

1 Perl Reference

115 Feb 2014

1 Perl ReferencePerl Reference

1.1 Description
This document was born because some users are reluctant to learn Perl, prior to jumping into mod_perl. I
will try to cover some of the most frequent pure Perl questions being asked at the list.

Before you decide to skip this chapter make sure you know all the information provided here. The rest of
the Guide assumes that you have read this chapter and understood it.

1.2 perldoc’s Rarely Known But Very Useful Options
First of all, I want to stress that you cannot become a Perl hacker without knowing how to read Perl docu-
mentation and search through it. Books are good, but an easily accessible and searchable Perl reference at
your fingertips is a great time saver. It always has the up-to-date information for the version of perl you’re
using.

Of course you can use online Perl documentation at the Web. The two major sites are
http://perldoc.perl.org and http://theoryx5.uwinnipeg.ca/CPAN/perl/.

The perldoc utility provides you with access to the documentation installed on your system. To find out
what Perl manpages are available execute:

 % perldoc perl

To find what functions perl has, execute:

 % perldoc perlfunc

To learn the syntax and to find examples of a specific function, you would execute (e.g. for open()):

 % perldoc -f open

Note: In perl5.005_03 and earlier, there is a bug in this and the -q options of perldoc. It won’t call
pod2man, but will display the section in POD format instead. Despite this bug it’s still readable and very
useful.

The Perl FAQ (perlfaq manpage) is in several sections. To search through the sections for open you
would execute:

 % perldoc -q open

This will show you all the matching Question and Answer sections, still in POD format.

To read the perldoc manpage you would execute:

 % perldoc perldoc

15 Feb 20142

1.1 Description

http://perldoc.perl.org/
http://theoryx5.uwinnipeg.ca/CPAN/perl/

1.3 Tracing Warnings Reports
Sometimes it’s very hard to understand what a warning is complaining about. You see the source code, but
you cannot understand why some specific snippet produces that warning. The mystery often results from
the fact that the code can be called from different places if it’s located inside a subroutine.

Here is an example:

 warnings.pl

 #!/usr/bin/perl -w

 use strict;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

In the code above, print_value() prints the passed value. Subroutine correct() passes the value to print, but
in subroutine incorrect() we forgot to pass it. When we run the script:

 % ./warnings.pl

we get the warning:

 Use of uninitialized value at ./warnings.pl line 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:

 print "My value is $var\n";

But how do we know why it is undefined? The reason here obviously is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be enough: it’s
possible to have a longer sequence of called subroutines, and not just two. For example, here it is sub
third() which is at fault, and putting sub caller() in sub second() would not help us very much:

315 Feb 2014

1.3 Tracing Warnings ReportsPerl Reference

 sub third{
 second();
 }
 sub second{
 my $var = shift;
 first($var);
 }
 sub first{
 my $var = shift;
 print "Var = $var\n"
 }

The solution is quite simple. What we need is a full calls stack trace to the call that triggered the warning.

The Carp module comes to our aid with its cluck() function. Let’s modify the script by adding a couple of
lines. The rest of the script is unchanged.

 warnings2.pl

 #!/usr/bin/perl -w

 use strict;
 use Carp ();
 local $SIG{__WARN__} = \&Carp::cluck;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

Now when we execute it, we see:

 Use of uninitialized value at ./warnings2.pl line 19.
 main::print_value() called at ./warnings2.pl line 14
 main::incorrect() called at ./warnings2.pl line 7

Take a moment to understand the calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning was triggered in print_value(); the third, that print_value() was called by subrou-
tine, incorrect().

 script => incorrect() => print_value()

15 Feb 20144

1.3 Tracing Warnings Reports

We go into incorrect() and indeed see that we forgot to pass the variable. Of course when you write a
subroutine like print_value it would be a good idea to check the passed arguments before starting
execution. We omitted that step to contrive an easily debugged example.

Sure, you say, I could find that problem by simple inspection of the code!

Well, you’re right. But I promise you that your task would be quite complicated and time consuming if
your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval operator and
"here documents" are known to throw off Perl’s line numbering, so the messages reporting warnings and
errors can have incorrect line numbers. (See Finding the Line Which Triggered the Error or Warning for
more information).

Getting the trace helps a lot.

1.4 Variables Globally, Lexically Scoped And Fully Quali-
fied
META: this material is new and requires polishing so read with care.

You will hear a lot about namespaces, symbol tables and lexical scoping in Perl discussions, but little of it
will make any sense without a few key facts:

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

There are two important types of symbol: package global and lexical. We will talk about lexical symbols
later, for now we will talk only about package global symbols, which we will refer to simply as global
symbols.

The names of pieces of your code (subroutine names) and the names of your global variables are symbols.
Global symbols reside in one symbol table or another. The code itself and the data do not; the symbols are
the names of pointers which point (indirectly) to the memory areas which contain the code and data. (Note
for C/C++ programmers: we use the term ‘pointer’ in a general sense of one piece of data referring to
another piece of data not in a specific sense as used in C or C++.)

There is one symbol table for each package, (which is why global symbols are really package global
symbols).

You are always working in one package or another.

Like in C, where the first function you write must be called main(), the first statement of your first Perl
script is in package main:: which is the default package. Unless you say otherwise by using the
package statement, your symbols are all in package main::. You should be aware straight away that
files and packages are not related. You can have any number of packages in a single file; and a single
package can be in one file or spread over many files. However it is very common to have a single package
in a single file. To declare a package you write:

515 Feb 2014

1.4 Variables Globally, Lexically Scoped And Fully QualifiedPerl Reference

 package mypackagename;

From the following line you are in package mypackagename and any symbols you declare reside in that
package. When you create a symbol (variable, subroutine etc.) Perl uses the name of the package in which
you are currently working as a prefix to create the fully qualified name of the symbol.

When you create a symbol, Perl creates a symbol table entry for that symbol in the current package’s
symbol table (by default main::). Each symbol table entry is called a typeglob. Each typeglob can hold
information on a scalar, an array, a hash, a subroutine (code), a filehandle, a directory handle and a format,
each of which all have the same name. So you see now that there are two indirections for a global variable:
the symbol, (the thing’s name), points to its typeglob and the typeglob for the thing’s type (scalar, array,
etc.) points to the data. If we had a scalar and an array with the same name their name would point to the
same typeglob, but for each type of data the typeglob points to somewhere different and so the scalar’s
data and the array’s data are completely separate and independent, they just happen to have the same
name.

Most of the time, only one part of a typeglob is used (yes, it’s a bit wasteful). You will by now know that
you distinguish between them by using what the authors of the Camel book call a funny character. So if
we have a scalar called ‘line’ we would refer to it in code as $line, and if we had an array of the same
name, that would be written, @line. Both would point to the same typeglob (which would be called
*line), but because of the funny character (also known as decoration) perl won’t confuse the two. Of
course we might confuse ourselves, so some programmers don’t ever use the same name for more than one
type of variable.

Every global symbol is in some package’s symbol table. To refer to a global symbol we could write the
fully qualified name, e.g. $main::line. If we are in the same package as the symbol we can omit the
package name, e.g. $line (unless you use the strict pragma and then you will have to predeclare the
variable using the vars pragma). We can also omit the package name if we have imported the symbol
into our current package’s namespace. If we want to refer to a symbol that is in another package and which
we haven’t imported we must use the fully qualified name, e.g. $otherpkg::box.

Most of the time you do not need to use the fully qualified symbol name because most of the time you will
refer to package variables from within the package. This is very like C++ class variables. You can work
entirely within package main:: and never even know you are using a package, nor that the symbols have
package names. In a way, this is a pity because you may fail to learn about packages and they are
extremely useful.

The exception is when you import the variable from another package. This creates an alias for the variable
in the current package, so that you can access it without using the fully qualified name.

Whilst global variables are useful for sharing data and are necessary in some contexts it is usually wisest
to minimize their use and use lexical variables, discussed next, instead.

Note that when you create a variable, the low-level business of allocating memory to store the information
is handled automatically by Perl. The intepreter keeps track of the chunks of memory to which the pointers
are pointing and takes care of undefining variables. When all references to a variable have ceased to exist
then the perl garbage collector is free to take back the memory used ready for recycling. However perl
almost never returns back memory it has already used to the operating system during the lifetime of the

15 Feb 20146

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

process.

1.4.1.1 Lexical Variables and Symbols

The symbols for lexical variables (i.e. those declared using the keyword my) are the only symbols which
do not live in a symbol table. Because of this, they are not available from outside the block in which they
are declared. There is no typeglob associated with a lexical variable and a lexical variable can refer only to
a scalar, an array, a hash or a code reference. (Since perl-5.6 it can also refer to a file glob).

If you need access to the data from outside the package then you can return it from a subroutine, or you
can create a global variable (i.e. one which has a package prefix) which points or refers to it and return
that. The pointer or reference must be global so that you can refer to it by a fully qualified name. But just
like in C try to avoid having global variables. Using OO methods generally solves this problem, by provid-
ing methods to get and set the desired value within the object that can be lexically scoped inside the
package and passed by reference.

