Dysjunkcja (Sheffera)
Dysjunkcja, dyzjunkcja[1], dysjunkcja/dyzjunkcja Sheffera, funkcja Sheffera, funktor Sheffera[1], NAND, w terminologii Jana Łukasiewicza niewspółzachodzenie – zdanie lub funkcja zdaniowa utworzone za pomocą funktora dysjunkcji, jednego z dwuargumentowych funktorów zdaniotwórczych rachunku zdań. Symbolem funktora dysjunkcji jest przeważnie ukośna kreska / (tzw. kreska Sheffera[2]). W języku potocznym funktorowi temu odpowiada „nieprawda, że p i q” (ponieważ dysjunkcja jest negacją koniunkcji[2]) lub „zachodzi najwyżej jedno z dwojga”[3] (por. artykuł „Funktory klasycznego rachunku zdań a jęz. naturalny”). Pojęcie dysjunkcji wprowadził w 1913 Henry Sheffer.
Uwaga: w terminologii angielskiej disjunction to polska alternatywa, odpowiednikiem polskiej dysjunkcji (Sheffera) jest natomiast alternative denial.
Wartość logiczna
[edytuj | edytuj kod]Zdanie utworzone za pomocą spójnika dysjunkcji jest fałszywe tylko wtedy, gdy prawdziwe są oba argumenty tego spójnika; w przeciwnym wypadku jest zawsze zdaniem prawdziwym[1].
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
gdzie: 1 – zdanie prawdziwe; 0 – fałszywe
Wybrane własności
[edytuj | edytuj kod]Funktor dysjunkcji posiada pewne własności interesujące ze względu na ekonomię zapisu: prócz binegacji jest jedynym funktorem, za pomocą którego można zdefiniować wszystkie inne; ponadto jest jedynym funktorem jedynego aksjomatu dysjunkcyjnego rachunku zdań.
Twierdzenie, że za pomocą funktora dysjunkcji zdefiniować można wszystkie pozostałe, pochodzi od logika Henry’ego Sheffera, który opublikował je w 1913 w artykule A Set of Five Independent Postulates for Boolean Algebras, with Application to Logical Constants[4]. Wcześniej na ten pomysł wpadł Charles Peirce (artykuł A Boolian Algebra with One Constant z 1880), lecz nie został on opublikowany za jego życia (ukazał się dopiero w tomie 4. dzieł zebranych Peirce’a, wydawanych w latach 1931–1958)[5]. W 1925 Eustachy Żyliński udowodnił, że nie istnieje żaden inny niż binegacja i dysjunkcja funktor rachunku zdań, przy użyciu którego zdefiniować można wszystkie pozostałe[6].
Inne funktory logiczne definiowane są w sposób następujący:
Funktor dysjunkcji stanowi jedyny termin pierwotny rachunku zdań w stylizacji zwanej dysjunkcyjnym rachunkiem zdań. Dysjunkcyjny rachunek zdań jest jedyną formą klasycznego rachunku zdań, w której występuje tylko jeden aksjomat. Jest nim aksjomat Nicoda-Łukasiewicza, sformułowany przez Jeana Nicoda (A Reduction in the number of the Primitive Propositions of Logic, 1917), uproszczony przez Jana Łukasiewicza (Uwagi o aksjomacie Nicoda i o „definicji uogólniającej”, 1933).
Bramka logiczna
[edytuj | edytuj kod]Realizacją operacji NAND w elektronice jest bramka logiczna NAND. Oznaczana jest symbolem:
Przypisy
[edytuj | edytuj kod]- ↑ a b c Wiktor Marek, Janusz Onyszkiewicz, Elementy logiki i teorii mnogości w zadaniach, Wydawnictwo Naukowe PWN, Warszawa 2012, ISBN 978-83-01-14547-7, s. 8.
- ↑ a b Słownik terminologiczny informacji naukowej, Maria Dembowska, Wrocław–Warszawa–Kraków–Gdańsk: Zakład Narodowy imienia Ossolińskich, 1979, s. 41 .
- ↑ dysjunkcja, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-14] .
- ↑ Henry M. Sheffer. A set of five independent postulates for Boolean algebras, with application to logical constants. „Transactions of the American Mathematical Society”. 14, s. 481–488, 1913. American Mathematical Society. (ang.).
- ↑ Charles S. Peirce: A Boolian [!] algebra with one constant. W: Collected papers of Charles Sanders Peirce. Charles Hartshorne; Paul Weiss; Arthur W. Burks (red.). T. 4. Cambridge, Massachusetts: Harvard University Press, 1931–1958, s. 12–20. OCLC 928433.
- ↑ Eustachy Żyliński. Some remarks concerning the theory of deduction. „Fundamenta Mathematicae”. 7, s. 203–209, 1925. Institute of Mathematics Polish Academy of Sciences. (ang.).