication pro-

cess. After some time (at t = 1:60), the internal state func-

tion changes the state of the RTC1 from the replication

process to the RNA release as the RTC1 completed the

transcription process. During this state, the output function

transfers the negative RNA produced to the next atomic

models. After the release state, the internal transition func-

tion changes the state of RTC1 to finished (at t = 1:65),

Table 6. Formal specification of the secretory pathway compartment, and its two components.

The secretory pathway compartment
XSP = fSPpRNAIn, SPMIn, SPEIn, SPSIn, SPNIng
YSP = fSPVirionOutg
DSP = fERGIC, Golgig
EICSP = f((SP, 00SPpRNAIn00), (Golgi, 00pRNAIn00)), ((SP, 00SPMIn00), (ERGIC, 00MIn00)), ((SP, 00SPEIn00),
(ERGIC, 00EIn00)), ((SP, 00SPSIn00), (ERGIC, 00SIn00)), ((SP, 00SPNIn00), (ERGIC, 00NIn00))g
ICSP = f((ERGIC, 00nucleocapsidOut00), (Golgi, 00nucleocapsidIn00))g
EOCSP = f(Golgi, 00virionOut00), (SP, 00SPVirionOut00)g
The ERGIC atomic component
ER= (XER, YER, SER, δextER

, δintER
, λER, taER)

XER = f(ERIn1, MIn), (ERIn2, EIn), (ERIn3, SIn), (ERIn4, NIn)g
YER = f(EROut, Nucleocapsid)g
SER = f00Passive00, 00AssemblyProcess00, 00NucleocapsidRelease00, 00Finished00g×R

+
0

δextER
(phase, σ, e, x)= (AssemblyProcess, assemblyTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00AssemblyProcess00, 00NucleocapsidRelease00, 00Finished00g
δintER

(00AssemblyProcess00, assemblyTime)= (00NucleocapsidRelease00, capsidReleaseTime)
δintER

(00NucleocapsidRelease00, capsidReleaseTime)= (00Finished00, finishedTime)
δintER

(00Finished00, finishedTime)= (00Passive00, ∞)
λER(00AssemblyProcess00, σ)=1
λER(00NucleocapsidRelease00, σ)= (EROut, Nucleocapsid)
λER(00Finished00, σ)=1
λER(00Passive00, σ)=1
taER(00AssemblyProcess00, σ)= assemblyTime
taER(00NucleocapsidRelease00, σ)= capsidReleaseTime
taER(00Finished00, σ)= finishedTime= 0
taER(00Wainting00, σ=∞
The GOLGI atomic component
GO= (XGO, YGO, SGO, δextGO

, δintGO
, λGO, taGO)

XGO = f(GOIn1, Nucleocapsid), (GOIn2, pRNA)g
YGO = f(GOOut, Virion)g
SGO = f00Passive00, 00ExocytosisProcess00, 00VirionRelease00, 00Finished00g×R

+
0

δextGO
(phase, σ, e, x)= (ExocytosisProcess, exocytosisTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00ExocytosisProcess00, 00VirionRelease00, 00Finished00g
δintGO

(00ExocytosisProcess00, exocytosisTime)= (00VirionRelease00, virionReleaseTime)
δintGO

(00VirionRelease00, virionReleaseTime)= (00Finished00, finishedTime)
δintGO

(00Finished00, finishedTime)= (00Passive00, ∞)
λGO(00ExocytosisProcess00, σ)=1
λGO(00VirionRelease00, σ)= (GOOut, Virion)
λGO(00Finished00, σ)=1
λGO(00Passive00, σ)=1
taGO(00ExocytosisProcess00, σ)= exocytosisTime
taGO(00VirionRelease00, σ)= virionReleaseTime
taGO(00Finished00, σ)= finishedTime= 0
taGO(00Wainting00, σ=∞
ERGIC: ER-Golgi intermediate compartment; GOLGI: Golgi apparatus.

Ayadi et al. 19

then to the passive state (at t = 1:66). Unfortunately, we

were unable to compare our results with other approaches,

as at present there is no comparable work available with

precise data. Furthermore, the purpose of this work was to

provide biologists with a tool that would address their need

to understand the different phases of SARS-CoV-2 viral

replication and the interactions of viral entities with cellu-

lar entities at different biological scales. These experiments

were carried out with uncertain parameters. At present,

biologists face difficulties in obtaining the right values for

the parameters of the simulation. Therefore, it must be

noted that the simulation parameters used in this simula-

tion are not realistic and are not approved by the biologists.

Currently, no study has been done to provide the exact

parameters to conduct a precise simulation. The SARS-

CoV-2 simulation starts with a single initial virus particle.

The reference genome was downloaded from the NCBI. As

the exact parameters of the SARS-CoV-2 replication

machinery are still unknown, we conducted a literature

search to collect settings that may meet our needs. The col-

lected parameters used in the simulation are presented in

Table 7. The translation step is started with a translation

rate of 120 amino acids per minute (aa/min), which

depends on the ribosome density per cell set at 0.0125

ribosome per amino acids (ribosome/aa). When a polypep-

tide is translated, ribosome frameshift is randomly sampled

with a probability of 25 %. Once these polypeptides are

synthesized, non-structural proteins are randomly pro-

duced. According to the literature, we assumed that the

RdRp has a constant transcription/replication rate equal to

two kb/min without any transcription activation factor.

Two RdRp complex are assigned to each negative subge-

nomic mRNA for transcription. In the absence of precise

biological parameters and with the agreement of expert

biologists, we assumed that the number of subgenomic

mRNAs is equal to 9 (sgmRNA1 to sgmRNA9). In the

absence of precise biological parameters and with the

agreement of expert biologists, we assume that the packa-

ging ratio for the proteins E, S, N, and M are equals to 20,

1.5, 2.1, and 1.0, respectively. While the packaging ratio

for positive viral RNA was fixed to 1.4. The packaging

ratios have no units.