The phrase "lexical variable" is a bit of a misnomer, we are really talking about "lexical symbols". The
data can be referenced by a global symbol too, and in such cases when the lexical symbol goes out of
scope the data will still be accessible through the global symbol. This is perfectly legitimate and cannot be
compared to the terrible mistake of taking a pointer to an automatic C variable and returning it from a
function--when the pointer is dereferenced there will be a segmentation fault. (Note for C/C++ program-
mers: having a function return a pointer to an auto variable is a disaster in C or C++; the perl equivalent,
returning a reference to a lexical variable created in a function is normal and useful.)

my () vs. use vars:

With use vars(), you are making an entry in the symbol table, and you are telling the compiler that
you are going to be referencing that entry without an explicit package name.

With my (), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler figures out at
compile time which my () variables (i.e. lexical variables) are the same as each other, and once
you hit execute time you cannot go looking those variables up in the symbol table.

my () vs. local():

local() creates a temporal-limited package-based scalar, array, hash, or glob -- when the scope of defi-
nition is exited at runtime, the previous value (if any) is restored. References to such a variable are
also global... only the value changes. (Aside: that is what causes variable suicide. :)

my () creates a lexically-limited non-package-based scalar, array, or hash -- when the scope of defini-
tion is exited at compile-time, the variable ceases to be accessible. Any references to such a variable
at runtime turn into unique anonymous variables on each scope exit.

715 Feb 2014

1.4.1 Symbols, Symbol Tables and Packages; TypeglobsPerl Reference

1.4.2 Additional reading references

For more information see: Using global variables and sharing them between modules/packages and an
article by Mark-Jason Dominus about how Perl handles variables and namespaces, and the difference
between use vars() and my () - http://www.plover.com/~mjd/perl/FAQs/Namespaces.html .

1.5 my () Scoped Variable in Nested Subroutines
Before we proceed let’s make the assumption that we want to develop the code under the strict
pragma. We will use lexically scoped variables (with help of the my () operator) whenever it’s possible.

1.5.1 The Poison

Let’s look at this code:

 nested.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 sub power_of_2 {
 return $x ** 2;
 }

 my $result = power_of_2();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Don’t let the weird subroutine names fool you, the print_power_of_2() subroutine should print the square
of the number passed to it. Let’s run the code and see whether it works:

 % ./nested.pl

 5^2 = 25
 6^2 = 25

Ouch, something is wrong. May be there is a bug in Perl and it doesn’t work correctly with the number 6?
Let’s try again using 5 and 7:

 print_power_of_2(5);
 print_power_of_2(7);

15 Feb 20148

1.5 my () Scoped Variable in Nested Subroutines

http://www.plover.com/~mjd/perl/FAQs/Namespaces.html

And run it:

 % ./nested.pl

 5^2 = 25
 7^2 = 25

Wow, does it works only for 5? How about using 3 and 5:

 print_power_of_2(3);
 print_power_of_2(5);

and the result is:

 % ./nested.pl

 3^2 = 9
 5^2 = 9

Now we start to understand--only the first call to the print_power_of_2() function works correctly. Which
makes us think that our code has some kind of memory for the results of the first execution, or it ignores
the arguments in subsequent executions.

1.5.2 The Diagnosis

Let’s follow the guidelines and use the -w flag. Now execute the code:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 9.
 5^2 = 25
 6^2 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
diagnostics pragma will certainly help us. Let’s prepend this pragma before the strict pragma in
our code:

 #!/usr/bin/perl -w

 use diagnostics;
 use strict;

And execute it:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

 (W) An inner (nested) named subroutine is referencing a lexical
 variable defined in an outer subroutine.

 When the inner subroutine is called, it will probably see the value of
 the outer subroutine’s variable as it was before and during the

915 Feb 2014

1.5.2 The DiagnosisPerl Reference

 first call to the outer subroutine; in this case, after the first
 call to the outer subroutine is complete, the inner and outer
 subroutines will no longer share a common value for the variable. In
 other words, the variable will no longer be shared.

 Furthermore, if the outer subroutine is anonymous and references a
 lexical variable outside itself, then the outer and inner subroutines
 will never share the given variable.

 This problem can usually be solved by making the inner subroutine
 anonymous, using the sub {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are called or referenced,
 they are automatically rebound to the current values of such
 variables.

 5^2 = 25
 6^2 = 25

Well, now everything is clear. We have the inner subroutine power_of_2() and the outer subroutine
print_power_of_2() in our code.

When the inner power_of_2() subroutine is called for the first time, it sees the value of the outer
print_power_of_2() subroutine’s $x variable. On subsequent calls the inner subroutine’s $x variable
won’t be updated, no matter what new values are given to $x in the outer subroutine. There are two copies
of the $x variable, no longer a single one shared by the two routines.

1.5.3 The Remedy

The diagnostics pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basically this
means that if you define a subroutine in a particular lexical context at a particular moment, then it will run
in that same context later, even if called from outside that context. The upshot of this is that when the
subroutine runs, you get the same copies of the lexically scoped variables which were visible when the
subroutine was defined. So you can pass arguments to a function when you define it, as well as when you
invoke it.

Let’s rewrite the code to use this technique:

 anonymous.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 my $func_ref = sub {
 return $x ** 2;
 };

15 Feb 201410

1.5.3 The Remedy

 my $result = &$func_ref();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Now $func_ref contains a reference to an anonymous subroutine, which we later use when we need to
get the power of two. Since it is anonymous, the subroutine will automatically be rebound to the new value
of the outer scoped variable $x, and the results will now be as expected.

Let’s verify:

 % ./anonymous.pl

 5^2 = 25
 6^2 = 36

So we can see that the problem is solved.

1.6 Understanding Closures -- the Easy Way
In Perl, a closure is just a subroutine that refers to one or more lexical variables declared outside the
subroutine itself and must therefore create a distinct clone of the environment on the way out.

And both named subroutines and anonymous subroutines can be closures.

Here’s how to tell if a subroutine is a closure or not:

 for (1..5) {
 push @a, sub { "hi there" };
 }
 for (1..5) {
 {
 my $b;
 push @b, sub { $b."hi there" };
 }
 }
 print "anon normal:\n", join "\t\n",@a,"\n";
 print "anon closure:\n",join "\t\n",@b,"\n";

which generates:

 anon normal:
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)

 anon closure:
 CODE(0x804b4c0)

1115 Feb 2014

1.6 Understanding Closures -- the Easy WayPerl Reference

 CODE(0x8056b54)
 CODE(0x8056bb4)
 CODE(0x80594d8)
 CODE(0x8059538)

Note how each code reference from the non-closure is identical, but the closure form must generate
distinct coderefs to point at the distinct instances of the closure.

And now the same with named subroutines:

 for (1..5) {
 sub a { "hi there" };
 push @a, \&a;
 }
 for (1..5) {
 {
 my $b;
 sub b { $b."hi there" };
 push @b, \&b;
 }
 }
 print "normal:\n", join "\t\n",@a,"\n";
 print "closure:\n",join "\t\n",@b,"\n";

which generates:

 anon normal:
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)

 anon closure:
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)

We can see that both versions has generated the same code reference. For the subroutine a it’s easy, since
it doesn’t include any lexical variables defined outside it in the same lexical scope.

As for the subroutine b, it’s indeed a closure, but Perl won’t recompile it since it’s a named subroutine (see
the perlsub manpage). It’s something that we don’t want to happen in our code unless we want it for this
special effect, similar to static variables in C.

This is the underpinnings of that famous "won’t stay shared" message. A my variable in a named subrou-
tine context is generating identical code references and therefore it ignores any future changes to the
lexical variables outside of it.

15 Feb 201412

1.6 Understanding Closures -- the Easy Way

1.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior
 From: mjtg@cus.cam.ac.uk (M.J.T. Guy)
 Newsgroups: comp.lang.perl.misc
 Subject: Re: Lexical scope and embedded subroutines.
 Date: 6 Jan 1998 18:22:39 GMT
 Message-ID: <68tspf$9f0$1@lyra.csx.cam.ac.uk>

 In article <68sc4k$3p2$1@brokaw.wa.com>, Aaron Harsh <ajh@rtk.com>
 wrote:

 > Before I read this thread (and perlsub to get the details) I would
 > have assumed the original code was fine.
 >
 > This behavior brings up the following questions:
 > o Is Perl’s behavior some sort of speed optimization?

 No, but see below.

 > o Did the Perl gods just decide that scheme-like behavior was less
 > important than the pseduo-static variables described in perlsub?

 This subject has been kicked about at some length on perl5-porters.
 The current behaviour was chosen as the best of a bad job. In the
 context of Perl, it’s not obvious what "scheme-like behavior" means.
 So it isn’t an option. See below for details.

 > o Does anyone else find Perl’s behavior counter-intuitive?

 Everyone finds it counterintuitive. The fact that it only generates
 a warning rather than a hard error is part of the Perl Gods policy of
 hurling thunderbolts at those so irreverent as not to use -w.

 > o Did programming in scheme destroy my ability to judge a decent
 > language
 > feature?

 You’re still interested in Perl, so it can’t have rotted your brain
 completely.

 > o Have I misremembered how scheme handles these situations?

 Probably not.

 > o Do Perl programmers really care how much Perl acts like scheme?

 Some do.

 > o Should I have stopped this message two or three questions ago?

 Yes.

 The problem to be solved can be stated as

 "When a subroutine refers to a variable which is instantiated more
 than once (i.e. the variable is declared in a for loop, or in a

1315 Feb 2014

1.6.1 Mike Guy’s Explanation of the Inner Subroutine BehaviorPerl Reference

 subroutine), which instance of that variable should be used?"

