Managing Xcode

There is no silver bullet to organizing code. Everything from the code design
patterns to third-party dependency management solutions change based on
how a project is architected. This post aims to provide an explanation of the
concepts and tools that can be used to better organize and manage your own
projects.

Table of Contents

» Workspace Files

o Managing Projects

* Project Files

o Nested Projects

Targets

o Applications
o Libraries and Frameworks

o External
o Aggregate

Dependencies

o Explicit
o Implicit
o External

e Schemes

o Actions
o Management

Build Configuration

o Configurations
o XCConfig Files

e Build Locations

o Unique

o Shared
o Custom

o Legacy

e Resources

Workspace Files

A workspace file (".xcworkspace") is a container for other types of files, typically
Xcode project files. Workspace files can also contain schemes. This is an

organizational tool to help define implicit as well as explicit relationships
between the files contained in the workspace.

Managing Projects

The primary use for workspace files is the management of multiple project files.
A workspace file serves as a means of creating an implicit relationship between
all the files it contains. What this means for project files, is that the built
products from one project can be used to build another.

For example, this enables the separation of library code from your app's code. In
practice you may a project that has: one target for building your app, one target
for building a library for an iOS device, one target for building a library for the
iOS Simulator, and one aggregate target to combine the two library targets into
one binary. By using a workspace to manage this, you could make a separate
project file that is only for building the library, and contain the library-related
targets. This makes your app's project file much cleaner and only contain code
relevant to the building the app. This will create an implicit dependency
between building the library and building the app.

T Parent

T Table of Contents

Project Files

Project files are used to define build environment, tools, resources, and contain
references to code files. They create explicit relationships between the contents.
This means that project files should be used as a container for targets that have
explicit dependencies for code to be built successfully. Like workspace files,

project files can also contain schemes.

Nested Projects

To define explicit dependencies between targets in separate project files, project
files can be nested. This means that a target can set explicit dependencies of
any other target within the same project file, or any nested child project file. A
target in a child project file cannot set explicit dependencies of any target in the
parent project file.

This behavior is useful for writing wrappers around another set of APIs. It cuts
out a lot of work in resolving implicit dependencies on a per-target basis and will
communicate build errors in a more clear manner.

T Parent

T Table of Contents

Targets

A target defines a specific set of build settings that accompany a set of build
rules. Targets do not have to produce any output files, they can be used as both
a means to create as well as to organize.

Applications

Application targets are used to build executable binaries. For many developer
this is the type of target that is dealt with the most. They contain explicit
dependencies, as well as implicit dependencies on other code libraries and
resource assets. The built product from application targets are what is deployed
to be run and tested.

| use application targets fairly often in the development process. When starting
to implement any major code or Ul feature | will create a separate project/
workspace to implement it in a clean environment. | have found this to be
beneficial to the development process for a number of reasons:

* Small code footprint, faster for prototyping ideas and understanding edge-
cases.

* By writing new code in isolated environments, the chance of introducing
bugs into the main app is greatly reduced.

* Checking functionality and usability is easier for the developer to test.

* Doesn't start with any code cruft, and only brings in dependencies it
absolutely needs.

As a bonus benefit: if you encounter any bugs in Apple's frameworks, you are
already working from a minimal project you can use to isolate and attach to a
radar.

T Parent

Libraries and Frameworks

Library and framework targets build code library binaries (for an in-depth
explanation of different types of libraries and frameworks see this post).
Libraries act as a means of code separation and dependency management.
Each code library has a specific purpose and function with the rest of the code it
gets integrated with. Separating code out into separate libraries and
frameworks makes it both easier to manage and maintain for the developer.

For complete separation of code, new project files can be added to a workspace
that only contain individual code libraries. This can speed up total compilation
time on a project because Xcode can resolve the implicit dependencies and
build some libraries in parallel.

T Parent

External

Unlike app or library targets, external build targets do not use Xcode's build
environment. Instead, the work of configuring and building code is delegated to
an external tool such as make , cmake , autotools , or any external
executable script.