This simulation experiment was performed only to

illustrate the viral quantification process while taking into

Figure 10. DEVS representation of the secretory pathway compartment and its components using the CD++ tool.

Table 7. Simulation parameters.

Parameter Value Units Reference

Transcription and Translation Number of RdRp complex per negative sgmRNA 2 molecules Kim and Yin72

Basal transcription/replication elongation rate 2 kb/min Kim and Yin72

Ribosome density 0.0125 ribosome/aa Fehr and Perlman73

Translation rate 120 aa/min Fehr and Perlman73

Programmed Ribosome frameshift (− 1) 25 % Fehr and Perlman73

Assembly and packaging Packaging ratio for protein E 43.4 – Lauer et al.74

Packaging ratio for protein S 1.5 – Lauer et al.74

Packaging ratio for protein N 2.1 – Lauer et al.74

Packaging ratio for protein M 1.0 – Lauer et al.74

Packaging ratio for positive viral RNA 1.4 – Lauer et al.74

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

account the different replication steps presented by the

proposed approach. Figure 11 (a CD++ screenshot) pre-

sents a first proof of concept of the viral quantification of

an epithelium host-cells with a single SARS-CoV-2 virion,

focusing into the different stages of the replication cycle

presented in this work. The figure presents the number of

SARS-CoV-2 virions leaving host-cell during an infection

period of 13.5 days (around 1.160.014 s) over its viral life

cycle. As observed, this graphical description reflects the

number of virions according to the different phases of the

virus life cycle. During the initial stage, a single virus

causes the infection by binding and penetrating the cells.

Then, we observe in the viral growth curve virions are

released from the infected host cells at the same time, cre-

ating an exponential growth of produced virions until

reaching a peak. It is at this stage that the transcription

and translation processes reach their maximum, and there-

fore triggering a significant assembly and packaging of

new virions. Such a process is called a ‘‘viral burst.’’

Finally, when no viable host cells remain, the virus parti-

cles begin to slowly decrease until they totally disappear.

According to expert biologists, this viral growth curve

approximates the real behavior of SARS-CoV-2 infection.

It is important to note that our simulation was not con-

ducted on real data. It was only designed to make a viral

quantification considering the different stages of the viral

replication cycle as detailed in the previous sections. From

a biological point of view, the viral evolutionary appear-

ance and structure, as well as its approximate quantifica-

tion, seems logical—it clearly shows the phases of the

SARS-CoV-2 viral replication. Several studies have

recently started to investigate these fundamental data of

SARS-CoV-2 infection, on which numerous uncertainties

remain. This underlines the importance of our proposed

hybrid approach which, despite the lack of certain para-

meter values, approximates the viral replication cycle.

Through the experiment, we clearly observe that both

main processes of the viral replication, the translation and

the transcription, are handled by the DEVS simulator

through the ontological module through SWRL rules and

axioms. For sake of space, we only display the results of

both the translation and the transcription processes.

We conclude that the CD++ simulator is able to pro-

vide quantitative information on the different viral molecu-

lar components produced during the infectious viral cycle.

In other words, we obtained both a qualitative simulation

outputting the viral components that are produced during

the different stages of the viral cycle (polyprotein clea-

vages, non-structural proteins production, RNA replica-

tion, transcription of the different sg mRNAs, assembly of

the structural proteins) and a qualitative simulation output-

ting the expected number of virions produced as a result of

the different stages of the viral cycle. Combining qualita-

tive and quantitative information for simulation-based

analysis gives several advantages, which will be discussed

in the next section. However, it is important to note that

this simulation does not take into account the defenses

(innate immunity) that the cell can put in place to fight

against the infection.

It is important to notice that, in this work, we are only try-

ing to understand the viral replication and how viral entities

interact with the host cell components during the replication.

This is why all DEVS atomic components depend on each

other and the input values are ignored in the external

Figure 11. A CD++ screenshot showing the quantitative simulation results of the proposed approach and the quantification of the
secreted virions.

Ayadi et al. 21

transitions. Only the atomic component ACE2 considers the

input value, as it is activated exclusively by an external tran-

sition, the presence of viral RNA. Such input values will be

considered in future work, especially when biologists investi-

gate the impact of drugs on viral replication performance, a

question not addressed in this work.

5.3. Results and discussion

The results of the implementation, presented in the previ-

ous section, illustrate how the proposed hybrid approach is

enhancing the understanding of the SARS-CoV-2 cell

infection process at the single-cell level. The hybrid

approach provided a thorough analysis and understanding

of viral replication biological processes occurring in the

infected cell and how they influence each other. It allows

tracking the evolution and replication of the SARS-CoV-2

through hierarchical cellular compartments and quantifying

its release at the individual cell level. The hierarchical

approach can be considered as a suitable framework to model

heterogeneous populations and simulate the behavior of com-

plex systems with an intrinsic discrete nature, such as the

virus replication process and virus–host interaction.

We have demonstrated that, through its modular struc-

ture, the DEVS formalism is suitable to be integrated with

an ontological-based model within a hierarchical frame-

work that can link the small biomolecules to the cell lev-

els. The approach effectively embeds the viral replication

behavior from the simulation of the (1) dynamics of the

individual atomic models (e.g. ribosomal translation of the

different viral proteins and RNA replication), (2) interac-

tion among atomic components (e.g. the interaction

between viral proteins and cellular ribosomes), and (3)

micro and macroscopic scales (e.g. interaction among the

different cell’s compartments). These simulation results

will provide valuable support for new cutting-edge biolo-

gical approaches to accurately analyze transcriptome

dynamics at the single-cell level (Single-Cell RNA-Seq)

as well as to quantify viruses released at the single-cell

resolution (viro-fluidic method).

With the hybrid nature of the proposed modeling and

simulation approach, an interoperable relationship has

been established between both DEVS simulation and

ontology modules. It takes advantage of the benefits

achieved by grouping and combing both domains. As seen

in the previous section, both modules of the approach were

able to adapt and collaborate together.

