
There is no silver bullet to organizing code. Everything from the code design

patterns to third-party dependency management solutions change based on

how a project is architected. This post aims to provide an explanation of the

concepts and tools that can be used to better organize and manage your own

projects.

Workspace Files

Managing Projects

Project Files

Nested Projects

Targets

Applications

Libraries and Frameworks

External

Aggregate

Dependencies

Explicit

Implicit

External

Schemes

Actions

Management

Build Configuration

Configurations

XCConfig Files

Build Locations

Unique

Managing Xcode

Table of Contents

•

◦

•

◦

•

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

Shared

Custom

Legacy

Resources

A workspace file (".xcworkspace") is a container for other types of files, typically

Xcode project files. Workspace files can also contain schemes. This is an

organizational tool to help define implicit as well as explicit relationships

between the files contained in the workspace.

The primary use for workspace files is the management of multiple project files.

A workspace file serves as a means of creating an implicit relationship between

all the files it contains. What this means for project files, is that the built

products from one project can be used to build another.

For example, this enables the separation of library code from your app's code. In

practice you may a project that has: one target for building your app, one target

for building a library for an iOS device, one target for building a library for the

iOS Simulator, and one aggregate target to combine the two library targets into

one binary. By using a workspace to manage this, you could make a separate

project file that is only for building the library, and contain the library-related

targets. This makes your app's project file much cleaner and only contain code

relevant to the building the app. This will create an implicit dependency

between building the library and building the app.

↑ Parent

↑ Table of Contents

Project files are used to define build environment, tools, resources, and contain

references to code files. They create explicit relationships between the contents.

This means that project files should be used as a container for targets that have

explicit dependencies for code to be built successfully. Like workspace files,

project files can also contain schemes.

◦

◦

◦

•

Workspace Files

Managing Projects

Project Files

To define explicit dependencies between targets in separate project files, project

files can be nested. This means that a target can set explicit dependencies of

any other target within the same project file, or any nested child project file. A

target in a child project file cannot set explicit dependencies of any target in the

parent project file.

This behavior is useful for writing wrappers around another set of APIs. It cuts

out a lot of work in resolving implicit dependencies on a per-target basis and will

communicate build errors in a more clear manner.

↑ Parent

↑ Table of Contents

A target defines a specific set of build settings that accompany a set of build

rules. Targets do not have to produce any output files, they can be used as both

a means to create as well as to organize.

Application targets are used to build executable binaries. For many developer

this is the type of target that is dealt with the most. They contain explicit

dependencies, as well as implicit dependencies on other code libraries and

resource assets. The built product from application targets are what is deployed

to be run and tested.

I use application targets fairly often in the development process. When starting

to implement any major code or UI feature I will create a separate project/

workspace to implement it in a clean environment. I have found this to be

beneficial to the development process for a number of reasons:

Small code footprint, faster for prototyping ideas and understanding edge-

cases.

By writing new code in isolated environments, the chance of introducing

bugs into the main app is greatly reduced.

Checking functionality and usability is easier for the developer to test.

Doesn't start with any code cruft, and only brings in dependencies it

absolutely needs.

Nested Projects

Targets

Applications

•

•

•

•

As a bonus benefit: if you encounter any bugs in Apple's frameworks, you are

already working from a minimal project you can use to isolate and attach to a

radar.

↑ Parent

Library and framework targets build code library binaries (for an in-depth

explanation of different types of libraries and frameworks see this post).

Libraries act as a means of code separation and dependency management.

Each code library has a specific purpose and function with the rest of the code it

gets integrated with. Separating code out into separate libraries and

frameworks makes it both easier to manage and maintain for the developer.

For complete separation of code, new project files can be added to a workspace

that only contain individual code libraries. This can speed up total compilation

time on a project because Xcode can resolve the implicit dependencies and

build some libraries in parallel.

↑ Parent

Unlike app or library targets, external build targets do not use Xcode's build

environment. Instead, the work of configuring and building code is delegated to

an external tool such as make , cmake , autotools , or any external

executable script.