External build targets are extremely useful for integrating any code that doesn't
come with a .xcodeproj of its own. They can also be used to build external
Xcode projects without having to load the target project's contents into your
open workspace.

When using external build targets to build code, it is recommended that you use
a build tool directly rather than a script. This is because Xcode's build log will
attempt to parse the output given by the specified build tool and display it with
similar formatting to non-external targets.

T Parent

Aggregate

Aggregate targets do not directly produce a build product. They act as a means
of organizing the building of other targets in the same project file into a single

https://pewpewthespells.com/blog/static_and_dynamic_libraries.html

step. This is particularly useful when dealing with multiple layers of

dependencies. Like other types of targets, additional build phases can be added
(run scripts, copy files, etc).

Aggregate targets can also be used for building multiple disparate targets. For
example, building both a dynamic framework and a static library version of your
code from the same dependency target. This makes aggregate targets
extremely flexible and useful for configuring builds.

T Parent

T Table of Contents

Dependencies

Dependencies are simply pre-requisites for building a target. Target dependency
management is one of the more complex aspects in Xcode. Understanding of
Xcode's toolchain and build environment configuration helps with making
dependencies more manageable.

Explicit
Explicit dependencies are dependencies that are visible by a target. A target's

explicit dependencies can be found in the "Target Dependencies" section under
"Build Phases", as shown below.

(s NN} [parent-project.xcodeproj "
P [| Mfoo) & MyMac ex-workspace | Build foo: Succeeded | Today at 16:36 1 EfT D=0
R QA& =o @ B <>/ [Erarentprojec
| workspace-toplevel-file 0 Build Settings Build Phases Build Rules

v (] workspace-toplevelgroup

VB toplevel-project
=l 1 target, 05 X SDK 10.10

v [foo

m main.m
» (| Dependencies
» (] Products

PROJECT
[parent-project

TARGETS
& bar-static

v (] bar
h) bar.h
m bar.m
» (] Products

+ (& nested-projectxcodeproj
] 1 target, 05 X SDK 10.10

v [fizz
h fizz.h
m fizz.m
» [] Products

vE workspace-external-project
1 target, 05 X SDK 10.10

+IOE@

@ bar-aggregate

+

¥ Target Dependencies (1 item)

& fizz (nested-project))

+ -

> Compile Sources (1 item)

» Link Binary With Libraries (0 items)

> Headers (1 item)

Q

This is a dependency that states that it must be explicitly built before building
the rest of the target. There is ordering to building this type of dependency.

T Parent

Implicit

Implicit target dependencies are dependencies that are necessary to
successfully build a target, but aren't explicitly defined. Any target that requires
a target from another non-nested project file to be run for it to build successfully
has an implicit dependency. For example, an application target that must link a
set of libraries, has an implicit dependency to the targets that produce those
libraries. By using separate projects and targets for each component of your
code, Xcode can resolve the built products to find the targets that need to be
built first. Using implicit dependencies is preferred, as it allows Xcode to
optimize by building multiple libraries at the same time (this, and edge-cases,
are covered in more detail in the "Build" section of scheme configuration).

The most common implicit dependency is by adding linked libraries to a target.
When adding a linked library to a target, a dialog appears that lists all the build
products that are defined in the workspace. Implicit dependencies are highly

dependent on the configuration of the current scheme to be resolved correctly.

T Parent

External

"External" dependencies are implicit dependencies that Xcode cannot resolve
on its own. This is another edge-case to implicit dependencies, but it deserves
special mention as it is one of the more complex things that can be done with
the dependency system. Examples of external dependencies include:

* Auto-generated headers or other files as part of another build process
* Libraries managed by something external to the project
* Product of a script that cannot be validated immediately

External build tool targets can sometimes result having external dependencies.
It depends on how the build system was setup and configured. However most
external build tool targets integrate into Xcode, so it can resolve the implicit
dependencies for you.