Using the DEVS formalism, the hierarchical approach

easily captures spatial-related aspects of cell compartments

and can integrate viral component behaviors at different

scales. The SARS-CoV-2 multiplication process lies on a

hierarchical structure with different spatial and time scales:

the building biomolecules scale typically spans from

nanoseconds to microseconds to the cell level from sec-

onds to hours. It is also used to describe the temporal var-

iation of viral stage state process variables and capture

both their temporal and spatial-related evolution.

The OntoRepliCov domain ontology, rich in viral repli-

cation semantic knowledge, enriches the simulation model

and improves its efficiency. Moreover, the ontological

module provides rich knowledge about the microscopic

scale of the viral replication process and computes as well

the dynamic behavior of micro-level components. Through

this module, the approach offers a natural description of

the infected host-cell system through the definition of rules

governing the viral and cellular component activities (e.g.

protein synthesis, assembly of nucleobase, polyprotein pro-

duction, transcription, and frameshifting). It provides the

DEVS module with semantic rules to compute the dynamic

state transitions of DEVS models depicting viral and cellu-

lar components at a micromolecular level. Such micro-

level cannot be modeled by the DEVS model alone. Thus,

one of the limitations of DEVS simulation models is their

lack of formal semantics and definition of the basic micro-

models. For example, in the modeling and simulation of

the SARS-CoV-2, there are some basic components repre-

senting the micro-level, such as building molecules, which

have no states or inputs and outputs. As the ontology was

populated with more than 11 million SARS2 sequences

from GISAID repository (https://gisaid.org/), it is able to

consider the smallest and finest components of the replica-

tion process, such as amino acids, nucleobases, etc., which

the DEVS model is unable to capture.

Therefore, our proposed hybrid approach offers several

advantages, including formalizing a relationship between

DEVS simulation components and domain knowledge.

This relationship has resulted in enriching the simulation

model with semantically rich knowledge that the DEVS

simulation alone could not successfully model or simulate.

The DEVS formalism is very suitable for modeling and

simulating the dynamic behavior of a complex system such

as the SARS-CoV-2 viral replication. Nevertheless, it can-

not express the semantic interpretation of what is occurring

in the executed simulation or in the simulation module.

Likewise, it cannot deduce any kind of semantic knowl-

edge about the domain area. Therefore, it is not able to

enrich or complete the missing data on viral replication.

Moreover, the use of a unique DEVS model can potentially

increase the complexity of the simulation model, since the

formal semantics of the various parameters used by this

DEVS model and their relationship with domain knowl-

edge is often overlooked. This explains the need for an

ontological model that would complement the DEVS

formalism and semantically enhance it.

Classical approaches for modeling and simulation of

viruses and their interaction with host cell components

22 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

are generally focused on single biological scales. The

hybrid hierarchical approach proposed in this study

meets the objective of integrating biological knowledge

within a simulation formalism in which multiple scales

are considered at the same time. As presented in Section

2.1, the characteristics of the viral replication process

are self-organization and self-reproduction. As described

In Figure 12, in this process, both characteristics are

extended from the micromolecular scale including small

molecules, building blocks, and biomolecules, to the

macromolecular scale including supramolecular struc-

tures, organelles, and the whole cell.

As discussed above, the proposed hierarchical modeling

and simulation approach was specifically designed to be

modular and extensible to support continuous updating and

parallel development. Considering the modularity of the

formalism DEVS, the proposed approach can be easily

scalable and adapted to a change of scale in the viral life

cycle (or the viral cell interaction process) and support

updating in response to rapid advances in the understand-

ing of infection mechanisms. For example, if we intend to

add other cellular or viral components involved in the viral

replication cycle in light of scientific discovery (as cell

immunity), it would just be enough to add the atomic or

coupled components and their SWRL rules describing their

behavior. Such changes in the hierarchical model will not

impact the original model, which can maintain its function-

alities even with the new changes. As such, the proposed

approach is sufficiently flexible and generic to be applied

to the replication of other viruses belonging to (+)RNA

virus families with an entirely cytoplasmic life cycle (e.g.

Dengue, Zika, Chikungunya, and Hepatitis E viruses).

6. Conclusion and future work

In this work, we mix both DEVS and ontological domains

in a common hybrid approach to gain a micro–macro

modeling and simulation approach for understanding the

SARS-CoV-2 replication process and its interaction with

the host cell. The need to integrate the multiplicity of

knowledge and scales of description for modeling complex

systems, such as the SARS-CoV-2 replication process and

its interaction with the host cell, calls for combining

knowledge representation and simulation methods.

Therefore, we propose a hybrid hierarchical modeling and

simulation approach combining DEVS formalism and

ontology domains. Accordingly, the proposed approach is

based on two modules: (1) the DEVS module to model the

hierarchical structure of viral replication (including viral

and cellular components), their states during the replica-

tion process, the virus-cell interaction at different levels,

and simulate its multiplication. And (2) the ontological

module to provide knowledge about the viral replication

process, and SWRL rules to compute the dynamic state

transitions of DEVS models depicting viral and cellular

components at a micromolecular level.

An immediate and important impact of this work will

be a real support to an emerging method named ‘‘viro-flui-

dic’’ which combines microfluidic and virology at single-

cell and single-virus resolutions. Indeed, real-time visuali-

zation and quantification of viruses released by a cell are

crucial to further decipher infection processes. Kinetics

studies at the single-cell level will circumvent the limita-

tions of bulk assays with asynchronous virus replication.

Thus, simulation results will be of crucial help in this new

cutting-edge approach.