External build targets are extremely useful for integrating any code that doesn't

come with a .xcodeproj of its own. They can also be used to build external

Xcode projects without having to load the target project's contents into your

open workspace.

When using external build targets to build code, it is recommended that you use

a build tool directly rather than a script. This is because Xcode's build log will

attempt to parse the output given by the specified build tool and display it with

similar formatting to non-external targets.

↑ Parent

Aggregate targets do not directly produce a build product. They act as a means

of organizing the building of other targets in the same project file into a single

Libraries and Frameworks

External

Aggregate

https://pewpewthespells.com/blog/static_and_dynamic_libraries.html

step. This is particularly useful when dealing with multiple layers of

dependencies. Like other types of targets, additional build phases can be added

(run scripts, copy files, etc).

Aggregate targets can also be used for building multiple disparate targets. For

example, building both a dynamic framework and a static library version of your

code from the same dependency target. This makes aggregate targets

extremely flexible and useful for configuring builds.

↑ Parent

↑ Table of Contents

Dependencies are simply pre-requisites for building a target. Target dependency

management is one of the more complex aspects in Xcode. Understanding of

Xcode's toolchain and build environment configuration helps with making

dependencies more manageable.

Explicit dependencies are dependencies that are visible by a target. A target's

explicit dependencies can be found in the "Target Dependencies" section under

"Build Phases", as shown below.

Dependencies

Explicit

This is a dependency that states that it must be explicitly built before building

the rest of the target. There is ordering to building this type of dependency.

↑ Parent

Implicit target dependencies are dependencies that are necessary to

successfully build a target, but aren't explicitly defined. Any target that requires

a target from another non-nested project file to be run for it to build successfully

has an implicit dependency. For example, an application target that must link a

set of libraries, has an implicit dependency to the targets that produce those

libraries. By using separate projects and targets for each component of your

code, Xcode can resolve the built products to find the targets that need to be

built first. Using implicit dependencies is preferred, as it allows Xcode to

optimize by building multiple libraries at the same time (this, and edge-cases,

are covered in more detail in the "Build" section of scheme configuration).

The most common implicit dependency is by adding linked libraries to a target.

When adding a linked library to a target, a dialog appears that lists all the build

products that are defined in the workspace. Implicit dependencies are highly

dependent on the configuration of the current scheme to be resolved correctly.

↑ Parent

"External" dependencies are implicit dependencies that Xcode cannot resolve

on its own. This is another edge-case to implicit dependencies, but it deserves

special mention as it is one of the more complex things that can be done with

the dependency system. Examples of external dependencies include:

Auto-generated headers or other files as part of another build process

Libraries managed by something external to the project

Product of a script that cannot be validated immediately

External build tool targets can sometimes result having external dependencies.

It depends on how the build system was setup and configured. However most

external build tool targets integrate into Xcode, so it can resolve the implicit

dependencies for you.

↑ Parent

↑ Table of Contents

Implicit

External

•

•

•

Schemes are one of the most powerful organizational tools in Xcode. These

allow you to define dependencies and give them ordering, also they allow fine-

grain tweaking of the build settings associated with a target based on the build

configuration. A scheme supports multiple actions that can be configured to

perform specific tasks based on the action.

Build

The "Build" action allows you to configure which targets should be built for other

actions. The ordering of the targets list is meaningful to the order that they are

built in when the action is run. The ordering is represented by top-to-bottom as

first-to-last build order.

This window also contains two very important checkboxes for changing how

builds work.

Parallelize Build -- This option allows Xcode to speed up total build time by

building targets that do not depend on each other at the same time. This is a

time-saver on projects with many smaller dependencies that can easily be run

in parallel.

Find Implicit Dependencies -- This is a very powerful option that allows Xcode to

resolve what targets need to be built for the primary target of the scheme to be

built successfully. However, this does come with some sharp edges that you

have to be aware of.

Schemes

Actions

Situation: You link a library a library against your application target and create

an implicit dependency to that library's target.

Scenario 1: "Find Implicit Dependencies" is enabled.

Result: The library will get built prior to building the application target.