T Parent

T Table of Contents

Schemes

Schemes are one of the most powerful organizational tools in Xcode. These
allow you to define dependencies and give them ordering, also they allow fine-
grain tweaking of the build settings associated with a target based on the build
configuration. A scheme supports multiple actions that can be configured to
perform specific tasks based on the action.

Actions
Build

The "Build" action allows you to configure which targets should be built for other
actions. The ordering of the targets list is meaningful to the order that they are
built in when the action is run. The ordering is represented by top-to-bottom as
first-to-last build order.

M foo » &l My Mac

Build
>
Build Options @ Parallelize Build

Run . oy N
> » Debug @ Find Implicit Dependencies

Test
> , Debug
Profile
-ﬂ Release M foo @ @ @
Analyze
> E Debug
Archive
> 'p Release
+ - ®
Duplicate Scheme Manage Schemes... Shared

This window also contains two very important checkboxes for changing how
builds work.

Parallelize Build -- This option allows Xcode to speed up total build time by
building targets that do not depend on each other at the same time. This is a
time-saver on projects with many smaller dependencies that can easily be run
in parallel.

Find Implicit Dependencies -- This is a very powerful option that allows Xcode to
resolve what targets need to be built for the primary target of the scheme to be
built successfully. However, this does come with some sharp edges that you
have to be aware of.

Situation: You link a library a library against your application target and create
an implicit dependency to that library's target.

* Scenario 1: "Find Implicit Dependencies" is enabled.

o Result: The library will get built prior to building the application target.
The application target will then link against the library and build
successfully.

* Scenario 2: "Find Implicit Dependencies" is disabled.

o Result: The library will not get built prior to building the application
target. The application target fail to build.

> Fix: To ensure that the second scenario does not happen, you must add
the necessary targets into the targets list and order them correctly.

However there are some edge-cases to this behavior. If you find yourself in a
situation where you cannot rely on Xcode's ability to resolve the necessary
target dependencies correctly, then both "Parallelize Build" and "Find Implicit
Dependencies" should be disabled on the scheme.

As of this writing, both Xcode 5 and 6 exhibit some very confusing behavior with
these scheme build options. Specifically if you need to disable these options on
any particular scheme, the schemes for the targets that you add MUST also
have these options disabled on them as well. If the options are not disabled,
then they will bleed through to the scheme you are building. This is important to
note because the ordering of the targets list is not static while "Find Implicit
Dependencies" is enabled. Xcode can and will re-order the targets listed there
as it attempts to optimize the build. When working with external dependencies
or requirements that Xcode isn't able to resolve, this will result in broken builds.

This type of build configuration is very complex and difficult to manage in
Xcode. | have written a tool that uses xcodebuild to help in this situation by
allowing you to define an external configuration that will dictate scheme build
ordering and settings.

Run

The "Run" action allows you to configure how the application will launch and the
environment it has.

* Info: You can configure the build configuration that the scheme will use, the
built product/executable, and how that will get debugged and run.

https://github.com/samdmarshall/Mai

M foo » El My Mac

>) ?‘g'{‘;e‘ Info Arguments Options Diagnostics
Run
>
’Debug Build Configuration | Debug |
Test
Debug Executable | M foo)
- :::::: # Debug executable
> s Analyze Debug Process As @ Me (sam)
Debug () root
> Archive -
Release Launch () Automatically
() Wait for executable to be launched
| Duplicate Scheme | | Manage Schemes... | [|Shared @

* Arguments: Use this section to configure passed launch arguments and
environment variables. Existing environment variables, such as SRCROOT
can be used here and will be expanded before being passed.

M foo » E My Mac

Build . . .
Info Arguments Options Diagnostics
>) 1 target gu P 9

Run
Debug
Test
Debug

¥ Arguments Passed On Launch

_ﬁProﬁle No Arguments
Release

Analyze
> a Debug + -

Archive
Release ¥ Environment Variables

Name Value

No Environment Variables

Expand Variables Based On = ! foo

| Duplicate Scheme | | Manage Schemes... | [|Shared E

» Options: This is a set of additional options relevant to the state of running
the application from Xcode.

