Przejdź do zawartości

Reakcja termojądrowa

Z Wikipedii, wolnej encyklopedii
To jest stara wersja tej strony, edytowana przez 83.22.210.241 (dyskusja) o 20:24, 15 maj 2006. Może się ona znacząco różnić od aktualnej wersji.
(D-T) deuter-tryt reakcja fuzji jądra deuteru i trytu łączą się i powstaje jądro helu oraz neutron

Reakcja termojądrowa, synteza jądrowa lub fuzja jądrowazjawisko polegające na złączeniu się dwóch lżejszych jąder w jedno cięższe, często z uwolnieniem się dużej ilości energii. Cięższe jądro może być lżejsze niż suma jego składników, tę różnicę nazywamy energią wiazania albo defektem masy. Większość energii wydzielonej w wyniku reakcji zostaje rozproszona jako energia kinetyczna produktów i promieniowanie gamma, na otaczajacych atomach przekształca się na energię cieplną.

Jądra atomowe mają dodatni ładunek elektryczny i dlatego się odpychają – aby doszło do ich połączenia muszą zbliżyć się na tyle, by siły oddziaływań jądrowych pokonały odpychanie elektrostatyczne. Niezbędnym warunkiem do tego jest prędkość (energia) jąder. Wysoką energię jąder uzyskuje się w bardzo wysokich temperaturach lub rozpędzając jądra w akceleratorach cząstek.

Przedrostek termo pochodzi od głównego sposobu, w jaki wywoływana jest ta reakcja, w gwiazdach i bombie wodorowej, czyli przez podniesienie temperatury do kilkunastu milionów kelwinów.

Reakcja termojądrowa jest głównym źródłem energii gwiazd i przemian we Wszechświecie.

Reakcje termojądrowe w gwiazdach

napiszcie coś o bombie atomowej

W niezbyt masywnych gwiazdach ciągu głównego podstawową reakcją jest synteza jądra helu. Aby synteza nastąpiła, jądra wodoru (protony) muszą się zbliżyć na odległość zasięgu oddziaływania jądrowego (około 1 fm = 10-13 cm). Protony odpychają się jednak elektrostatycznie, a zatem muszą pokonać barierę potencjału o wartości około E = 1 MeV. Taką energię termiczną mają cząstki o temperaturze 1010 K. Tak wysokiej temperatury nie ma we wnętrzu gwiazd, ale przebieg zjawiska w niższej temperaturze tłumaczy zjawisko tunelowe.

Proces syntezy helu z wodoru przebiega w wyniku kilku procesów:

Proces ten jest konsekwencją oddziaływań słabych (wymiany bozonu W). Podczas syntezy następuje odwrotny rozpad β:

.

Reakcja ta, jako konsekwencja oddziaływań słabych, jest bardzo powolna. Powoduje to, że gwiazdy świecą długo, a nie spalają się w jednej chwili, lecz w ciągu milionów czy miliardów lat. W wyniku tej reakcji i w wyniku oddziaływania jądrowego tworzy się deuter:

Reakcja ta jest niezmiernie wolna. Następna reakcja:

prowadzi do powstania izotopu helu, po którym następuje fuzja dwóch jąder helu:

Opisany powyżej ciąg reakcji jądrowych zwany jest cyklem wodorowym. W pojedynczym cyklu tworzenia 1 jądra helu z 4 protonów emitowane jest 26,7 MeV energii i jest to główne źródło energii gwiazd. Część energii jest tracona przez uchodzące neutrina (1,6 MeV).

Zderzające się jądra mają zazwyczaj energię mniejszą od energii potrzebnej do pokonania bariery potencjału elektrycznego, ale przenikają przez nią na skutek zjawiska kwantowego zwanego efekt tunelowy. W wyniku syntezy produkowane są nowe jądra, neutrina i fotony. Wysokoenergetyczne fotony przekazują najpierw energię materii gwiazd, podgrzewając ją, aby po pewnym czasie jako promieniowanie cieplne wydostać się z gwiazdy. Niemal wszystkie neutrina opuszczają wnętrza gwiazd bez zderzeń z materią gwiazdy. Dla fotonów środowisko wnętrza gwiazdy nie jest przezroczyste. Średnia droga swobodna wysokoenergetycznego fotonu we wnętrzu Słońca wynosi około m. Wydostawanie się energii z wnętrza gwiazdy na zewnątrz następuje w wyniku promieniowania wysokoenergetycznego, promieniowania cieplnego oraz konwekcji gazu w gwieździe. Na procesy te wpływa też zmiana ruchu cząstek w polu magnetycznym.

Reakcje syntezy cyklu wodorowego nastąpiły w młodym Wszechświecie (kosmologia) podczas procesu nukleosyntezy. Podczas ekspansji Wszechświata rosła objętość (, a(t) jest czynnikiem skali), malała temperatura , tak że gęstość entropii była stała. Oznacza to, że w pewnym okresie istniały warunki odpowiednie do syntezy lekkich pierwiastków. Zjawiskiem tym tłumaczy się stały stosunek ilościowy wodoru do helu w obłokach kosmicznych. W przeciwieństwie do gwiazdy, gdy temperatura jest w wyniku równowagi stała, w młodym Wszechświecie temperatura ciągle spadała (i spada nadal).

Dla bardziej masywnych gwiazd ciągu głównego, takich jak Syriusz A, zachodzi cykl węglowo-azotowy. Wymaga on obecności jąder jako katalizatora. Cykl składa się z reakcji:

W procesie tych reakcji wyłaniana jest energia 23,8 MeV. Około 98,4% energii w Słońcu jest produkowane w wyniku cyklu wodorowego, a tylko 1,6% w wyniku cyklu węglowo-azotowego. Znaczenie tego ostatniego cyklu wzrasta, gdy temperatura gwiazdy jest wyższa.