This novel hybrid approach offers several advantages

such as modeling, simulating and understanding the virus–

host interaction, the different mechanisms involved in the

replication process, the role and function of each cellular or

viral component in this process, as well as the dynamic beha-

vior of the virus in the different cellular compartment. This

approach contributes to studying the SARS-CoV-2 life cycle,

from the micro to the macro level, and therefore, meets a pri-

mary challenge: understanding virus-cell interaction and vir-

ion formation in order to develop efficient weapons against

the COVID-19 pandemic. Thus, we hope that the proposed

hierarchical modeling and simulation approach might be

Figure 12. Hierarchy of scales: from the microscopic scale to the macroscopic scale.

Ayadi et al. 23

complementary tools to understand for understanding virus

replication processes and optimizing their therapies.

The contributions proposed in this paper may induce

potential future research. The first future work concerns

the biological levels covered by the proposed approach.

We are interested in integrating additional levels, including

cell-cell interaction. The intention is to investigate the viral

spread and propagation within cellular tissues and eventu-

ally in the whole organism.

Since the proposed DEVS approach has been devel-

oped in the CD++ tool which is fully able to run DEVS

and Cell-DEVS models, we plan to develop advanced cel-

lular simulation models based on the Cell-DEVS formal-

ism. As the used CD++ tool simulates both DEVS and

Cell-DEVS models, this integration is expected to be

straightforward. Using these advanced Cell-DEVS simula-

tion models, which has proven to be very effective to

study the dynamics of complex models, we can reinforce

our hierarchical approach to address the host immune

response and cellular tissue damage in time and space.

Furthermore, an important extension of this perspective

would be to use the distributed simulation, such as the dis-

tributed simulation engine D-CD++.70 This will adapt

our current work to address the future mutations of the

SARS-CoV-2 and facilitate the inclusion of additional lev-

els of DEVS models. Thus, exposing the functionality of

our approach to remote users, increasing its reusability,

and minimizing the time required for expert biologists to

conduct their experiments.75

We also plan to extend this work toward the develop-

ment of a DEVS plugin, namely a CD++ library, able to

combine both formal knowledge models and the DEVS

simulation models. That could provide a global framework

for the modeling and simulation of hierarchical complex

systems and be applied to a wide range of domains.

Appendix 1

DEVS representation of the cytoplasm compartment, including its formal specification

Figure 13. DEVS representation of the cytoplasm compartment, its components, and their exchanges with the ontological
inference engine.

24 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Table 8. Continuation of the formal specification of the cytoplasm compartment, and its seven components.

The cytoplasm compartment
The Complex RTC atomic component
RTC = (XRTC , YRTC , SRTC , δextRTC

, δintRTC
, λRTC , λVP, taRTC)

XRTC = f(RTCIn1, nsp7), (RTCIn2, nsp8), (RTCIn3, nsp10), (RTCIn4, nsp12), (RTCIn5, nsp14)g
YRTC = f(RTCOut, FuncRTC)g
SRTC = f00Passive00, 00ActivationProcess00, 00RTCActivated00, 00Finished00g×R

+
0

δextRTC
(phase, σ, e, x)= (ActivationProcess, activationTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00ActivationProcess00, 00RTCActivated00, 00Finished00g
δintRTC

(00ActivationProcess00, activationTime)= (00RTCActivated00, RTCActivatedTime)
δintRTC

(00RTCActivated00, RTCActivatedTime)= (00Finished00, finishedTime)
δintRTC

(00Finished00, finishedTime)= (00Passive00, ∞)
λRTC(00ActivationProcess00, σ)=1
λRTC(00RTCActivated00, σ)= (RTCOut, FuncRTC)
λRTC(00Finished00, σ)=1
λRTC(00Passive00, σ)=1
taRTC(00ActivationProcess00, σ)= activationTime
taRTC(00RTCActivated00, σ)= RTCActivatedTime
taRTC(00Finished00, σ)= finishedTime= 0
taRTC(00Wainting00, σ)=∞
The RTC1 atomic component
RTC1= (XRTC1, YRTC1, SRTC1, δextRTC1

, δintRTC1
, λRTC1, taRTC1)

XRTC1 = f(RTC1In1, functRTC), (RTC1In2, mRNA), (RTC1In3, tRNA)g
YRTC1 = f(RTC1Out1, nRNA)g
SRTC1 = f00Passive00, 00ReplicationProcess00, 00RNARelease00, 00Finished00g×R

+
0

δextRTC1
(phase, σ, e, x)= (ReplicationProcess, replicationTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00ReplicationProcess00, 00RNARelease00, 00Finished00g
δintRTC1

(00ReplicationProcess00, replicationTime)= (00RNARelease00, rnaReleaseTime)
δintRTC1

(00RNARelease00, rnaReleaseTime)= (00Finished00, finishedTime)
δintRTC1

(00Finished00, finishedTime)= (00Passive00, ∞)
λRTC1(00ReplicationProcess00, σ)=1
λRTC1(00RNARelease00, σ)= (RTC1Out, nRNA)
λRTC1(00Finished00, σ)=1
λRTC1(00Passive00, σ)=1
taRTC1(00ReplicationProcess00, σ)= replicationTime
taRTC1(00RNARelease00, σ)= rnaReleaseTime
taRTC1(00Finished00, σ)= finishedTime= 0
taRTC1(00Passive00, σ=∞
The RTC2 atomic component
RTC2= (XRTC2, YRTC2, SRTC2, δextRTC2

, δintRTC2
, λRTC2, taRTC2)

XRTC2 = f(RTC2In1, nRNA), (RTC2In1, tRNA)g
YRTC2 = f(RTC2Out1, sgRNA1), (RTC2Out2, sgRNA2), (RTC2Out3, sgRNA3), (RTC2Out4, sgRNA4),
(RTC2Out5, sgRNA5), (RTC2Out6, sgRNA6), (RTC2Out7, sgRNA7),
(RTC2Out8, sgRNA8), (RTC2Out9, sgRNA9)g
SRTC2 = f00Passive00, 00DisTranscriptionProcess00, 00SGRelease00, 00Finished00g×R