 The basic problem is that Perl isn’t Scheme (or Pascal or any of the
 other comparators that have been used).

 In almost all lexically scoped languages (i.e. those in the Algol60
 tradition), named subroutines are also lexically scoped. So the scope
 of the subroutine is necessarily contained in the scope of any
 external variable referred to inside the subroutine. So there’s an
 obvious answer to the "which instance?" problem.

 But in Perl, named subroutines are globally scoped. (But in some
 future Perl, you’ll be able to write

 my sub lex { ... }

 to get lexical scoping.) So the solution adopted by other languages
 can’t be used.

 The next suggestion most people come up with is "Why not use the most
 recently instantiated variable?". This Does The Right Thing in many
 cases, but fails when recursion or other complications are involved.

 Consider:

 sub outer {

 inner();
 outer();
 my $trouble;
 inner();
 sub inner { $trouble };
 outer();
 inner();
 }

 Which instance of $trouble is to be used for each call of inner()?
 And why?

 The consensus was that an incomplete solution was unacceptable, so the
 simple rule "Use the first instance" was adopted instead.

 And it is more efficient than possible alternative rules. But that’s
 not why it was done.

 Mike Guy

1.7 When You Cannot Get Rid of The Inner Subroutine
First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do
it much faster since compilation has already taken place.

15 Feb 201414

1.7 When You Cannot Get Rid of The Inner Subroutine

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let’s put it the other way: after it was executed for the first time and it stays compiled in the daemon’s
memory, how do you call it again? If you could get all developers to code their scripts so each has a
subroutine called run() that will actually execute the code in the script then we’ve solved half the problem.

But how does the daemon know to refer to some specific script if they all run in the main:: name space?
One solution might be to ask the developers to declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is a chance that there will be more
than one script with the same name but residing in different directories, then in order to prevent namespace
collisions the directory has to be a part of the package name too. And don’t forget that the script may be
moved from one directory to another, so you will have to make sure that the package name is corrected
every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this work?
For every script that the daemon is about to execute for the first time, the script should be wrapped inside
the package whose name is constructed from the mangled path to the script and a subroutine called run().
For example if the daemon is about to execute the script /tmp/hello.pl:

 hello.pl

 #!/usr/bin/perl
 print "Hello\n";

Prior to running it, the daemon will change the code to be:

 wrapped_hello.pl

 package cache::tmp::hello_2epl;

 sub run{
 #!/usr/bin/perl
 print "Hello\n";
 }

The package name is constructed from the prefix cache::, each directory separation slash is replaced
with ::, and non alphanumeric characters are encoded so that for example . (a dot) becomes _2e (an
underscore followed by the ASCII code for a dot in hex representation).

 % perl -e ’printf "%x",ord(".")’

prints: 2e. The underscore is the same you see in URL encoding except the % character is used instead
(%2E), but since % has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, all it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

 use cache::tmp::hello_2epl;
 cache::tmp::hello_2epl::run();

1515 Feb 2014

1.7 When You Cannot Get Rid of The Inner SubroutinePerl Reference

We have just written a partial prototype of the daemon we wanted. The only outstanding problem is how
to pass the path to the script to the daemon. This detail is left as an exercise for the reader.

If you are familiar with the Apache::Registry module, you know that it works in almost the same
way. It uses a different package prefix and the generic function is called handler() and not run(). The
scripts to run are passed through the HTTP protocol’s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if your
script was a simple:

 simple.pl

 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();

Wrapped into a run() subroutine it becomes:

 simple.pl

 package cache::simple_2epl;

 sub run{
 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();
 }

Therefore, hello() is an inner subroutine and if you have used my () scoped variables defined and altered
outside and used inside hello(), it won’t work as you expect starting from the second call, as was explained
in the previous section.

1.7.1 Remedies for Inner Subroutines

First of all there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you do
happen to have the "my () Scoped Variable in Nested Subroutines" problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There have been many
suggested in the past, and we discuss some of them here.

We will use the following code to show the different solutions.

 multirun.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();

15 Feb 201416

1.7.1 Remedies for Inner Subroutines

 }

 sub run{

 my $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $counter variable to 0,
every time it is executed and then calls the inner subroutine increment_counter() twice. Sub incre-
ment_counter() prints $counter’s value after incrementing it. One might expect to see the following
output:

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

But as we have already learned from the previous sections, this is not what we are going to see. Indeed,
when we run the script we see:

 % ./multirun.pl

 Variable "$counter" will not stay shared at ./nested.pl line 18.
 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 3 !
 Counter is equal to 4 !
 run: [time 3]
 Counter is equal to 5 !
 Counter is equal to 6 !

Apparently, the $counter variable is not reinitialized on each execution of run(), it retains its value from
the previous execution, and increment_counter() increments that. Actually that is not quite what happens.
On each execution of run() a new $counter variable is initialized to zero but increment_counter()
remains bound to the $counter variable from the first call to run().

1715 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

The simplest of the work-rounds is to use package-scoped variables. These can be declared using our or,
on older versions of Perl, the vars pragma. Note that whereas using my declaration also implicitly initial-
izes variables to undefined the our declaration does not, and so you will probably need to add explicit
initialisation for variables that lacked it.

 multirun1.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 our $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

If you run this and the other solutions offered below, the expected output will be generated:

 % ./multirun1.pl

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

By the way, the warning we saw before has gone, and so has the problem, since there is no my () (lexi-
cally defined) variable used in the nested subroutine.

In the above example we know $counter is just a simple small scalar. In the general case variables
could reference external resource handles or large data structures. In that situation the fact that the variable
would not be released immediately when run() completes could be a problem. To avoid this you can put
local in front of the our declaration of all variables other than simple scalars. This has the effect of
restoring the variable to its previous value (usually undefined) upon exit from the current scope. As a
side-effect local also initializes the variables to undef. So, if you recall that thing I said about adding

15 Feb 201418

1.7.1 Remedies for Inner Subroutines

explicit initialization when you replace my by our, well, you can forget it again if you replace my with
local our.

Be warned that local will not release circular data structures. If the original CGI script relied upon
process termination to clean up after it then it will leak memory as a registry script.

A varient of the package variable approach is not to declare your variables, but instead to use explicit
package qualifiers. This has the advantage on old versions of Perl that there is no need to load the vars
module, but it adds a significant typing overhead. Another downside is that you become dependant on the
"used only once" warning to detect typos in variable names. The explicit package name approach is not
really suitable for registry scripts because it pollutes the main:: namespace rather than staying properly
within the namespace that has been allocated. Finally, note that the overhead of loading the vars module
only has to be paid once per Perl interpreter.

 multirun2.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $main::counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $main::counter++;
 print "Counter is equal to $main::counter !\n";
 }

 } # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution is an issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, a very simple HTML form text entry field can return
a few megabytes of data if one of your users is bored and wants to test how good your code is. It’s not
uncommon to see users copy-and-paste 10Mb core dump files into a form’s text fields and then submit it
for your script to process.

 multirun3.pl

 #!/usr/bin/perl

1915 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 $counter = increment_counter($counter);
 $counter = increment_counter($counter);

 sub increment_counter{
 my $counter = shift;

 $counter++;
 print "Counter is equal to $counter !\n";

 return $counter;
 }

 } # end of sub run

Finally, you can use references to do the job. The version of increment_counter() below accepts a refer-
ence to the $counter variable and increments its value after first dereferencing it. When you use a refer-
ence, the variable you use inside the function is physically the same bit of memory as the one outside the
function. This technique is often used to enable a called function to modify variables in a calling function.

 multirun4.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter(\$counter);
 increment_counter(\$counter);

 sub increment_counter{
 my $r_counter = shift;

 $$r_counter++;

15 Feb 201420

1.7.1 Remedies for Inner Subroutines

 print "Counter is equal to $$r_counter !\n";
 }

 } # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $counter inside the
subroutine by using the fact that variables in @_ are aliases for the actual scalar parameters. Thus if you
called a function with two arguments, those would be stored in $_[0] and $_[1]. In particular, if an
element $_[0] is updated, the corresponding argument is updated (or an error occurs if it is not updatable
as would be the case of calling the function with a literal, e.g. increment_counter(5)).

 multirun5.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter($counter);
 increment_counter($counter);

 sub increment_counter{
 $_[0]++;
 print "Counter is equal to $_[0] !\n";
 }

 } # end of sub run

The approach given above should be properly documented of course.

Here is a solution that avoids the problem entirely by splitting the code into two files; the first is really just
a wrapper and loader, the second file contains the heart of the code. This second file must go into a direc-
tory in your @INC. Some people like to put the library in the same directory as the script but this assumes
that the current working directory will be equal to the directory where the script is located and also that
@INC will contain ’.’, neither of which are assumptions you should expect to hold in all cases.