M foo » &l My Mac

?u:;lr:e‘ ‘ Info Arguments Options Diagnostics
Run . . " .
Core Location Allow Location Simulation

> > Debug ™ i u

N , Test Default Location | None
Debug

'ﬁ Profile Persistent State |_| Launch application without state restoration

Release

> a Analyze Document Versions @ Allow debugging when using document Versions Browser
Debug

> Archive Working Directory | | Use custom working directory:
Release

Application Language | System Language

Application Region | System Region

XPC Services @ Debug XPC services used by this application

View Debugging @] Enable user interface debugging

| Duplicate Scheme | | Manage Schemes... | [| Shared @

* Diagnostics: These are additional tools that can be enabled to help debug
memory management issues as well as some more advanced information

logging.

M foo » El My Mac

Build

1 target Info Arguments Options Diagnostics
> > :le.:ug Memory Management
Test Malloc [_| Enable Scribble
DebL{g |_| Enable Guard Edges
-ﬁ :erzf;:: |_| Enable Guard Malloc
Analyze Objective-C [_| Enable Zombie Objects
> s Debug X
Archive Logging
Release Memory [_| Distributed Objects
[Malloc Stack

Dyld (| Log Dyld API Usage
|| Log Library Loads

Debugger
Legacy [| Stop on Debugger() and DebugStr()

[Duplicate Scheme | | Manage Schemes... | [|Shared

Test
The "Test" scheme action is used to run associated unit test bundles.

* Info: Selecting the build configuration and debugger used when running
tests. This view provides a list of unit test targets that are associated with
the scheme. This also displays the state of all the test methods in each unit
test bundle. Individual test methods can be enabled or disabled from being
called when running the test action on the scheme.

M foo » & My Mac

v
8 g
£ s
W et
»B 5

Archive

> Release

+ -

Info Arguments
Build Configuration | Debug s
Debugger | LLDB Sa)

| Duplicate Scheme

Manage Schemes...

| (] Shared

[Close |

* Arguments: Similar to the "run" action, the test action can be passed
specific environment variables and launch arguments. These can be

inherited directly from the entries in the "run" scheme action.

M foo » E My Mac

Build

1 target
Run
Debug
Test
Debug

Profile
> -ﬁ Release

>
>

>

Analyze
> a Debug

Archive

Release

Info Arguments

@I Use the Run action's arguments and environment variables

¥ Arguments Passed On Launch

¥ Environment Variables

No Arguments

No Environment Variables

Expand Variables Based On foo

| Duplicate Scheme

J |

Manage Schemes...

| []Shared

Profile

The "Profile" scheme action allows you to run an app while attached to
additional debugging instrumentation. This is crucial to track down memory
leaks, examine threading behavior, and make performance optimizations.

* Info: This will configure the initial behavior performed by the profile action.
The build configuration, executable to attach to, and the default action that
Instruments.app should take are configurable from here.

M foo » &l My Mac

Build

1 target Info Arguments Options
Run
>
> Debug Build Configuration | Release
Test
>
, Debug Executable | M foo
Profile
InStrumen' ASk on LaunCh
B Analyze
Debug
Archive
Release
Duplicate Scheme | Manage Schemes... || Shared Close

* Arguments: Similar to the "run" action, the profile action can be passed
specific environment variables and launch arguments. These can be
inherited directly from the entries in the "run" scheme action.

M foo » &l My Mac

Build

Info Arguments Options
1 target 9 P!

> > g::ug @ Use the Run action's arguments and environment variables

Test
> , Debug ¥ Arguments Passed On Launch
Profile
> Release
> a Analyze No Arguments

Debug

Archive

> Release =

¥ Environment Variables

No Environment Variables

Expand Variables Based On

Duplicate Scheme | | Manage Schemes... | [|Shared [Close |

» Options: This includes some additional launch and application state options.