+
0

δextRTC1
(phase, σ, e, x)= (DisTranscriptionProcess, disTransProcessTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00DisTranscriptionProcess00, 00SGRelease00, 00Finished00g
δintRTC2

(00DisTranscriptionProcess00, disTransProcessTime)= (00SGRelease00, sgReleaseTime)
δintRTC2

(00SGRelease00, sgReleaseTime)= (00Finished00, finishedTime)
δintRTC2

(00Finished00, finishedTime)= (00Passive00, ∞)
λRTC2(00DisTranscriptionProcess00, σ)=1
λRTC2(00SGRelease00, σ)= (RTC2Out1, sgRNA1) ^ (RTC2Out2, sgRNA2) ^ (RTC2Out3, sgRNA3) ^ (RTC2Out4, sgRNA4)

^(RTC2Out5, sgRNA5) ^ (RTC2Out6, sgRNA6) ^ (RTC2Out7, sgRNA7) ^ (RTC2Out8, sgRNA8) ^ (RTC2Out9, sgRNA9)

λRTC2(00Finished00, σ)=1
λRTC2(00Passive00, σ)=1
taRTC2(00DisTranscriptionProcess00, σ)= disTransProcessTime
taRTC2(00SGRelease00, σ)= sgReleaseTime
taRTC2(00Finished00, σ)= finishedTime= 0
taRTC2(00Passive00, σ=∞

Ayadi et al. 25

Acknowledgements

The authors acknowledge the use of CD++ toolkit services, and

are grateful to Prof. Gabriel Wainer from the Department of

Systems and Computer Engineering, Carleton University

(Ottawa, ON, Canada) for his helpful discussions on the use of

CD++ toolkit services.

Funding

This work was supported by the REACTing COVID-19 initiative

(Research and ACTion targeting emerging infectious diseases)

and by the French National Research Agency under reference

‘‘ANR-20-COVI-0006-01.’’

ORCID iDs

Ali Ayadi https://orcid.org/0000-0003-1660-4100

Isabelle Imbert https://orcid.org/0000-0001-5630-9945

Notes

1. https://www.worldometers.info/coronavirus/

2. https://www.eclipse.org/

3. https://www.boost.org/

4. http://www.sce.carleton.ca/esg/CDppBuilder/

5. https://cygwin.com

6. https://protege.stanford.edu/

7. http://owl-cpp.sourceforge.net/

8. http://owl.cs.manchester.ac.uk/tools/fact/

9. https://librdf.org/

References

1. Xu H, Liu L, Zhao L, et al. Psychological impact and compli-

ance with staying at home of the public to covid-19 outbreak

during Chinese spring festival. Int J Environ Res Public

Health 2022; 19: 916.

Table 9. Continuation of the formal specification of the cytoplasm compartment, and its seven components.

The cytoplasm compartment
The RTC3 atomic component
RTC3= (XRTC3, YRTC3, SRTC3, δextRTC3

, δintRTC3
, λRTC3, taRTC3)

XRTC3 = f(RTC3In1, nRNA), (RTC3In2, tRNA)g
YRTC3 = f(RTC3Out1, pRNA)g
SRTC3 = f00Passive00, 00ReplicationProcess00, 00RNARelease00, 00Finished00g×R

+
0

δextRTC3
(phase, σ, e, x)= (00ReplicationProcess00, replicationTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00ReplicationProcess00, 00RNARelease00, 00Finished00g
δintRTC3

(00ReplicationProcess00, replicationTime)= (00RNARelease00, rnaReleaseTime)
δintRTC3

(00RNARelease00, rnaReleaseTime)= (00Finished00, finishedTime)
δintRTC3

(00Finished00, finishedTime)= (00Passive00, ∞)
λRTC3(00ReplicationProcess00, σ)=1
λRTC3(00RNARelease00, σ)= (RTC3Out, pRNA)
λRTC3(00Finished00, σ)=1
λRTC3(00Passive00, σ)=1
taRTC3(00ReplicationProcess00, σ)= replicationTime
taRTC3(00RNARelease00, σ)= rnaReleaseTime
taRTC3(00Finished00, σ)= finishedTime= 0
taRTC3(00Passive00, σ)=∞
The HR2 atomic component
HR2= (XHR2, YHR2, SHR2, δextHR2

, δintHR2
, λHR2, taHR2)

XHR2 = f(HR2In1, sgRNA1), (HR2In2, sgRNA2), (HR2In3, sgRNA3), (HR2In4, sgRNA4),
(HR2In5, sgRNA5), (HR2In6, sgRNA6), (HR2In7, sgRNA7), (HR2In8, sgRNA8),
(HR2In9, sgRNA9), (HR2In10, tRNA)g
YHR2 = f(HR2Out1, M), (HR2Out2, E), (HR2Out3, S), (HR2Out4, N)g
SHR2 = f00Passive00, 00TranslationProcess00, 00ProteinRelease00, 00Finished00g×R

+
0

δextHR2
(phase, σ, e, x)= (TranslationProcess, translationTime) if phase= 00Passive00

(phase, σ � e) if phase∈ f00TranslationProcess00, 00ProteinRelease00, 00Finished00g
δintHR2

(00TranslationProcess00, translationTime)= (00ProteinRelease00, proteinReleaseTime)
δintHR2

(00ProteinRelease00, proteinReleaseTime)= (00Finished00, finishedTime)
δintHR2

(00Finished00, finishedTime)= (00Passive00, ∞)
λHR2(00TranslationProcess00, σ)=1
λHR2(00ProteinRelease00, σ)= (HR2Out1, M) ^ (HR2Out2, E) ^ (HR2Out3, S) ^ (HR2Out4, N)
λHR2(00Finished00, σ)=1
λHR2(00Passive00, σ)=1
taHR2(00TranslationProcess00, σ)= translationTime
taHR2(00ProteinRelease00, σ)= proteinReleaseTime
taHR2(00Finished00, σ)= finishedTime= 0
taHR2(00Passive00, σ=∞

26 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

2. Halvorsen GS, Simonsen L and Sneppen K. Spatial model of

ebola outbreaks contained by behavior change. PLoS ONE

2022; 17: e0264425.