Note that the name chosen for the library must be unique throughout the entire server and indeed every
server on which you many ever install the script. This solution is probably more trouble than it is worth - it
is only oncluded because it was mentioned in previous versions of this guide.

 multirun6.pl

 #!/usr/bin/perl

 use strict;

2115 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

 use warnings;

 require ’multirun6-lib.pl’;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

Separate file:

 multirun6-lib.pl

 use strict;
 use warnings;

 my $counter;

 sub run {
 $counter = 0;

 increment_counter();
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 1 ;

An alternative verion of the above, that mitigates some of the disadvantages, is to use a Perl5-style
Exporter module rather than a Perl4-style library. The global uniqueness requirement still applies to the
module name, but at least this is a problem Perl programmers should already be familiar with when creat-
ing modules.

 multirun7.pl

 #!/usr/bin/perl

 use strict;
 use warnings;
 use My::Multirun7;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

Separate file:

15 Feb 201422

1.7.1 Remedies for Inner Subroutines

 My/Multirun7.pm

 package My::Multirun7;
 use strict;
 use warnings;
 use base qw(Exporter);
 our @EXPORT = qw(run);

 my $counter;

 sub run {
 $counter = 0;

 increment_counter();
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 1 ;

Now you have at least five workarounds to choose from (not counting numbers 2 and 6).

For more information please refer to perlref and perlsub manpages.

1.8 use(), require(), do(), %INC and @INC Explained

1.8.1 The @INC array

@INC is a special Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains a list of directories to search for executables, @INC contains a list of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the @INC
variable and searches them for the file it was requested to load. If the file that you want to load is not
located in one of the listed directories, you have to tell Perl where to find the file. You can either provide a
path relative to one of the directories in @INC, or you can provide the full path to the file.

1.8.2 The %INC hash

%INC is another special Perl variable that is used to cache the names of the files and the modules that were
successfully loaded and compiled by use(), require() or do() statements. Before attempting to load a file or
a module with use() or require(), Perl checks whether it’s already in the %INC hash. If it’s there, the
loading and therefore the compilation are not performed at all. Otherwise the file is loaded into memory
and an attempt is made to compile it. do() does unconditional loading--no lookup in the %INC hash is
made.

2315 Feb 2014

1.8 use(), require(), do(), %INC and @INC ExplainedPerl Reference

If the file is successfully loaded and compiled, a new key-value pair is added to %INC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and if
it was found in any of the @INC directories except "." the value is the full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @INC on my system:

 % perl -e ’print join "\n", @INC’
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

Notice the . (current directory) is the last directory in the list.

Now let’s load the module strict.pm and see the contents of %INC:

 % perl -e ’use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

 strict.pm => /usr/lib/perl5/5.00503/strict.pm

Since strict.pm was found in /usr/lib/perl5/5.00503/ directory and /usr/lib/perl5/5.00503/ is a part of
@INC, %INC includes the full path as the value for the key strict.pm.

Now let’s create the simplest module in /tmp/test.pm:

 test.pm

 1;

It does nothing, but returns a true value when loaded. Now let’s load it in different ways:

 % cd /tmp
 % perl -e ’use test; print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Since the file was found relative to . (the current directory), the relative path is inserted as the value. If we
alter @INC, by adding /tmp to the end:

 % cd /tmp
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Here we still get the relative path, since the module was found first relative to ".". The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the "." directory
won’t match,

15 Feb 201424

1.8.2 The %INC hash

 % cd /
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching before
"." and therefore we will get the full path as well:

 % cd /tmp
 % perl -e ’BEGIN{unshift @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

The code:

 BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

 use lib "/tmp";

Which is almost equivalent to our BEGIN block and is the recommended approach.

These approaches to modifying @INC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

There is a module called FindBin which solves this problem in the plain Perl world, but unfortunately
up untill perl 5.9.1 it won’t work under mod_perl, since it’s a module and as any module it’s loaded only
once. So the first script using it will have all the settings correct, but the rest of the scripts will not if
located in a different directory from the first. Perl 5.9.1 provides a new function FindBin::again
which will do the right thing. Also the CPAN module FindBin::Real provides a working alternative
working under mod_perl.

For the sake of completeness, I’ll present the FindBin module anyway.

If you use this module, you don’t need to write a hard coded path. The following snippet does all the work
for you (the file is /tmp/load.pl):

 load.pl

 #!/usr/bin/perl

 use FindBin ();
 use lib "$FindBin::Bin";
 use test;
 print "test.pm => $INC{’test.pm’}\n";

2515 Feb 2014

1.8.2 The %INC hashPerl Reference

In the above example $FindBin::Bin is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/new_dir in the code above $FindBin::Bin equals /tmp/new_dir.

 % /tmp/load.pl

 test.pm => /tmp/test.pm

This is just like use lib except that no hard coded path is required.

You can use this workaround to make it work under mod_perl.

 do ’FindBin.pm’;
 unshift @INC, "$FindBin::Bin";
 require test;
 #maybe test::import(...) here if need to import stuff

This has a slight overhead because it will load from disk and recompile the FindBin module on each
request. So it may not be worth it.

1.8.3 Modules, Libraries and Program Files

Before we proceed, let’s define what we mean by module, library and program file.

Libraries

These are files which contain Perl subroutines and other code.

When these are used to break up a large program into manageable chunks they don’t generally
include a package declaration; when they are used as subroutine libraries they often do have a
package declaration.

Their last statement returns true, a simple 1; statement ensures that.

They can be named in any way desired, but generally their extension is .pl.

Examples:

 config.pl

 # No package so defaults to main::
 $dir = "/home/httpd/cgi-bin";
 $cgi = "/cgi-bin";
 1;

 mysubs.pl

 # No package so defaults to main::
 sub print_header{
 print "Content-type: text/plain\r\n\r\n";
 }
 1;

15 Feb 201426

1.8.3 Modules, Libraries and Program Files

 web.pl

 package web ;
 # Call like this: web::print_with_class(’loud’,"Don’t shout!");
 sub print_with_class{
 my ($class, $text) = @_ ;
 print qq{$text};
 }
 1;

Modules

A file which contains perl subroutines and other code.

It generally declares a package name at the beginning of it.

Modules are generally used either as function libraries (which .pl files are still but less commonly
used for), or as object libraries where a module is used to define a class and its methods.

Its last statement returns true.

The naming convention requires it to have a .pm extension.

Example:

 MyModule.pm

 package My::Module;
 $My::Module::VERSION = 0.01;

 sub new{ return bless {}, shift;}
 END { print "Quitting\n"}
 1;

Program Files

Many Perl programs exist as a single file. Under Linux and other Unix-like operating systems the file
often has no suffix since the operating system can determine that it is a perl script from the first line
(shebang line) or if it’s Apache that executes the code, there is a variety of ways to tell how and when
the file should be executed. Under Windows a suffix is normally used, for example .pl or .plx.

The program file will normally require() any libraries and use() any modules it requires for
execution.

It will contain Perl code but won’t usually have any package names.

Its last statement may return anything or nothing.

2715 Feb 2014

1.8.3 Modules, Libraries and Program FilesPerl Reference

1.8.4 require()

require() reads a file containing Perl code and compiles it. Before attempting to load the file it looks up the
argument in %INC to see whether it has already been loaded. If it has, require() just returns without doing
a thing. Otherwise an attempt will be made to load and compile the file.

require() has to find the file it has to load. If the argument is a full path to the file, it just tries to read it. For
example:

 require "/home/httpd/perl/mylibs.pl";

If the path is relative, require() will attempt to search for the file in all the directories listed in @INC. For
example:

 require "mylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @INC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestion is to put "1;" at the end of file.

Although you should use the real filename for most files, if the file is a module, you may use the following
convention instead:

 require My::Module;

This is equal to:

 require "My/Module.pm";

If require() fails to load the file, either because it couldn’t find the file in question or the code failed to
compile, or it didn’t return TRUE, then the program would die(). To prevent this the require() statement
can be enclosed into an eval() exception-handling block, as in this example:

 require.pl

 #!/usr/bin/perl -w

 eval { require "/file/that/does/not/exists"};
 if ($@) {
 print "Failed to load, because : $@"
 }
 print "\nHello\n";

When we execute the program:

15 Feb 201428

1.8.4 require()

 % ./require.pl

 Failed to load, because : Can’t locate /file/that/does/not/exists in
 @INC (@INC contains: /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

 Hello

We see that the program didn’t die(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn’t it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:

 require.pl

 #!/usr/bin/perl -w

 require "/file/that/does/not/exists";
 print "\nHello\n";

 % ./require1.pl

 Can’t locate /file/that/does/not/exists in @INC (@INC contains:
 /usr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require1.pl line 3.

The program just die()s in the last example, which is what you want in most cases.

For more information refer to the perlfunc manpage.

1.8.5 use()

use(), just like require(), loads and compiles files containing Perl code, but it works with modules only and
is executed at compile time.

The only way to pass a module to load is by its module name and not its filename. If the module is located
in MyCode.pm, the correct way to use() it is:

 use MyCode

and not:

 use "MyCode.pm"

use() translates the passed argument into a file name replacing :: with the operating system’s path separa-
tor (normally /) and appending .pm at the end. So My::Module becomes My/Module.pm.

2915 Feb 2014

1.8.5 use()Perl Reference

use() is exactly equivalent to:

 BEGIN { require Module; Module->import(LIST); }

Internally it calls require() to do the loading and compilation chores. When require() finishes its job,
import() is called unless () is the second argument. The following pairs are equivalent:

 use MyModule;
 BEGIN {require MyModule; MyModule->import; }

 use MyModule qw(foo bar);
 BEGIN {require MyModule; MyModule->import("foo","bar"); }

 use MyModule ();
 BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the module sets @EXPORT to a list of tags to be
exported by default. The module’s manpage normally describes what tags are exported by default.

The second pair exports only the tags passed as arguments.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtin function, it’s just an ordinary static method call into the "MyModule" package
to tell the module to import the list of features back into the current package. See the Exporter manpage
for more information.