M foo » &l My Mac

?t;lr:el Info Arguments Options
I » vy Persistent State |_| Launch application without state restoration
Debug .

> , Test Document Versions @ Allow debugging when using document Versions Browser
Debug

> e

Working Directory || Use custom working directory:

Analyze
> a Debug

Archive

Release

| Duplicate Scheme | | Manage Schemes... | [|Shared - Close

Analyze

This scheme action runs code through the llvm static analyzer. The only
configurable option for this is the build configuration it uses. It is recommended
to regularly run code through the analyzer, as it will find bugs and help you
write cleaner code. The "analyze" action performs a deep analysis by default. By

using the target's build settings, you can enable the static analyzer to be run
when performing the "build" action on a scheme as well. This is disabled by
default and will only perform a shallow analysis on a "build", but can be
configured to perform a deep analysis if desired.

M foo » &l My Mac

Build
>) 1 target
Run
> » Debug
Test

Debug

Profile

.ﬁ Release
m Analyze

> Debug

Archive
> ‘p Release

Build Configuration | Debug

| Duplicate Scheme | | Manage Schemes... | [|Shared Close

Archive

The "Archive" scheme action is used to cut builds for uploading to distribute.
These get exported to <Xcode Archives Path>/<YYYY-MM-DD>/ and are
labeled by name and time of export. (See "Build Locations", for more
information on the Archives path)

M foo » &l My Mac

Build

7
1 target Build Configuration | Release
Run
Debug Archive Name | foo
Test
Debug Options @ Reveal Archive in Organizer
Profile

AL Release

Analyze

> a Debug
Archive

"p Release

| Duplicate Scheme | | Manage Schemes... | [|Shared @

T Parent

Management

Schemes can be auto-created for each target you add to a project. In addition
you can add new schemes for organize how the target schemes are run and
grouped. This is similar to using aggregate targets for organizing inside of a
project.

@Autocreate schemes Autocreate Schemes Now
121 workspace-scheme-notarget [ex-workspace Workspace +
@] foo 2 toplevel-project project v
lg bar-static l parent-project project ¥
lg bar-dynamic 2 parent-project project ¥
™ bar-aggregate ™ parent-project project ¥
™ fizz ™ nested-project project +
lg workspace-external-project ™ workspace-external-project project +

Edit... Close

Schemes are stored in whatever container they were created in, eitherin a
project or workspace. The manner in how they are stored is governed by if they
are "shared" schemes or "user" schemes. By default new schemes are created
as "user" schemes.

* User: User schemes are stored in
<.xcodeproj or .xcworkspace>/xcuserdata/$USER.xcuserdatad/xcschemes/ .
These are useful when needing to configure a build around an unique case
that wouldn't hold true to anyone else working on the project. Since user
schemes are stored in the xcuserdata directory, they are often
completely ignored by source control. In addition, tools such as xctool and
Carthage do not use user schemes so it is important to audit schemes and
tag them as "user" or "shared" as needed.

* Shared: Shared schemes are stored in

<.xcodeproj or .xcworkspace file>/xcshareddata/xcschemes/ . A
shared scheme is visible to all users of a project or workspace file. Since
shared schemes are stored in a common location, they are often used by
external tools. Shared schemes offer the benefit of ensuring that the build
process is consistent. As a result of being stored in a common location,
shared schemes can be checked into source control so they are visible to all
users.

https://github.com/facebook/xctool
https://github.com/Carthage/Carthage

To perform any build action on a specific target, a scheme must exist for that
target. Xcode enables the option to auto-create schemes for targets that exist in
a project or workspace but don't have a corresponding visible scheme. A
scheme's visibility is determined by either being a shared scheme or by having
a scheme already defined for the specific user within the workspace or project
file. As mentioned, user specific schemes are not visible to users other than the
one that created it. This means that most schemes in a project should be
marked as shared schemes to ensure the same configurations are used when
performing builds.