3. Ravi V, Saxena S and Panda PS. Basic virology of SARS-

CoV 2. Ind J Med Microbiol 2022; 40: 182–186.

4. Shehata AA, Attia YA, Rahman MT, et al. Diversity of cor-

onaviruses with particular attention to the interspecies trans-

mission of SARS-CoV-2. Animals 2022; 12: 378.

5. Nabeela Sultan M, Mohammed Shoaib M, Shagufta Aleem

M, et al. Global academic journal of pharmacy and drug

research. Proteins 2022; 4: 2.

6. Hernández-Morales R, Becerra A, Campillo-Balderas J, et

al. Structural biology of the SARS-CoV-2 replisome: evolu-

tionary and therapeutic implications. In: Rosales-Mendoza S,

Comas-Garcia M and Gonzalez-Ortega O (eds) Biomedical

Innovations to Combat COVID-19. New York: Elsevier,

2022, pp. 65–82.

7. Smith EM, Rakestraw C and Farroni JS. Research integrity

during the covid-19 pandemic: perspectives of health science

researchers. Account Res. Epub ahead of print 6 February

2022. DOI: 10.1080/08989621.2022.2029704.

8. Jung C, Kmiec D, Koepke L, et al. Omicron: what makes

the latest SARS-CoV-2 variant of concern so concerning? J

Virol 2022; 96: e0207721.

9. Mostafavi E, Dubey AK, Teodori L, et al. SARS-CoV-2

omicron variant: a next phase of the covid-19 pandemic and

a call to arms for system sciences and precision medicine.

Medcomm 2022; 3: e119.

10. Ayadi A, Frydman C, Laddada W, et al. Combining DEVS

and semantic technologies for modeling the sars-cov-2 repli-

cation machinery. In: 2021 Annual Modeling and Simulation

Conference (ANNSIM), Fairfax, VA, 19–22 July 2021, pp.

1–12. New York: IEEE.

11. Laddada W, Soualmia LF, Zanni-Merk C, et al. Ontoreplicov:

an ontology-based approach for modeling the sars-cov-2 repli-

cation process. Proced Comput Sci 2021; 192: 487–496.

12. Zeigler BP, Muzy A and Kofman E. Theory of modeling and

simulation: discrete event and iterative system computational

foundations. Cambridge, MA: Academic Press 2018.

13. Martins M, Ferreira S Jr and Vilela M. Multiscale models for

biological systems. Curr Opin Colloid Inter Sci 2010; 15:

18–23.

14. Romano M, Ruggiero A, Squeglia F, et al. A structural view

of SARS-CoV-2 RNA replication machinery: RNA synth-

esis, proofreading and final capping. Cells 2020; 9: 1267.

15. Grebennikov D, Kholodareva E, Sazonov I, et al.

Intracellular life cycle kinetics of SARS-CoV-2 predicted

using mathematical modelling. Viruses 2021; 13: 1735.

16. Scudellari M. How the coronavirus infects cells and why

delta is so dangerous. Nature 2021; 595: 640–644.

17. Uraki R and Kawaoka Y. Host glycolipids in SARS-CoV-2

entry. Nature Chem Biol 2022; 18: 6–7.

18. Zeigler B, Traoré MK, Zacharewicz G, et al. Value-based

learning healthcare systems: Integrative modeling and simu-

lation. London: Institution of Engineering and Technology,

2019.

19. Zeigler BP, Kim TG and Praehofer H. Theory of modeling

and simulation: integrating discrete event and continuous

complex dynamic systems. Cambridge, MA: Academic Press,

2000.

20. Zeigler BP and Muzy A. From discrete event simulation to

discrete event specified systems (DEVS). IFAC-PapersOnLine

2017; 50: 3039–3044.

21. Hamri A. FwkDEVS: a DEVS/GDEVS modeling and simu-

lation framework. JDF, 2016. https://docplayer.fr/85508806-

Fwkdevs-simulateur-devs-gdevs-amine-hamri-laboratoire-

des-sciences-de-l-information-et-des-systemes-lsis-umr-

7296-aix-marseille-university-france.html

22. Sarjoughian HS and Zeigler B. DEVSJAVA: basis for a

DEVS-based collaborative M&S environment. Simul Ser

1998; 30: 29–36.

23. Quesnel G, Duboz R and RamatÉ. The virtual laboratory

environment–an operational framework for multi-modelling,

simulation and analysis of complex dynamical systems.

Simul Model Pract Theory 2009; 17: 641–653.

24. Filippi JB and Bisgambiglia P. JDEVS: an implementation

of a DEVS based formal framework for environmental mod-

elling. Environ Model Softw 2004; 19: 261–274.

25. Bolduc JS and Vangheluwe H. pythondevs: a modeling and

simulation package for classical hierarchal DEVS. Technical

report, MSDL, Université De Mcgill, Quebec, QC, Canada,

2001.

26. Nutaro J. Adevs (a discrete event system simulator). Arizona

Center for Integrative Modeling & Simulation (ACIMS),

University of Arizona, Tucson, 1999, http://www.ece.arizo-

na.edu/nutaro/index php

27. Wainer GA. CD++: a toolkit to develop DEVS models.

Softw Pract Exp 2002; 32: 1261–1306.

28. Wainer G, Liu Q, Dalle O, et al. Applying cellular automata

and DEVS methodologies to digital games: a survey. Simul

Gaming 2010; 41: 796–823.

29. Liu Q and Wainer G. Parallel environment for DEVS and

Cell-DEVS models. Simulation 2007; 83: 449–471.

30. Wainer GA. Discrete-event modeling and simulation: a prac-

titioner’s approach. Boca Raton, FL: CRC press, 2017.