The application target will then link against the library and build

successfully.

Scenario 2: "Find Implicit Dependencies" is disabled.

Result: The library will not get built prior to building the application

target. The application target fail to build.

Fix: To ensure that the second scenario does not happen, you must add

the necessary targets into the targets list and order them correctly.

However there are some edge-cases to this behavior. If you find yourself in a

situation where you cannot rely on Xcode's ability to resolve the necessary

target dependencies correctly, then both "Parallelize Build" and "Find Implicit

Dependencies" should be disabled on the scheme.

As of this writing, both Xcode 5 and 6 exhibit some very confusing behavior with

these scheme build options. Specifically if you need to disable these options on

any particular scheme, the schemes for the targets that you add MUST also

have these options disabled on them as well. If the options are not disabled,

then they will bleed through to the scheme you are building. This is important to

note because the ordering of the targets list is not static while "Find Implicit

Dependencies" is enabled. Xcode can and will re-order the targets listed there

as it attempts to optimize the build. When working with external dependencies

or requirements that Xcode isn't able to resolve, this will result in broken builds.

This type of build configuration is very complex and difficult to manage in

Xcode. I have written a tool that uses xcodebuild to help in this situation by

allowing you to define an external configuration that will dictate scheme build

ordering and settings.

Run

The "Run" action allows you to configure how the application will launch and the

environment it has.

Info: You can configure the build configuration that the scheme will use, the

built product/executable, and how that will get debugged and run.

•

◦

•

◦

◦

•

https://github.com/samdmarshall/Mai

Arguments: Use this section to configure passed launch arguments and

environment variables. Existing environment variables, such as SRCROOT

can be used here and will be expanded before being passed.

Options: This is a set of additional options relevant to the state of running

the application from Xcode.

•

•

Diagnostics: These are additional tools that can be enabled to help debug

memory management issues as well as some more advanced information

logging.

Test

The "Test" scheme action is used to run associated unit test bundles.

Info: Selecting the build configuration and debugger used when running

tests. This view provides a list of unit test targets that are associated with

the scheme. This also displays the state of all the test methods in each unit

test bundle. Individual test methods can be enabled or disabled from being

called when running the test action on the scheme.

•

•

Arguments: Similar to the "run" action, the test action can be passed

specific environment variables and launch arguments. These can be

inherited directly from the entries in the "run" scheme action.

Profile

•

The "Profile" scheme action allows you to run an app while attached to

additional debugging instrumentation. This is crucial to track down memory

leaks, examine threading behavior, and make performance optimizations.

Info: This will configure the initial behavior performed by the profile action.

The build configuration, executable to attach to, and the default action that

Instruments.app should take are configurable from here.

Arguments: Similar to the "run" action, the profile action can be passed

specific environment variables and launch arguments. These can be

inherited directly from the entries in the "run" scheme action.

•

•

Options: This includes some additional launch and application state options.

Analyze

This scheme action runs code through the llvm static analyzer. The only

configurable option for this is the build configuration it uses. It is recommended

to regularly run code through the analyzer, as it will find bugs and help you

write cleaner code. The "analyze" action performs a deep analysis by default. By

•

using the target's build settings, you can enable the static analyzer to be run

when performing the "build" action on a scheme as well. This is disabled by

default and will only perform a shallow analysis on a "build", but can be

configured to perform a deep analysis if desired.

Archive

The "Archive" scheme action is used to cut builds for uploading to distribute.

These get exported to <Xcode Archives Path>/<YYYY-MM-DD>/ and are

labeled by name and time of export. (See "Build Locations", for more

information on the Archives path)

↑ Parent

Schemes can be auto-created for each target you add to a project. In addition

you can add new schemes for organize how the target schemes are run and

grouped. This is similar to using aggregate targets for organizing inside of a

project.

Schemes are stored in whatever container they were created in, either in a

project or workspace. The manner in how they are stored is governed by if they

are "shared" schemes or "user" schemes. By default new schemes are created

as "user" schemes.

User: User schemes are stored in

<.xcodeproj or .xcworkspace>/xcuserdata/$USER.xcuserdatad/xcschemes/ .