To make the list of schemes more manageable, there is an additional checkbox
to toggle a scheme from being listed in the schemes selection drop-down menu
on the Xcode window. By only making the most commonly used schemes visible
in the dropdown, this can reduce clutter and make switching build
configurations (e.g. Development vs Production environment builds) easier.

[s NN} [& toplevel-project.xcodeproj %
| » (& bar-dynamic) 5 My Mac ex-workspace | Build bar-dynamic: Succeeded | Today at 11:55 EdFA | OO
B R QA& = o @ 8| < »|[F toplvel-project

| workspace-toplevel-file IS nfo Build Settings
v] workspace-toplevelgroup

PROJECT
—— I-project) ¥ Deployment Target
=1 target, OS X SDK 10.10
v [foo
TARGETS OS X Deployment Target | 10.9 v

M foo

m) main.m
» (] Dependencies
> Products ¥ Configurations

v B parent-project
= 3 targets, 05 X SDK 10.10
v [bar » Debug No Configurations Set

b barh » Release No Configurations Set
m bar.m
» [Products + -

) ted-| ject.xcod j
v [TTarget, 05X SOK 10,10 Use [Release < for command-line builds

[Debug.xcconfig
v fizz ¥ Localizations
h! fizzh
m fizzm
» (] Products

o [Workspace-external-project
=l 1 target, 05 X SDK 10.10

English — Development Language 0 Files Localized

+ -

Use Base Internationalization

+I0OH® + - ®

T Parent

T Table of Contents

Build Configuration

Build configurations are used to apply specific variations to a target's build
settings. By default, projects have two configurations "Debug" and "Release".
These configurations allow for fine-tune control over specific build settings and
flags that should be passed or over-ride the existing settings of a target. An

example of this in action would be turning off code optimizations for Debug
builds, but enabling code optimization for Release builds.

Configurations

Build configurations are stored on a per-project level and allow for specifying a
single additional configuration file (.xcconfig file) on a per target basis. A
configuration is an additional layer to the build settings of a target. All targets in
a project can inherit the build settings dictated on the project level, and those
settings can be over-ridden on a per-target basis. Like-wise, each build
configuration inherits the build settings from an individual target, but can over-
ride any of them to only apply when building with that specific configuration.
This can be extremely helpful when building the same set of code for different
platforms. Instead of maintaining two separate build targets that only primarily
build against the OS X or iOS SDKs, these can be done via different build
configurations. This removes the burden of keeping the settings of both targets
in sync and allows for easier management via schemes.

T Parent

XCConfig Files

Please see the Unofficial Guide to xcconfig files now.

T Parent

T Table of Contents

Build Locations

Note: All of the settings discussed in this section apply globally. All of your
projects and workspaces will use these settings. Use caution and check
thoroughly before changing any of these settings.

In addition to managing the organization of code inside of Xcode, you can also
customize the output locations of any built products. Build locations are
significant to managing the resolution of target dependencies. From this panel
you can set where on the filesystem Xcode should set the default locations for
the build process.

https://pewpewthespells.com/blog/xcconfig_guide.html

e0e Locations

r ° X ~ A — F |
v Q & & w / B 3
General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Downloads ' Locations
Locations Source Trees

Derived Data: | Default % |
Users/sam/Library/Developer/Xcode/DerivedData © Advanced...
Snapshots: | Default 3|
Users/sam/Library/Developer/Xcode/Snapshots ©
Archives:| Default 3|
Users/sam/Library/Developer/Xcode/Archives ©
Command Line Tools: | Xcode 6.1 (6A1052¢) v
Applications/Xcode.app ©
Command line tools like xcodebuild’ will use this version of the tools. Change this
setting above or use ‘xcode-select’ from the command line.

* Derived Data: The Derived Data location is, by default, the location where
all the intermediate and final products of the build process are stored. This
field sets the global location of where the Derived Data directory is stored.
However there are a number of ways that the build locations can be
configured. The settings for these options can be configured by clicking on
the "Advanced..." button.