31. Rubin DL, Lewis SE, Mungall CJ, et al. National center for

biomedical ontology: advancing biomedicine through struc-

tured organization of scientific knowledge. OMICS 2006; 10:

185–198.

32. Cao Q, Zanni-Merk C, Samet A, et al. KSPMI: a knowledge-

based system for predictive maintenance in industry 4.0.

Robot Comput-Integrat Manuf 2022; 74: 102281.

33. Liaw ST, Rahimi A, Ray P, et al. Towards an ontology for data

quality in integrated chronic disease management: a realist

review of the literature. Int J Med Inform 2013; 82: 10–24.

34. Mora M, Wang F, Gómez JM, et al. Development methodol-

ogies for ontology-based knowledge management systems: a

review. Expert Syst 2022; 39: e12851.

35. Jefferys EE and Sansom MS. Computational virology: mole-

cular simulations of virus dynamics and interactions. Adv

Exp Med Biol 2019; 1215: 201–233.

36. Ng KY and Gui MM. COVID-19: development of a robust

mathematical model and simulation package with consider-

ation for ageing population and time delay for control action

and resusceptibility. Phys D: Nonlin Phenomena 2020; 411:

132599.

Ayadi et al. 27

37. Overton CE, Stage HB, Ahmad S, et al. Using statistics and

mathematical modelling to understand infectious disease

outbreaks: COVID-19 as an example. Infect Dis Model

2020; 5: 409–441.

38. Ivorra B, Ferrández MR, Vela-Pérez M, et al. Mathematical mod-

eling of the spread of the coronavirus disease 2019 (COVID-19)

taking into account the undetected infections. The case of China.

Commun Nonlin Sci Numer Simul 2020; 88: 105303.

39. Machado JT, Rocha-Neves JM and Andrade JP.

Computational analysis of the SARS-CoV-2 and other

viruses based on the Kolmogorov’s complexity and

Shannon’s information theories. Nonlin Dynam 2020; 101:

1731–1750.

40. Ahmad J, Ikram S, Ahmad F, et al. SARS-CoV-2 RNA

dependent RNA polymerase (RdRp)–a drug repurposing

study. Heliyon 2020; 6: e04502.

41. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase

(RdRp) targeting: an in silico perspective. J Biomol Struct

Dyn 2021; 39: 3204–3212.

42. Elmezayen AD, Al-Obaidi A, Sxahin AT, et al. Drug repur-

posing for coronavirus (COVID-19): in silico screening of

known drugs against coronavirus 3CL hydrolase and pro-

tease enzymes. J Biomol Struct Dynam, 2020, https://www.

researchgate.net/profile/Anas-Alobaidi/publication/3407782

61_Drug_repurposing_for_coronavirus_COVID-19_in_silico

_screening_of_known_drugs_against_coronavirus_3CL_hyd

rolase_and_protease_enzymes/links/5e9f8e25a6fdcc20bb35f

b17/Drug-repurposing-for-coronavirus-COVID-19-in-silico-

screening-of-known-drugs-against-coronavirus-3CL-hydro-

lase-and-protease-enzymes.pdf

43. Arantes PR, Saha A and Palermo G. Fighting COVID-19

using molecular dynamics simulations. ACS Centi Sci 2020;

6: 1654–1656.

44. Amin SA, Ghosh K, Gayen S, et al. Chemical-informatics

approach to COVID-19 drug discovery: Monte Carlo based

QSAR, virtual screening and molecular docking study of

some in-house molecules as papain-like protease (PLpro)

inhibitors. J Biomol Struct Dynam 2021; 39: 4764–4773.

45. Lalmuanawma S, Hussain J and Chhakchhuak L.

Applications of machine learning and artificial intelligence

for covid-19 (sars-cov-2) pandemic: a review. Chaos Soliton

Fract 2020; 139: 110059.

46. Wang W and Ruan S. Simulating the SARS outbreak

in Beijing with limited data. J Theor Biol 2004; 227:

369–379.

47. Bai Y and Jin Z. Prediction of SARS epidemic by BP neural

networks with online prediction strategy. Chaos Soliton

Fract 2005; 26: 559–569.

48. Teles P. A time-dependent SEIR model to analyse the evolu-

tion of the SARS-CoV-2 epidemic outbreak in Portugal.

arXiv preprint, 2004, https://arxiv.org/abs/2004.04735

49. Jiang S, Li Q, Li C, et al. Mathematical models for devising

the optimal SARS-CoV-2 strategy for eradication in China,

South Korea, and Italy. J Trans Med 2020; 18: 1–11.

50. Wu JT, Leung K and Leung GM. Nowcasting and forecast-

ing the potential domestic and international spread of the

2019-nCoV outbreak originating in Wuhan, China: a model-

ling study. The Lancet 2020; 395: 689–697.

51. Altrock PM, Liu LL and Michor F. The mathematics of can-

cer: integrating quantitative models. Nature Rev Cancer

2015; 15: 730–745.

52. Chowdhury S, Forkan M, Ahmed SF, et al. Modeling the

SARS-CoV-2 parallel transmission dynamics: asymptomatic

and symptomatic pathways. Comput Biol Med 2022; 143:

105264.

53. Velten K. Mathematical modeling and simulation: introduc-

tion for scientists and engineers. Hoboken, NJ: John Wiley

& Sons, 2009.

54. de Oliveira LP, Hudebine D, Guillaume D, et al. A review of

kinetic modeling methodologies for complex processes. Oil

Gas Sci Tech 2016; 71: 45.

55. Bagabir S, Ibrahim NK, Bagabir H, et al. Covid-19 and

artificial intelligence: genome sequencing, drug develop-

ment and vaccine discovery. J Infect Public Health 2022;

15: 289–296.