These are useful when needing to configure a build around an unique case

that wouldn't hold true to anyone else working on the project. Since user

schemes are stored in the xcuserdata directory, they are often

completely ignored by source control. In addition, tools such as xctool and

Carthage do not use user schemes so it is important to audit schemes and

tag them as "user" or "shared" as needed.

Shared: Shared schemes are stored in

<.xcodeproj or .xcworkspace file>/xcshareddata/xcschemes/ . A

shared scheme is visible to all users of a project or workspace file. Since

shared schemes are stored in a common location, they are often used by

external tools. Shared schemes offer the benefit of ensuring that the build

process is consistent. As a result of being stored in a common location,

shared schemes can be checked into source control so they are visible to all

users.

Management

•

•

https://github.com/facebook/xctool
https://github.com/Carthage/Carthage

To perform any build action on a specific target, a scheme must exist for that

target. Xcode enables the option to auto-create schemes for targets that exist in

a project or workspace but don't have a corresponding visible scheme. A

scheme's visibility is determined by either being a shared scheme or by having

a scheme already defined for the specific user within the workspace or project

file. As mentioned, user specific schemes are not visible to users other than the

one that created it. This means that most schemes in a project should be

marked as shared schemes to ensure the same configurations are used when

performing builds.

To make the list of schemes more manageable, there is an additional checkbox

to toggle a scheme from being listed in the schemes selection drop-down menu

on the Xcode window. By only making the most commonly used schemes visible

in the dropdown, this can reduce clutter and make switching build

configurations (e.g. Development vs Production environment builds) easier.

↑ Parent

↑ Table of Contents

Build configurations are used to apply specific variations to a target's build

settings. By default, projects have two configurations "Debug" and "Release".

These configurations allow for fine-tune control over specific build settings and

flags that should be passed or over-ride the existing settings of a target. An

Build Configuration

example of this in action would be turning off code optimizations for Debug

builds, but enabling code optimization for Release builds.

Build configurations are stored on a per-project level and allow for specifying a

single additional configuration file (.xcconfig file) on a per target basis. A

configuration is an additional layer to the build settings of a target. All targets in

a project can inherit the build settings dictated on the project level, and those

settings can be over-ridden on a per-target basis. Like-wise, each build

configuration inherits the build settings from an individual target, but can over-

ride any of them to only apply when building with that specific configuration.

This can be extremely helpful when building the same set of code for different

platforms. Instead of maintaining two separate build targets that only primarily

build against the OS X or iOS SDKs, these can be done via different build

configurations. This removes the burden of keeping the settings of both targets

in sync and allows for easier management via schemes.

↑ Parent

Please see the Unofficial Guide to xcconfig files now.

↑ Parent

↑ Table of Contents

Note: All of the settings discussed in this section apply globally. All of your

projects and workspaces will use these settings. Use caution and check

thoroughly before changing any of these settings.

In addition to managing the organization of code inside of Xcode, you can also

customize the output locations of any built products. Build locations are

significant to managing the resolution of target dependencies. From this panel

you can set where on the filesystem Xcode should set the default locations for

the build process.

Configurations

XCConfig Files

Build Locations

https://pewpewthespells.com/blog/xcconfig_guide.html

Derived Data: The Derived Data location is, by default, the location where

all the intermediate and final products of the build process are stored. This

field sets the global location of where the Derived Data directory is stored.

However there are a number of ways that the build locations can be

configured. The settings for these options can be configured by clicking on

the "Advanced..." button.

Snapshots: The snapshots directory is for storing Xcode snapshots.

Snapshots are a way of saving state when the changes being made aren't

covered as part of the undo manager. Modifications made to build settings

or multiple files (e.g. global find and replace) are examples of such actions.

Archives: This is where the output from the "Archive" scheme action is

stored.

Command Line Tools: This option is the equivalent of running

xcode-select -s <[path to Xcode]/Contents/Developer> . This

changes the version of the tools accessed via the command line. The

selected version does not have to match the current version of Xcode you

are using, but be aware that if you use any external build tool (including

xcodebuild) it will use this version instead of the version of the

Xcode.app.