When you write your own modules, always remember that it’s better to use @EXPORT_OK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren’t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo(). By convention you can use a leading underscore
on names to informally indicate that they are internal and not for public use.

There’s a corresponding "no" command that un-imports symbols imported by use, i.e., it calls
Module->unimport(LIST) instead of import().

1.8.6 do()

While do() behaves almost identically to require(), it reloads the file unconditionally. It doesn’t check
%INC to see whether the file was already loaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file but
cannot compile it, it returns undef and puts an error message in $@. If the file is successfully compiled,
do() returns the value of the last expression evaluated.

15 Feb 201430

1.8.6 do()

1.9 Using Global Variables and Sharing Them Between
Modules/Packages
It helps when you code your application in a structured way, using the perl packages, but as you probably
know once you start using packages it’s much harder to share the variables between the various packag-
ings. A configuration package comes to mind as a good example of the package that will want its variables
to be accessible from the other modules.

Of course using the Object Oriented (OO) programming is the best way to provide an access to variables
through the access methods. But if you are not yet ready for OO techniques you can still benefit from
using the techniques we are going to talk about.

1.9.1 Making Variables Global

When you first wrote $x in your code you created a (package) global variable. It is visible everywhere in
your program, although if used in a package other than the package in which it was declared (main:: by
default), it must be referred to with its fully qualified name, unless you have imported this variable with
import(). This will work only if you do not use strict pragma; but you have to use this pragma if you
want to run your scripts under mod_perl. Read The strict pragma to find out why.

1.9.2 Making Variables Global With strict Pragma On

First you use :

 use strict;

Then you use:

 use vars qw($scalar %hash @array);

This declares the named variables as package globals in the current package. They may be referred to
within the same file and package with their unqualified names; and in different files/packages with their
fully qualified names.

With perl5.6 you can use the our operator instead:

 our($scalar, %hash, @array);

If you want to share package global variables between packages, here is what you can do.

1.9.3 Using Exporter.pm to Share Global Variables

Assume that you want to share the CGI.pm object (I will use $q) between your modules. For example,
you create it in script.pl, but you want it to be visible in My::HTML. First, you make $q global.

3115 Feb 2014

1.9 Using Global Variables and Sharing Them Between Modules/PackagesPerl Reference

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 $q = CGI->new;

 My::HTML::printmyheader();

Note that we have imported $q from My::HTML. And My::HTML does the export of $q:

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();
 }
 1;

So the $q is shared between the My::HTML package and script.pl. It will work vice versa as well, if
you create the object in My::HTML but use it in script.pl. You have true sharing, since if you change
$q in script.pl, it will be changed in My::HTML as well.

What if you need to share $q between more than two packages? For example you want My::Doc to share
$q as well.

You leave My::HTML untouched, and modify script.pl to include:

 use My::Doc qw($q);

Then you add the same Exporter code that we used in My::HTML, into My::Doc, so that it also
exports $q.

One possible pitfall is when you want to use My::Doc in both My::HTML and script.pl. Only if you add

 use My::Doc qw($q);

15 Feb 201432

1.9.3 Using Exporter.pm to Share Global Variables

into My::HTML will $q be shared. Otherwise My::Doc will not share $q any more. To make things
clear here is the code:

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 use My::Doc qw($q); # Ditto
 $q = new CGI;

 My::HTML::printmyheader();

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);
 use My::Doc qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();

 My::Doc::printtitle(’Guide’);
 }
 1;

 My/Doc.pm

 package My::Doc;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Doc::ISA = qw(Exporter);
 @My::Doc::EXPORT = qw();
 @My::Doc::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printtitle{

3315 Feb 2014

1.9.3 Using Exporter.pm to Share Global VariablesPerl Reference

 my $title = shift || ’None’;

 print $q->h1($title);
 }
 1;

1.9.4 Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Exporter.pm. I have
found it useful to keep all the configuration variables in one module My::Config. But then I have to
export all the variables in order to use them in other modules, which is bad for two reasons: polluting other
packages’ name spaces with extra tags which increases the memory requirements; and adding the over-
head of keeping track of what variables should be exported from the configuration module and what
imported, for some particular package. I solve this problem by keeping all the variables in one hash %c
and exporting that. Here is an example of My::Config:

 package My::Config;
 use strict;
 use vars qw(%c);
 %c = (
 # All the configs go here
 scalar_var => 5,

 array_var => [qw(foo bar)],

 hash_var => {
 foo => ’Foo’,
 bar => ’BARRR’,
 },
);
 1;

Now in packages that want to use the configuration variables I have either to use the fully qualified names
like $My::Config::test, which I dislike or import them as described in the previous section. But
hey, since we have only one variable to handle, we can make things even simpler and save the loading of
the Exporter.pm package. We will use the Perl aliasing feature for exporting and saving the
keystrokes:

 package My::HTML;
 use strict;
 use lib qw(.);
 # Global Configuration now aliased to global %c
 use My::Config (); # My/Config.pm in the same dir as script.pl
 use vars qw(%c);
 *c = \%My::Config::c;

 # Now you can access the variables from the My::Config
 print $c{scalar_var};
 print $c{array_var}[0];
 print $c{hash_var}{foo};

15 Feb 201434

1.9.4 Using the Perl Aliasing Feature to Share Global Variables

Of course $c is global everywhere you use it as described above, and if you change it somewhere it will
affect any other packages you have aliased $My::Config::c to.

Note that aliases work either with global or local() vars - you cannot write:

 my *c = \%My::Config::c; # ERROR!

Which is an error. But you can write:

 local *c = \%My::Config::c;

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

1.9.5 Using Non-Hardcoded Configuration Module Names

You have just seen how to use a configuration module for configuration centralization and an easy access
to the information stored in this module. However, there is somewhat of a chicken-and-egg problem--how
to let your other modules know the name of this file? Hardcoding the name is brittle--if you have only a
single project it should be fine, but if you have more projects which use different configurations and you
will want to reuse their code you will have to find all instances of the hardcoded name and replace it.

Another solution could be to have the same name for a configuration module, like My::Config but
putting a different copy of it into different locations. But this won’t work under mod_perl because of the
namespace collision. You cannot load different modules which uses the same name, only the first one will
be loaded.

Luckily, there is another solution which allows us to stay flexible. PerlSetVar comes to rescue. Just
like with environment variables, you can set server’s global Perl variables which can be retrieved from any
module and script. Those statements are placed into the httpd.conf file. For example

 PerlSetVar FooBaseDir /home/httpd/foo
 PerlSetVar FooConfigModule Foo::Config

Now we require() the file where the above configuration will be used.

 PerlRequire /home/httpd/perl/startup.pl

In the startup.pl we might have the following code:

 # retrieve the configuration module path
 use Apache;
 my $s = Apache->server;
 my $base_dir = $s->dir_config(’FooBaseDir’) || ’’;
 my $config_module = $s->dir_config(’FooConfigModule’) || ’’;
 die "FooBaseDir and FooConfigModule aren’t set in httpd.conf"
 unless $base_dir and $config_module;

 # build the real path to the config module
 my $path = "$base_dir/$config_module";
 $path =~ s|::|/|;
 $path .= ".pm";

3515 Feb 2014

1.9.5 Using Non-Hardcoded Configuration Module NamesPerl Reference

 # we have something like "/home/httpd/foo/Foo/Config.pm"

 # now we can pull in the configuration module
 require $path;

Now we know the module name and it’s loaded, so for example if we need to use some variables stored in
this module to open a database connection, we will do:

 Apache::DBI->connect_on_init
 ("DBI:mysql:${$config_module.’::DB_NAME’}::${$config_module.’::SERVER’}",
 ${$config_module.’::USER’},
 ${$config_module.’::USER_PASSWD’},
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

Where variable like:

 ${$config_module.’::USER’}

In our example are really:

 $Foo::Config::USER

If you want to access these variable from within your code at the run time, instead accessing to the server
object $c, use the request object $r:

 my $r = shift;
 my $base_dir = $r->dir_config(’FooBaseDir’) || ’’;
 my $config_module = $r->dir_config(’FooConfigModule’) || ’’;

1.10 The Scope of the Special Perl Variables
Special Perl variables like $| (buffering), $^T (script’s start time), $^W (warnings mode), $/ (input
record separator), $\ (output record separator) and many more are all true global variables; they do not
belong to any particular package (not even main::) and are universally available. This means that if you
change them, you change them anywhere across the entire program; furthermore you cannot scope them
with my (). However you can local()ise them which means that any changes you apply will only last until
the end of the enclosing scope. In the mod_perl situation where the child server doesn’t usually exit, if in
one of your scripts you modify a global variable it will be changed for the rest of the process’ life and will
affect all the scripts executed by the same process. Therefore localizing these variables is highly recom-
mended, I’d say mandatory.

We will demonstrate the case on the input record separator variable. If you undefine this variable, the
diamond operator (readline) will suck in the whole file at once if you have enough memory. Remembering
this you should never write code like the example below.

15 Feb 201436

1.10 The Scope of the Special Perl Variables

 $/ = undef; # BAD!
 open IN, "file"
 # slurp it all into a variable
 $all_the_file = <IN>;

The proper way is to have a local() keyword before the special variable is changed, like this:

 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;

But there is a catch. local() will propagate the changed value to the code below it. The modified value will
be in effect until the script terminates, unless it is changed again somewhere else in the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a block,
like this:

 {
 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;
 }

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t need
to worry elsewhere in your program about its value being changed here.