Snapshots: The snapshots directory is for storing Xcode snapshots.
Snapshots are a way of saving state when the changes being made aren't
covered as part of the undo manager. Modifications made to build settings
or multiple files (e.g. global find and replace) are examples of such actions.

Archives: This is where the output from the "Archive" scheme action is
stored.

Command Line Tools: This option is the equivalent of running
xcode-select -s <[path to Xcode]/Contents/Developer> . This
changes the version of the tools accessed via the command line. The
selected version does not have to match the current version of Xcode you
are using, but be aware that if you use any external build tool (including
xcodebuild) it will use this version instead of the version of the
Xcode.app.

Note: The following subsections are dedicated to the advanced location
controls that are part of the Derived Data build location. Please note that

when building products, they are placed in a directory, named after the
build configuration used, inside of the build directory location.

Unique

This is the default setting used by Xcode since version 4. This setting will create
a unique folder based on the open project or workspace that will contain all of
the built products and intermediate files needed for the build process. These
folders are stored in the directory set as the DerivedData location on the main
build locations pane. The unique build folder name that is created is based on
the absolute path of the root project or workspace that is open. See this post for
details on how the unique folder name is generated.

006 Locations

i Oy W A A

Locations

S T\

[SR— 4
General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Downloads

Build Location

@Unique

In a unique subfolder of Xcode's Derived Data location

(_)Shared Folder
In a shared subfolder of Xcode's Derived Data location

") Custom | Relative to Workspace
Fully specify locations of build products and intermediates

Products
Intermediates

_) Legacy
Con Use target settings (used for legacy projects that cannot be relocated)

Products: Project or Workspace Derived Data Folder /Build/Products
Intermediates: Project or Workspace Derived Data Folder /Build/Intermediates

T Parent

Shared

The "shared" location setting creates a universal build directory. This is not
unique to a project or workspace, so conflict can occur when using different
versions of a library or application that has the same name. This shared build
folder is located in a directory within the Derived Data directory.

https://pewpewthespells.com/blog/xcode_deriveddata_hashes.html

Locations

Build Location

OUnique

In a unique subfolder of Xcode's Derived Data location

(® Shared Folder | Build
In a shared subfolder of Xcode's Derived Data location

(O Custom | Relative to Workspace =
Fully specify locations of build products and intermediates

Products

Intermediates

() Legacy
Use target settings (used for legacy projects that cannot be relocated)

Con
Products: ~/Library/Developer/Xcode/DerivedData/Build/Products ©
Intermedi ~/Library/Developer/Xcode/DerivedData/Build/Intermediates
T Parent
Custom

The "custom" location setting allows for some varied behavior in where build
locations are set.

* Derived Data: By default, this setting uses the same paths as the "Shared
Folder" build location setting. The path here is able to be set relative to the

Derived Data directory path.

000 Locations

Build Location

OUnique

In a unique subfolder of Xcode's Derived Data location

() Shared Folder
In a shared subfolder of Xcode's Derived Data location

(®) Custom [Relative to Derived Data :]
Fully specify locations of build products and intermediates

Products |Bui|d /Products]

Intermediates |Bui|d/|ntermediates]

() Legacy
Con Use target settings (used for legacy projects that cannot be relocated)

Products: ~/Library/Developer/Xcode/DerivedData/Build/Products ©
Intermedi ~/Library/Developer/Xcode/DerivedData/Build/Intermediates

[_Done]

» Workspace: This setting is similar to the "Unique" setting, except the build
directory is in the same directory as the open workspace or top-most
project file instead of a unique folder in the Derived Data directory.