Note: The following subsections are dedicated to the advanced location

controls that are part of the Derived Data build location. Please note that

•

•

•

•

when building products, they are placed in a directory, named after the

build configuration used, inside of the build directory location.

This is the default setting used by Xcode since version 4. This setting will create

a unique folder based on the open project or workspace that will contain all of

the built products and intermediate files needed for the build process. These

folders are stored in the directory set as the DerivedData location on the main

build locations pane. The unique build folder name that is created is based on

the absolute path of the root project or workspace that is open. See this post for

details on how the unique folder name is generated.

↑ Parent

The "shared" location setting creates a universal build directory. This is not

unique to a project or workspace, so conflict can occur when using different

versions of a library or application that has the same name. This shared build

folder is located in a directory within the Derived Data directory.

Unique

Shared

https://pewpewthespells.com/blog/xcode_deriveddata_hashes.html

↑ Parent

The "custom" location setting allows for some varied behavior in where build

locations are set.

Derived Data: By default, this setting uses the same paths as the "Shared

Folder" build location setting. The path here is able to be set relative to the

Derived Data directory path.

Custom

•

Workspace: This setting is similar to the "Unique" setting, except the build

directory is in the same directory as the open workspace or top-most

project file instead of a unique folder in the Derived Data directory.

Absolute: This setting is similar to the "Shared Folder" setting, except it is

not a sub-directory of the Derived Data directory. This sets an absolute path

to a location on your file-system that will house all built products and

•

•

intermediates. As this is an absolute path and not a relative path, this can

cause conflicts if your targets are configured assuming absolute search

paths that might not exist for other users or in other environments.

↑ Parent

The "Legacy" option, was default option for Xcode prior to version 4. This

settings requires that each project have SYMROOT and OBJROOT defined as

part of each target's build settings. This enables specific build directories to be

set per target in each project. By default the value for SYMROOT is build/ ,

which means a directory named "build" on the same level as the project file.

When working with workspaces and nested project files, you may need to adjust

this value accordingly to create a common build directory for the top-most

project or workspace file by adjusting the relative location. For example, setting

SYMROOT of a nested project to be ../build so that it uses the same build

directory as the parent project. Alternatively, you can adjust the search paths of

a parent project to look in the build directory of a child project to resolve

dependencies.

Legacy

↑ Parent

↑ Table of Contents

Example workspace and project files to explore

Xcode Build Setting Reference

Xcode Build Locations Documentation

Xcode Concepts

Xcode Continuous Integration

Xcode Overview

Managing Schemes

Abandoning the Build Panel

Using XCConfig files

↑ Table of Contents

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

Resources

•

•

•

•

•

•

•

•

•

https://github.com/samdmarshall/managing-xcode-example
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/0-Introduction/introduction.html
https://developer.apple.com/library/ios/recipes/xcode_help-locations_preferences/About/About.html
https://developer.apple.com/library/ios/featuredarticles/XcodeConcepts/Concept-Targets.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/xcode_guide-continuous_integration/000-About_Continuous_Integration/about_continuous_integration.html
https://developer.apple.com/library/mac/documentation/ToolsLanguages/Conceptual/Xcode_Overview/
https://developer.apple.com/library/ios/recipes/xcode_help-scheme_editor/Articles/SchemeManage.html
http://robnapier.net/build-system-1-build-panel
http://www.jontolof.com/cocoa/using-xcconfig-files-for-you-xcode-project/
https://cash.me/$samanthademi
https://cash.me/$samanthademi

[home | parent | top]

	Managing Xcode
	Table of Contents
	Workspace Files
	Managing Projects

	Project Files
	Nested Projects

	Targets
	Applications
	Libraries and Frameworks
	External
	Aggregate

	Dependencies
	Explicit
	Implicit
	External

	Schemes
	Actions
	Management

	Build Configuration
	Configurations
	XCConfig Files

	Build Locations
	Unique
	Shared
	Custom
	Legacy

	Resources