Note that if you call a subroutine after you’ve set a global variable but within the enclosing block, the
global variable will be visible with its new value inside the subroutine.

1.11 Compiled Regular Expressions
When using a regular expression that contains an interpolated Perl variable, if it is known that the variable
(or variables) will not change during the execution of the program, a standard optimization technique is to
add the /o modifier to the regex pattern. This directs the compiler to build the internal table once, for the
entire lifetime of the script, rather than every time the pattern is executed. Consider:

 my $pat = ’^foo$’; # likely to be input from an HTML form field
 foreach(@list) {
 print if /$pat/o;
 }

This is usually a big win in loops over lists, or when using the grep() or map() operators.

In long-lived mod_perl scripts, however, the variable may change with each invocation and this can pose a
problem. The first invocation of a fresh httpd child will compile the regex and perform the search
correctly. However, all subsequent uses by that child will continue to match the original pattern, regardless
of the current contents of the Perl variables the pattern is supposed to depend on. Your script will appear to
be broken.

3715 Feb 2014

1.11 Compiled Regular ExpressionsPerl Reference

There are two solutions to this problem:

The first is to use eval q//, to force the code to be evaluated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

 my $pat = ’^foo$’;
 eval q{
 foreach(@list) {
 print if /$pat/o;
 }
 }

Just saying:

 foreach(@list) {
 eval q{ print if /$pat/o; };
 }

means that we recompile the regex for every element in the list even though the regex doesn’t change.

You can use this approach if you require more than one pattern match operator in a given section of code.
If the section contains only one operator (be it an m// or s///), you can rely on the property of the null
pattern, that reuses the last pattern seen. This leads to the second solution, which also eliminates the use of
eval.

The above code fragment becomes:

 my $pat = ’^foo$’;
 "something" =~ /$pat/; # dummy match (MUST NOT FAIL!)
 foreach(@list) {
 print if //;
 }

The only gotcha is that the dummy match that boots the regular expression engine must absolutely, posi-
tively succeed, otherwise the pattern will not be cached, and the // will match everything. If you can’t
count on fixed text to ensure the match succeeds, you have two possibilities.

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ^, $...), you can
use the dummy match:

 $pat =~ /\Q$pat\E/; # guaranteed if no meta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern or the
non-searchable \377 character as follows:

 "\377" =~ /$pat|^\377$/; # guaranteed if meta-characters present

Another approach:

15 Feb 201438

1.11 Compiled Regular Expressions

It depends on the complexity of the regex to which you apply this technique. One common usage where a
compiled regex is usually more efficient is to "match any one of a group of patterns" over and over again.

Maybe with a helper routine, it’s easier to remember. Here is one slightly modified from Jeffery Friedl’s
example in his book "Mastering Regular Expressions".

 ###
 # Build_MatchMany_Function
 # -- Input: list of patterns
 # -- Output: A code ref which matches its $_[0]
 # against ANY of the patterns given in the
 # "Input", efficiently.
 #
 sub Build_MatchMany_Function {
 my @R = @_;
 my $expr = join ’||’, map { "\$_[0] =~ m/\$R[$_]/o" } (0..$#R);
 my $matchsub = eval "sub { $expr }";
 die "Failed in building regex @R: $@" if $@;
 $matchsub;
 }

Example usage:

 @some_browsers = qw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
 $Known_Browser=Build_MatchMany_Function(@some_browsers);

 while (<ACCESS_LOG>) {
 # ...
 $browser = get_browser_field($_);
 if (! &$Known_Browser($browser)) {
 print STDERR "Unknown Browser: $browser\n";
 }
 # ...
 }

And of course you can use the qr() operator which makes the code even more efficient:

 my $pat = ’^foo$’;
 my $re = qr($pat);
 foreach(@list) {
 print if /$re/;
 }

The qr() operator compiles the pattern for each request and then use the compiled version in the actual
match.

1.12 Exception Handling for mod_perl
Here are some guidelines for clean(er) exception handling in mod_perl, although the technique presented
can be applied to all of your Perl programming.

3915 Feb 2014

1.12 Exception Handling for mod_perlPerl Reference

The reasoning behind this document is the current broken status of $SIG{__DIE__} in the perl core -
see both the perl5-porters and the mod_perl mailing list archives for details on this discussion. (It’s broken
in at least Perl v5.6.0 and probably in later versions as well). In short summary, $SIG{__DIE__} is a little
bit too global, and catches exceptions even when you want to catch them yourself, using an eval{}
block.

1.12.1 Trapping Exceptions in Perl

To trap an exception in Perl we use the eval{} construct. Many people initially make the mistake that
this is the same as the eval EXPR construct, which compiles and executes code at run time, but that’s
not the case. eval{} compiles at compile time, just like the rest of your code, and has next to zero
run-time penalty. For the hardcore C programmers among you, it uses the setjmp/longjmp POSIX
routines internally, just like C++ exceptions.

When in an eval block, if the code being executed die()’s for any reason, an exception is thrown. This
exception can be caught by examining the $@ variable immediately after the eval block; if $@ is true then
an exception occurred and $@ contains the exception in the form of a string. The full construct looks like
this:

 eval {
 # Some code here
 }; # Note important semi-colon there
 if ($@) # $@ contains the exception that was thrown
 {
 # Do something with the exception
 }
 else # optional
 {
 # No exception was thrown
 }

Most of the time when you see these exception handlers there is no else block, because it tends to be OK if
the code didn’t throw an exception.

Perl’s exception handling is similar to that of other languages, though it may not seem so at first sight:

 Perl Other language
 ------------------------------- ------------------------------------
 eval { try {
 # execute here // execute here
 # raise our own exception: // raise our own exception:
 die "Oops" if /error/; if(error==1){throw Exception.Oops;}
 # execute more // execute more
 } ; }
 if($@) { catch {
 # handle exceptions switch(Exception.id) {
 if($@ =~ /Fail/) { Fail : fprintf(stderr, "Failed\n") ;
 print "Failed\n" ; break ;
 }
 elsif($@ =~ /Oops/) { Oops : throw Exception ;
 # Pass it up the chain
 die if $@ =~ /Oops/;

15 Feb 201440

1.12.1 Trapping Exceptions in Perl

 }
 else { default :
 # handle all other }
 # exceptions here }
 } // If we got here all is OK or handled
 }
 else { # optional
 # all is well
 }
 # all is well or has been handled

1.12.2 Alternative Exception Handling Techniques

An often suggested method for handling global exceptions in mod_perl, and other perl programs in
general, is a __DIE__ handler, which can be set up by either assigning a function name as a string to
$SIG{__DIE__} (not particularly recommended, because of the possible namespace clashes) or assign-
ing a code reference to $SIG{__DIE__}. The usual way of doing so is to use an anonymous subroutine:

 $SIG{__DIE__} = sub { print "Eek - we died with:\n", $_[0]; };

The current problem with this is that $SIG{__DIE__} is a global setting in your script, so while you can
potentially hide away your exceptions in some external module, the execution of $SIG{__DIE__} is
fairly magical, and interferes not just with your code, but with all code in every module you import.
Beyond the magic involved, $SIG{__DIE__} actually interferes with perl’s normal exception handling
mechanism, the eval{} construct. Witness:

 $SIG{__DIE__} = sub { print "handler\n"; };

 eval {
 print "In eval\n";
 die "Failed for some reason\n";
 };
 if ($@) {
 print "Caught exception: $@";
 }

The code unfortunately prints out:

 In eval
 handler

Which isn’t quite what you would expect, especially if that $SIG{__DIE__} handler is hidden away
deep in some other module that you didn’t know about. There are work arounds however. One is to local-
ize $SIG{__DIE__} in every exception trap you write:

 eval {
 local $SIG{__DIE__};
 ...
 };

4115 Feb 2014

1.12.2 Alternative Exception Handling TechniquesPerl Reference

Obviously this just doesn’t scale - you don’t want to be doing that for every exception trap in your code,
and it’s a slow down. A second work around is to check in your handler if you are trying to catch this
exception:

 $SIG{__DIE__} = sub {
 die $_[0] if $^S;
 print "handler\n";
 };

However this won’t work under Apache::Registry - you’re always in an eval block there!

$^S isn’t totally reliable in certain Perl versions. e.g. 5.005_03 and 5.6.1 both do the wrong thing with it
in certain situations. Instead, you use can use the caller() function to figure out if we are called in the
eval() context:

 $SIG{__DIE__} = sub {
 my $in_eval = 0;
 for(my $stack = 1; my $sub = (CORE::caller($stack))[3]; $stack++) {
 $in_eval = 1 if $sub =~ /^\(eval\)/;
 }
 my_die_handler(@_) unless $in_eval;
 };

The other problem with $SIG{__DIE__} also relates to its global nature. Because you might have more
than one application running under mod_perl, you can’t be sure which has set a $SIG{__DIE__}
handler when and for what. This can become extremely confusing when you start scaling up from a set of
simple registry scripts that might rely on CGI::Carp for global exception handling (which uses
$SIG{__DIE__} to trap exceptions) to having many applications installed with a variety of exception
handling mechanisms in place.

You should warn people about this danger of $SIG{__DIE__} and inform them of better ways to code.
The following material is an attempt to do just that.