000 Locations

Build Location

OUnique

In a unique subfolder of Xcode's Derived Data location

(_)Shared Folder
In a shared subfolder of Xcode's Derived Data location

(®) Custom [Relative to Workspace 3]
Fully specify locations of build products and intermediates

Products | Build/Products]

Intermediates |Bui|d/|ntermediates]

() Legacy
Con Use target settings (used for legacy projects that cannot be relocated)

Products: | Project or Workspace Folder | /Build/Products
Intermedi : | Project or Folder)/Build/Intermediates

» Absolute: This setting is similar to the "Shared Folder" setting, except it is
not a sub-directory of the Derived Data directory. This sets an absolute path
to a location on your file-system that will house all built products and

intermediates. As this is an absolute path and not a relative path, this can
cause conflicts if your targets are configured assuming absolute search
paths that might not exist for other users or in other environments.

000 Locations

Ly T VL -

e LI =
General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Downloads

Locations

A
LS S
QLN

Build Location
OUnique
In a unique subfolder of Xcode's Derived Data location

() Shared Folder
In a shared subfolder of Xcode's Derived Data location

(s) Custom | Absolute il
Fully specify locations of build products and intermediates

Products | /Users/sam/Desktop/Build/Products |
Intermediates | /Users/sam/Desktop/Build/Intermediates '-‘
() Legacy

Con Use target settings (used for legacy projects that cannot be relocated)

Products: ~/Desktop/Build/Products ©
Intermediates: ~/Desktop/Build/Intermediates

T Parent

Legacy

The "Legacy" option, was default option for Xcode prior to version 4. This
settings requires that each project have SYMROOT and OBJROOT defined as
part of each target's build settings. This enables specific build directories to be
set per target in each project. By default the value for SYMROOT is build/ ,
which means a directory named "build" on the same level as the project file.
When working with workspaces and nested project files, you may need to adjust
this value accordingly to create a common build directory for the top-most
project or workspace file by adjusting the relative location. For example, setting

SYMROOT of a nested projectto be ../build so that it uses the same build
directory as the parent project. Alternatively, you can adjust the search paths of
a parent project to look in the build directory of a child project to resolve
dependencies.

000 Locations

Build Location

OUnique

In a unique subfolder of Xcode's Derived Data location

() Shared Folder
In a shared subfolder of Xcode's Derived Data location

OCustom | Relative to Workspace &l
Fully specify locations of build products and intermediates
Products
Intermediates
(® Legacy
Con Use target settings (used for legacy projects that cannot be relocated)

Products: Specified per target
Intermediates: Specified per target

T Parent

T Table of Contents

Resources

* Example workspace and project files to explore
* Xcode Build Setting Reference

* Xcode Build Locations Documentation

* Xcode Concepts

» Xcode Continuous Integration

* Xcode Overview

* Managing Schemes

* Abandoning the Build Panel

* Using XCConfig files

T Table of Contents

If this blog post was helpful to you, please consider donating to keep this blog
alive, thank you!

donate to support this blog

https://github.com/samdmarshall/managing-xcode-example
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/XcodeBuildSettingRef/0-Introduction/introduction.html
https://developer.apple.com/library/ios/recipes/xcode_help-locations_preferences/About/About.html
https://developer.apple.com/library/ios/featuredarticles/XcodeConcepts/Concept-Targets.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/xcode_guide-continuous_integration/000-About_Continuous_Integration/about_continuous_integration.html
https://developer.apple.com/library/mac/documentation/ToolsLanguages/Conceptual/Xcode_Overview/
https://developer.apple.com/library/ios/recipes/xcode_help-scheme_editor/Articles/SchemeManage.html
http://robnapier.net/build-system-1-build-panel
http://www.jontolof.com/cocoa/using-xcconfig-files-for-you-xcode-project/
https://cash.me/$samanthademi
https://cash.me/$samanthademi

[home | parent | top]

	Managing Xcode
	Table of Contents
	Workspace Files
	Managing Projects

	Project Files
	Nested Projects

	Targets
	Applications
	Libraries and Frameworks
	External
	Aggregate

	Dependencies
	Explicit
	Implicit
	External

	Schemes
	Actions
	Management

	Build Configuration
	Configurations
	XCConfig Files

	Build Locations
	Unique
	Shared
	Custom
	Legacy

	Resources