56. Cozac R, Medzhidov N and Yuki S. Predicting inhibitors for

SARS-CoV-2 RNA-dependent RNA polymerase using

machine learning and virtual screening. arXiv preprint,

2006, https://arxiv.org/abs/2006.06523

57. Ivanov J, Polshakov D, Kato-Weinstein J, et al. Quantitative

structure–activity relationship machine learning models and

their applications for identifying viral 3CLpro-and RdRp-tar-

geting compounds as potential therapeutics for COVID-19

and related viral infections. ACS Omega 2020; 5: 27344–

27358.

58. Randhawa GS, Soltysiak MP, El Roz H, et al. Machine learn-

ing using intrinsic genomic signatures for rapid classification

of novel pathogens: Covid-19 case study. PLoS ONE 2020;

15: e0232391.

59. Mahapatra S, Nath P, Chatterjee M, et al. Repurposing thera-

peutics for covid-19: rapid prediction of commercially avail-

able drugs through machine learning and docking. PLoS

ONE 2020; 15: e0241543.

60. Touati R, Haddad-Boubaker S, Ferchichi I, et al.

Comparative genomic signature representations of the emer-

ging COVID-19 coronavirus and other coronaviruses: high

identity and possible recombination between bat and pango-

lin coronaviruses. Genomics 2020; 112: 4189–4202.

61. Pavlova A, Zhang Z, Acharya A, et al. Machine learning

reveals the critical interactions for SARS-CoV-2 spike

protein binding to ACE2. J Phys Chem Lett 2021; 12:

5494–5502.

62. Ghosh K, Amin SA, Gayen S, et al. Chemical-informatics

approach to COVID-19 drug discovery: exploration of

important fragments and data mining based prediction of

some hits from natural origins as main protease (Mpro) inhi-

bitors. J Mol Struct 2020; 1224: 129026.

63. Tang B, He F, Liu D, et al. Ai-aided design of novel targeted

covalent inhibitors against SARS-CoV-2. Biomolecules

2020; 12: 746.

64. Alakus TB and Turkoglu I. Comparison of deep learning

approaches to predict covid-19 infection. Chaos Soliton

Fract 2020; 140: 110120.

65. Benameur N, Mahmoudi R, Zaid S, et al. SARS-CoV-2 diag-

nosis using medical imaging techniques and artificial intelli-

gence: a review. Clin Imag 2021; 76: 6–14.

28 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

66. Yuille AL and Liu C. Limitations of deep learning for

vision, and how we might fix them. The Gradient, 2019,

https://thegradient.pub/the-limitations-of-visual-deep-learnin

g-and-how-we-might-fix-them/#:~:text=Here%2C%20we%

20identify%20three %20main,of%20tasks%20that%20are%

20important.

67. Rasmussen CB, Kirk K and Moeslund TB. The challenge of

data annotation in deep learning—a case study on whole

plant corn silage. Sensors 2022; 22: 1596.

68. Li M, Fang Y, Tang Z, et al. Explainable COVID-19 infec-

tions identification and delineation using calibrated pseudo

labels. IEEE Trans Emerg Topic Comput Intell 2023; 7:

26–35.

69. Rajan S, McKee M, Hernández-Quevedo C, et al. What have

European countries done to prevent the spread of COVID-

19? Lessons from the COVID-19 health system response

monitor. Health Policy 2022; 126: 355–361.

70. Wainer GA, Madhoun R and Al-Zoubi K. Distributed simu-

lation of DEVS and cell-DEVS models in CD++ using

web-services. Simul Model Pract Theory 2008; 16: 1266–

1292.

71. Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and con-

served features of genome and proteome of SARS-corona-

virus, an early split-off from the coronavirus group 2 lineage.

J Mol Biol 2003; 331: 991–1004.

72. Kim H and Yin J. Robust growth of human immunodeficiency

virus type 1 (HIV-1). Biophysical J 2005; 89: 2210–2221.

73. Fehr AR and Perlman S. Coronaviruses: an overview of

their replication and pathogenesis. Coronaviruses 2015;

1282: 1–23.

74. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of

coronavirus disease 2019 (Covid-19) from publicly reported

confirmed cases: estimation and application. Ann Intern Med

2020; 172: 577–582.

75. Zacharewicz G, Frydman C and Giambiasi N. Lookahead

computation in G-DEVS/HLA environment. SNE Simul

News Europe 2006; 16: 15–24.

Author biographies

Ali Ayadi is an associate professor at the CSTB research

team (Complex Systems and Translational Biology),

ICUBE laboratory at Université de Strasbourg. He is
working on conceptual representation and discrete event
simulation of biological complex systems. His email
address is ali.ayadi@unistra.fr.

Claudia Frydman is a full professor at Aix-Marseille
Université. She is also a member of the Laboratoire
d’Informatique et des Systèmes (LIS), and she has been a
referee for several scientific journals and a member of the
program committee in various international conferences.
She is working on knowledge based simulation, especially
iscrete Event System Specification modeling and simula-
tion. Her email address is claudia.frydman@lis-ab.fr.

Wissame Laddada is a post-doctoral researcher at Aix
Marseille Université in collaboration with INSA Rouen
Normandie. She is working on knowledge based systems.
Her email address is wissame.laddada@univ-amu.fr.

Isabelle Imbert is a full professor in Biology at Aix-
Marseille Université and member of the Architecture and
Function of Biological Macromolecules Laboratory
(AFMB—CNRS/Aix-Marseille University). She is consid-
ered as one of the French experts on coronavirus. Her
email address is isabelle.imbert@univ-amu.fr.

Cecilia Zanni-Merk is a full professor in Computer
Science at INSA Rouen Normandie and the head of the
MIND team at the LITIS laboratory. Her research focuses
on conceptual representation and inference processes
applied to problem-solving. Her email address is cecilia.
zanni-merk@insa-rouen.fr.

Lina F Soualmia is an associate professor in Computer
Science at Université de Rouen and member of the TIBS
team at the LITIS Laboratory. She is working in the
domain of Artificial Intelligence applied to Health. Her
email address is lina.soualmia@litislab.fr.

Ayadi et al. 29