1.12.3 Better Exception Handling

The eval{} construct in itself is a fairly weak way to handle exceptions as strings. There’s no way to
pass more information in your exception, so you have to handle your exception in more than one place - at
the location the error occurred, in order to construct a sensible error message, and again in your exception
handler to de-construct that string into something meaningful (unless of course all you want your excep-
tion handler to do is dump the error to the browser). The other problem is that you have no way of auto-
matically detecting where the exception occurred using eval{} construct. In a $SIG{__DIE__} block
you always have the use of the caller() function to detect where the error occurred. But we can fix that...

A little known fact about exceptions in perl 5.005 is that you can call die with an object. The exception
handler receives that object in $@. This is how you are advised to handle exceptions now, as it provides an
extremely flexible and scalable exceptions solution, potentially providing almost all of the power Java
exceptions.

15 Feb 201442

1.12.3 Better Exception Handling

[As a footnote here, the only thing that is really missing here from Java exceptions is a guaranteed Finally
clause, although its possible to get about 98.62% of the way towards providing that using eval{}.]

1.12.3.1 A Little Housekeeping

First though, before we delve into the details, a little housekeeping is in order. Most, if not all, mod_perl
programs consist of a main routine that is entered, and then dispatches itself to a routine depending on the
parameters passed and/or the form values. In a normal C program this is your main() function, in a
mod_perl handler this is your handler() function/method. The exception to this rule seems to be
Apache::Registry scripts, although the techniques described here can be easily adapted.

In order for you to be able to use exception handling to its best advantage you need to change your script
to have some sort of global exception handling. This is much more trivial than it sounds. If you’re using
Apache::Registry to emulate CGI you might consider wrapping your entire script in one big eval
block, but I would discourage that. A better method would be to modularize your script into discrete func-
tion calls, one of which should be a dispatch routine:

 #!/usr/bin/perl -w
 # Apache::Registry script

 eval {
 dispatch();
 };
 if ($@) {
 # handle exception
 }

 sub dispatch {
 ...
 }

This is easier with an ordinary mod_perl handler as it is natural to have separate functions, rather than a
long run-on script:

 MyHandler.pm

 sub handler {
 my $r = shift;

 eval {
 dispatch($r);
 };
 if ($@) {
 # handle exception
 }
 }

 sub dispatch {
 my $r = shift;
 ...
 }

4315 Feb 2014

1.12.3 Better Exception HandlingPerl Reference

Now that the skeleton code is setup, let’s create an exception class, making use of Perl 5.005’s ability to
throw exception objects.

1.12.3.2 An Exception Class

This is a really simple exception class, that does nothing but contain information. A better implementation
would probably also handle its own exception conditions, but that would be more complex, requiring sepa-
rate packages for each exception type.

 My/Exception.pm

 package My::Exception;

 sub AUTOLOAD {
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 my ($package, $filename, $line) = caller;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,
 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

OK, so this is all highly magical, but what does it do? It creates a simple package that we can import and
use as follows:

 use My::Exception;

 die My::Exception->SomeException(foo => "bar");

The exception class tracks exactly where we died from using the caller() mechanism, it also caches excep-
tion classes so that AUTOLOAD is only called the first time (in a given process) an exception of a particular
type is thrown (particularly relevant under mod_perl).

15 Feb 201444

1.12.3 Better Exception Handling

1.12.4 Catching Uncaught Exceptions

What about exceptions that are thrown outside of your control? We can fix this using one of two possible
methods. The first is to override die globally using the old magical $SIG{__DIE__}, and the second, is
the cleaner non-magical method of overriding the global die() method to your own die() method that
throws an exception that makes sense to your application.

1.12.4.1 Using $SIG{__DIE__}

Overloading using $SIG{__DIE__} in this case is rather simple, here’s some code:

 $SIG{__DIE__} = sub {
 if(!ref($_[0])) {
 $err = My::Exception->UnCaught(text => join(’’, @_));
 }
 die $err;
 };

All this does is catch your exception and re-throw it. It’s not as dangerous as we stated earlier that
$SIG{__DIE__} can be, because we’re actually re-throwing the exception, rather than catching it and
stopping there. Even though $SIG{__DIE__} is a global handler, because we are simply re-throwing the
exception we can let other applications outside of our control simply catch the exception and not worry
about it.

There’s only one slight buggette left, and that’s if some external code die()’ing catches the exception and
tries to do string comparisons on the exception, as in:

 eval {
 ... # some code
 die "FATAL ERROR!\n";
 };
 if ($@) {
 if ($@ =~ /^FATAL ERROR/) {
 die $@;
 }
 }

In order to deal with this, we can overload stringification for our My::Exception::UnCaught class:

 {
 package My::Exception::UnCaught;
 use overload ’""’ => \&str;

 sub str {
 shift->{text};
 }
 }

We can now let other code happily continue. Note that there is a bug in Perl 5.6 which may affect people
here: Stringification does not occur when an object is operated on by a regular expression (via the =~ oper-
ator). A work around is to explicitly stringify using qq double quotes, however that doesn’t help the poor
soul who is using other applications. This bug has been fixed in later versions of Perl.

4515 Feb 2014

1.12.4 Catching Uncaught ExceptionsPerl Reference

1.12.4.2 Overriding the Core die() Function

So what if we don’t want to touch $SIG{__DIE__} at all? We can overcome this by overriding the core
die function. This is slightly more complex than implementing a $SIG{__DIE__} handler, but is far less
magical, and is the right thing to do, according to the perl5-porters mailing list.

Overriding core functions has to be done from an external package/module. So we’re going to add that to
our My::Exception module. Here’s the relevant parts:

 use vars qw/@ISA @EXPORT/;
 use Exporter;

 @EXPORT = qw/die/;
 @ISA = ’Exporter’;

 sub die (@); # prototype to match CORE::die

 sub import {
 my $pkg = shift;
 $pkg->export(’CORE::GLOBAL’, ’die’);
 Exporter::import($pkg,@_);
 }

 sub die (@) {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0]; # only use first element because its an object
 }

That wasn’t so bad, was it? We’re relying on Exporter’s export() function to do the hard work for us,
exporting the die() function into the CORE::GLOBAL namespace. If we don’t want to overload die()
everywhere this can still be an extremely useful technique. By just using Exporter’s default import()
method we can export our new die() method into any package of our choosing. This allows us to short-cut
the long calling convention and simply die() with a string, and let the system handle the actual construc-
tion into an object for us.

Along with the above overloaded stringification, we now have a complete exception system (well, mostly
complete. Exception die-hards would argue that there’s no "finally" clause, and no exception stack, but
that’s another topic for another time).

1.12.5 A Single UnCaught Exception Class

Until the Perl core gets its own base exception class (which will likely happen for Perl 6, but not sooner),
it is vitally important that you decide upon a single base exception class for all of the applications that you
install on your server, and a single exception handling technique. The problem comes when you have
multiple applications all doing exception handling and all expecting a certain type of "UnCaught" excep-
tion class. Witness the following application:

15 Feb 201446

1.12.5 A Single UnCaught Exception Class

 package Foo;

 eval {
 # do something
 }
 if ($@) {
 if ($@->isa(’Foo::Exception::Bar’)) {
 # handle "Bar" exception
 }
 elsif ($@->isa(’Foo::Exception::UnCaught’)) {
 # handle uncaught exceptions
 }
 }

All will work well until someone installs application "TrapMe" on the same machine, which installs its
own UnCaught exception handler, overloading CORE::GLOBAL::die or installing a $SIG{__DIE__}
handler. This is actually a case where using $SIG{__DIE__} might actually be preferable, because you
can change your handler() routine to look like this:

 sub handler {
 my $r = shift;

 local $SIG{__DIE__};
 Foo::Exception->Init(); # sets $SIG{__DIE__}

 eval {
 dispatch($r);
 };
 if ($@) {
 # handle exception
 }
 }

 sub dispatch {
 my $r = shift;
 ...
 }

In this case the very nature of $SIG{__DIE__} being a lexical variable has helped us, something we
couldn’t fix with overloading CORE::GLOBAL::die. However there is still a gotcha. If someone has over-
loaded die() in one of the applications installed on your mod_perl machine, you get the same problems
still. So in short: Watch out, and check the source code of anything you install to make sure it follows your
exception handling technique, or just uses die() with strings.

1.12.6 Some Uses

I’m going to come right out and say now: I abuse this system horribly! I throw exceptions all over my
code, not because I’ve hit an "exceptional" bit of code, but because I want to get straight back out of the
current call stack, without having to have every single level of function call check error codes. One way I
use this is to return Apache return codes:

4715 Feb 2014

1.12.6 Some UsesPerl Reference

 # paranoid security check
 die My::Exception->RetCode(code => 204);

Returns a 204 error code (HTTP_NO_CONTENT), which is caught at my top level exception handler:

 if ($@->isa(’My::Exception::RetCode’)) {
 return $@->{code};
 }

That last return statement is in my handler() method, so that’s the return code that Apache actually sends. I
have other exception handlers in place for sending Basic Authentication headers and Redirect headers out.
I also have a generic My::Exception::OK class, which gives me a way to back out completely from
where I am, but register that as an OK thing to do.

Why do I go to these extents? After all, code like slashcode (the code behind http://slashdot.org) doesn’t
need this sort of thing, so why should my web site? Well it’s just a matter of scalability and programmer
style really. There’s a lot of literature out there about exception handling, so I suggest doing some
research.

1.12.7 Conclusions

Here I’ve demonstrated a simple and scalable (and useful) exception handling mechanism, that fits
perfectly with your current code, and provides the programmer with an excellent means to determine what
has happened in his code. Some users might be worried about the overhead of such code. However in use
I’ve found accessing the database to be a much more significant overhead, and this is used in some code
delivering to thousands of users.

For similar exception handling techniques, see the section "Other Implementations".

1.12.8 The My::Exception class in its entirety
 package My::Exception;

 use vars qw/@ISA @EXPORT $AUTOLOAD/;
 use Exporter;
 @ISA = ’Exporter’;
 @EXPORT = qw/die/;

 sub die (@);

 sub import {
 my $pkg = shift;
 # allow "use My::Exception ’die’;" to mean import locally only
 $pkg->export(’CORE::GLOBAL’, ’die’) unless @_;
 Exporter::import($pkg,@_);
 }

 sub die (@) {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0];

15 Feb 201448

1.12.7 Conclusions

http://slashdot.org/

 }

 {
 package My::Exception::UnCaught;
 use overload ’""’ => sub { shift->{text} } ;
 }

 sub AUTOLOAD {
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 my ($package, $filename, $line) = caller;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,

 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 CORE::die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

1.12.9 Other Implementations

Some users might find it very useful to have the more C++/Java like interface of try/catch functions. These
are available in several forms that all work in slightly different ways. See the documentation for each
module for details:

Error.pm

Graham Barr’s excellent OO styled "try, throw, catch" module (from CPAN). This should be consid-
ered your best option for structured exception handling because it is well known and well supported
and used by a lot of other applications.

Exception::Class and Devel::StackTrace

by Dave Rolsky both available from CPAN of course.

Exception::Class is a bit cleaner than the AUTOLOAD method from above as it can catch typos
in exception class names, whereas the method above will automatically create a new class for you. In
addition, it lets you create actual class hierarchies for your exceptions, which can be useful if you
want to create exception classes that provide extra methods or data. For example, an exception class
for database errors could provide a method for returning the SQL and bound parameters in use at the

4915 Feb 2014

1.12.9 Other ImplementationsPerl Reference

time of the error.

Try.pm

Tony Olekshy’s. Adds an unwind stack and some other interesting features. Not on the CPAN. Avail-
able at http://www.avrasoft.com/perl6/try6-ref5.txt

1.13 Customized __DIE__ handler
As we saw in the previous sections it’s a bad idea to do:

 require Carp;
 $SIG{__DIE__} = \&Carp::confess;

since it breaks the error propogations within eval {} blocks,. But starting from perl 5.6.x you can use
another solution to trace errors. For example you get an error:

 "exit" is not exported by the GLOB(0x88414cc) module at (eval 397) line 1

and you have no clue where it comes from, you can override the exit() function and plug the tracer inside:

 require Carp;
 use subs qw(CORE::GLOBAL::die);
 *CORE::GLOBAL::die = sub {
 if ($_[0] =~ /"exit" is not exported/){
 local *CORE::GLOBAL::die = sub { CORE::die(@_) };
 Carp::confess(@_); # Carp uses die() internally!
 } else {
 CORE::die(@_); # could write &CORE::die to forward @_
 }
 };

Now we can test that it works properly without breaking the eval {} blocks error propogation:

 eval { foo(); }; warn $@ if $@;
 print "\n";
 eval { poo(); }; warn $@ if $@;

 sub foo{ bar(); }
 sub bar{ die qq{"exit" is not exported}}

 sub poo{ tar(); }
 sub tar{ die "normal exit"}

prints:

15 Feb 201450

1.13 Customized __DIE__ handler

http://www.avrasoft.com/perl6/try6-ref5.txt

 $ perl -w test
 Subroutine die redefined at test line 5.
 "exit" is not exported at test line 6
 main::__ANON__(’"exit" is not exported’) called at test line 17
 main::bar() called at test line 16
 main::foo() called at test line 12
 eval {...} called at test line 12

 normal exit at test line 5.

the ’local’ in:

 local *CORE::GLOBAL::die = sub { CORE::die(@_) };

is important, so you won’t lose the overloaded CORE::GLOBAL::die.

1.14 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.15 Authors
Stas Bekman [http://stason.org/]

Matt Sergeant <matt (at) sergeant.org>

Only the major authors are listed above. For contributors see the Changes file.

5115 Feb 2014

1.14 MaintainersPerl Reference

http://stason.org/
http://stason.org/

Table of Contents:
................... 11 Perl Reference
................... 21.1 Description
.......... 21.2 perldoc’s Rarely Known But Very Useful Options
............... 31.3 Tracing Warnings Reports
........ 51.4 Variables Globally, Lexically Scoped And Fully Qualified
......... 51.4.1 Symbols, Symbol Tables and Packages; Typeglobs
............ 71.4.1.1 Lexical Variables and Symbols
.............. 81.4.2 Additional reading references
........... 81.5 my () Scoped Variable in Nested Subroutines
.................. 81.5.1 The Poison
................. 91.5.2 The Diagnosis
................. 101.5.3 The Remedy
............ 111.6 Understanding Closures -- the Easy Way
....... 131.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior
.......... 141.7 When You Cannot Get Rid of The Inner Subroutine
............. 161.7.1 Remedies for Inner Subroutines
.......... 231.8 use(), require(), do(), %INC and @INC Explained
................ 231.8.1 The @INC array
................. 231.8.2 The %INC hash
............ 261.8.3 Modules, Libraries and Program Files
.................. 281.8.4 require()
................... 291.8.5 use()
................... 301.8.6 do()
..... 311.9 Using Global Variables and Sharing Them Between Modules/Packages
.............. 311.9.1 Making Variables Global
......... 311.9.2 Making Variables Global With strict Pragma On
.......... 311.9.3 Using Exporter.pm to Share Global Variables
....... 341.9.4 Using the Perl Aliasing Feature to Share Global Variables
........ 351.9.5 Using Non-Hardcoded Configuration Module Names
............ 361.10 The Scope of the Special Perl Variables
.............. 371.11 Compiled Regular Expressions
............. 391.12 Exception Handling for mod_perl
.............. 401.12.1 Trapping Exceptions in Perl
.......... 411.12.2 Alternative Exception Handling Techniques
.............. 421.12.3 Better Exception Handling
.............. 431.12.3.1 A Little Housekeeping
.............. 441.12.3.2 An Exception Class
............. 451.12.4 Catching Uncaught Exceptions
.............. 451.12.4.1 Using $SIG{__DIE__}
........... 461.12.4.2 Overriding the Core die() Function
............ 461.12.5 A Single UnCaught Exception Class
................. 471.12.6 Some Uses
................. 481.12.7 Conclusions
........... 481.12.8 The My::Exception class in its entirety

i15 Feb 2014

Table of Contents:Perl Reference

................ 491.12.9 Other Implementations

............... 501.13 Customized __DIE__ handler

................... 511.14 Maintainers

.................... 511.15 Authors

15 Feb 2014ii

Table of Contents:

	1€€Perl Reference
	1.1€€Description
	1.2€€perldoc's Rarely Known But Very Useful Options
	1.3€€Tracing Warnings Reports
	1.4€€Variables Globally, Lexically Scoped And Fully Qualified
	1.4.1€€Symbols, Symbol Tables and Packages; Typeglobs
	1.4.1.1€€Lexical Variables and Symbols

	1.4.2€€Additional reading references

	1.5€€my () Scoped Variable in Nested Subroutines
	1.5.1€€The Poison
	1.5.2€€The Diagnosis
	1.5.3€€The Remedy

	1.6€€Understanding Closures -- the Easy Way
	1.6.1€€Mike Guy's Explanation of the Inner Subroutine Behavior

	1.7€€When You Cannot Get Rid of The Inner Subroutine
	1.7.1€€Remedies for Inner Subroutines

	1.8€€use(), require(), do(), %INC and @INC Explained
	1.8.1€€The @INC array
	1.8.2€€The %INC hash
	1.8.3€€Modules, Libraries and Program Files
	1.8.4€€require()
	1.8.5€€use()
	1.8.6€€do()

	1.9€€Using Global Variables and Sharing Them Between Modules/Packages
	1.9.1€€Making Variables Global
	1.9.2€€Making Variables Global With strict Pragma On
	1.9.3€€Using Exporter.pm to Share Global Variables
	1.9.4€€Using the Perl Aliasing Feature to Share Global Variables
	1.9.5€€Using Non-Hardcoded Configuration Module Names

	1.10€€The Scope of the Special Perl Variables
	1.11€€Compiled Regular Expressions
	1.12€€Exception Handling for mod_perl
	1.12.1€€Trapping Exceptions in Perl
	1.12.2€€Alternative Exception Handling Techniques
	1.12.3€€Better Exception Handling
	1.12.3.1€€A Little Housekeeping
	1.12.3.2€€An Exception Class

	1.12.4€€Catching Uncaught Exceptions
	1.12.4.1€€Using $SIG{__DIE__}
	1.12.4.2€€Overriding the Core die() Function

	1.12.5€€A Single UnCaught Exception Class
	1.12.6€€Some Uses
	1.12.7€€Conclusions
	1.12.8€€The My::Exception class in its entirety
	1.12.9€€Other Implementations

	1.13€€Customized __DIE__ handler
	1.14€€Maintainers
	1.15€€Authors

